1
|
Tahghighi A, Azerang P. Click chemistry beyond metal-catalyzed cycloaddition as a remarkable tool for green chemical synthesis of antifungal medications. Chem Biol Drug Des 2024; 103:e14555. [PMID: 38862260 DOI: 10.1111/cbdd.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 05/02/2024] [Accepted: 05/07/2024] [Indexed: 06/13/2024]
Abstract
Click chemistry is widely used for the efficient synthesis of 1,4-disubstituted-1,2,3-triazole, a well-known scaffold with widespread biological activity in the pharmaceutical sciences. In recent years, this magic ring has attracted the attention of scientists for its potential in designing and synthesizing new antifungal agents. Despite scientific and medical advances, fungal infections still account for more than 1.5 million deaths globally per year, especially in people with compromised immune function. This increasing trend is definitely related to a raise in the incidence of fungal infections and prevalence of antifungal drug resistance. In this condition, an urgent need for new alternative antifungals is undeniable. By focusing on the main aspects of reaction conditions in click chemistry, this review was conducted to classify antifungal 1,4-disubstituted-1,2,3-triazole hybrids based on their chemical structures and introduce the most effective triazole antifungal derivatives. It was notable that in all reactions studied, Cu(I) catalysts generated in situ by the reduction in Cu(II) salts or used copper(I) salts directly, as well as mixed solvents of t-BuOH/H2O and DMF/H2O had most application in the synthesis of triazole ring. The most effective antifungal activity was also observed in fluconazole analogs containing 1,2,3-triazole moiety and benzo-fused five/six-membered heterocyclic conjugates with a 1,2,3-triazole ring, even with better activity than fluconazole. The findings of structure-activity relationship and molecular docking of antifungal derivatives synthesized with copper-catalyzed azide-alkyne cycloaddition (CuAAC) could offer medicinal chemistry scientists valuable data on designing and synthesizing novel triazole antifungals with more potent biological activities in their future research.
Collapse
Affiliation(s)
- Azar Tahghighi
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| | - Parisa Azerang
- Medicinal Chemistry Laboratory, Department of Clinical Research, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
2
|
Maurya MR, Nandi M, Kumar N, Avecilla F. Polymer Supported Nitrogen-Bridged Symmetrical Binuclear Dioxidomolybdenum(VI) Complexes and Their Homogeneous Analogues as Potential Catalysts for Efficient Synthesis of 2-Amino-3-Cyano-4H-Chromenes/Pyrans. Chemistry 2024; 30:e202400631. [PMID: 38491788 DOI: 10.1002/chem.202400631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/15/2024] [Accepted: 03/15/2024] [Indexed: 03/18/2024]
Abstract
Reaction of 2-chloromethyl-1H-benzimidazole with known intermediates (i-iii), prepared from diaminoguanidine hydrochloride with salicylaldehyde, 5-bromosalicylaldehyde or 3,5-di-tert-butylsalicylaldehyde, in the presence of triethylamine (NEt3) led to the formation of benzimidazole appended new ligands, H4L1-H4L3 (I-III). The homogeneous nitrogen-bridged symmetrical binuclear complexes, [(MoVIO2)2(L1)(H2O)2] (1), [(MoVIO2)2(L2)(H2O)2] (2) and [(MoVIO2)2(L3)(MeOH)2] (3) have been isolated by reacting these ligands with [MoVIO2(acac)2] in a 1 : 2 molar ratio in refluxing methanol. Using 1 : 1 (ligand to Mo precursor) molar ratio under above reaction conditions resulted in the corresponding mononuclear complexes, [MoVIO2(H2L1)(MeOH)] (4), [MoVIO2(H2L2)(H2O)] (5) and [MoVIO2(H2L3)(MeOH)] (6). The binuclear heterogeneous compounds [(MoVIO2)2(L1)(DMF)2]@PS (PS-1), [(MoVIO2)2(L2)(DMF)2]@PS (PS-2) and [(MoVIO2)2(L3)(DMF)2]@PS (PS-3) have been obtained by immobilization of 1-3 onto chloromethylated polystyrene (PS) beads. All synthesized ligands, homogeneous as well as supported compounds have been characterized by elemental analyses and various spectroscopic methods. Single crystal X-ray diffraction study of complexes 1 and 3 confirms their nitrogen-bridged symmetrical binuclear structures while 4 is mononuclear. Heterogeneous compounds (PS-1-PS-3) have further been studied by microwave plasma atomic emission spectroscopy, X-ray photoelectron spectroscopy, and field emission scanning electron microscopy along with energy dispersive spectroscopy. These compounds (homogeneous and heterogeneous) were explored for catalytic applications to one-pot multicomponent reactions (MCRs) for efficient synthesis of biologically active 2-amino-3-cyano-4H-chromenes/pyrans (21 examples). Optimising various reaction parameters helped in achieving as high as 97 % yields of products. Though, only half equivalent of the binuclear complexes (1-3) was required compared to mononuclear analogues (4-6) to achieve comparable yields, heterogeneous catalysts have an added advantage due to their stability and recyclability. Suitable reaction mechanism has also been proposed based on isolated intermediates.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Naveen Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - Fernando Avecilla
- Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Campus de A Coruna, 15071, A Coruna, , Spain
| |
Collapse
|
3
|
Deshmukh TR, Khedkar VM, Sangshetti JN, Shingate BB. Exploring the antioxidant potential of bis-1,2,3-triazolyl-N-phenylacetamides. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
4
|
Synthesis, characterization, antioxidant and anticancer activity of new hybrid structures based on diarylmethanol and 1,2,3-triazole. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
5
|
Yadav P, Kaushik CP, Kumar A. Synthesis and antimicrobial activity of piperazine containing substituted 1,2,3-triazoles with amide linkage. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2132868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Priyanka Yadav
- Organic Research Laboratory, Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - C. P. Kaushik
- Organic Research Laboratory, Department of Chemistry, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| | - Ashwani Kumar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Science, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, India
| |
Collapse
|
6
|
Emerging impact of triazoles as anti-tubercular agent. Eur J Med Chem 2022; 238:114454. [PMID: 35597009 DOI: 10.1016/j.ejmech.2022.114454] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 01/08/2023]
Abstract
Tuberculosis, a disease of poverty is a communicable infection with a reasonably high mortality rate worldwide. 10 Million new cases of TB were reported with approx 1.4 million deaths in the year 2019. Due to the growing number of drug-sensitive and drug-resistant tuberculosis cases, there is a vital need to develop new and effective candidates useful to combat this deadly disease. Despite tremendous efforts to identify a mechanism-based novel antitubercular agent, only a few have entered into clinical trials in the last six decades. In recent years, triazoles have been well explored as the most valuable scaffolds in drug discovery and development. Triazole framework possesses favorable properties like hydrogen bonding, moderate dipole moment, enhanced water solubility, and also the ability to bind effectively with biomolecular targets of M. tuberculosis and therefore this scaffold displayed excellent potency against TB. This review is an endeavor to summarize an up-to-date innovation of triazole-appended hybrids during the last 10 years having potential in vitro and in vivo antitubercular activity with structure activity relationship analysis. This review may help medicinal chemists to explore the triazole scaffolds for the rational design of potent drug candidates having better efficacy, improved selectivity and minimal toxicity so that these hybrid NCEs can effectively be explored as potential lead to fight against M. tuberculosis.
Collapse
|
7
|
Siddiqui MM, Nagargoje AA, Raza AK, Pisal PM, Shingate BB. [Et
3
NH][HSO
4
] catalyzed solvent‐free synthesis of new 1,2,3‐triazolidene‐indolinone derivatives. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4429] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Madiha M. Siddiqui
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Amol A. Nagargoje
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Akram K. Raza
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| | - Parshuram M. Pisal
- School of Chemical Sciences Punyashlok Ahilyadevi Holkar Solapur University Solapur India
| | - Bapurao B. Shingate
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University Aurangabad India
| |
Collapse
|
8
|
[HDBU][HSO4]-catalyzed facile synthesis of new 1,2,3-triazole-tethered 2,3-dihydroquinazolin-4[1H]-one derivatives and their DPPH radical scavenging activity. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-021-04639-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
9
|
A Recent Overview of 1,2,3-Triazole-Containing Hybrids as Novel Antifungal Agents: Focusing on Synthesis, Mechanism of Action, and Structure-Activity Relationship (SAR). J CHEM-NY 2022. [DOI: 10.1155/2022/7884316] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A pharmacophore system has been found as 1,2,3-triazole, a five-membered heterocycle ring with nitrogen heteroatoms. These heterocyclic compounds can be produced using azide-alkyne cycloaddition processes catalyzed by ruthenium or copper. The bioactive compounds demonstrated antitubercular, antibacterial, anti-inflammatory, anticancer, antioxidant, antiviral, and antidiabetic properties. This heterocycle molecule, in particular, with one or more 1,2,3-triazole cores has been found to have the most powerful antifungal effects. The goal of this review is to highlight recent developments in the synthesis and structure-activity relationship (SAR) investigation of this prospective fungicidal chemical. Also there have been explained drugs and mechanism of action of a triazole compound with antifungal activity. This review will be useful in a variety of fields, including medicinal chemistry, organic chemistry, mycology, and pharmacology.
Collapse
|
10
|
Bodaghifard MA, Zendehdel M, Hamidinasab M, Ahadi N, Zandi R. Functionalized Mesoporous MCM-41 as a Hybrid Catalyst for the Efficient Synthesis of Chromene and Mono/Bis Phthalazine-Trione Derivatives. Polycycl Aromat Compd 2021. [DOI: 10.1080/10406638.2021.2014533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mohammad Ali Bodaghifard
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Mojgan Zendehdel
- Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Mahdia Hamidinasab
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Najmieh Ahadi
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| | - Raziyeh Zandi
- Institute of Nanosciences and Nanotechnology, Arak University, Arak, Iran
| |
Collapse
|
11
|
1-(4-Nitrophenyl)-1H-1,2,3-Triazole-4-carbaldehyde: Scalable Synthesis and Its Use in the Preparation of 1-Alkyl-4-Formyl-1,2,3-triazoles. ORGANICS 2021. [DOI: 10.3390/org2040024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
1,2,3-Triazole-4-carbaldehydes are useful synthetic intermediates which may play an important role in the discovery of novel applications of the 1,2,3-triazole moiety. In this work, a one-step multigram scale synthesis of 4-formyl-1-(4-nitrophenyl)-1H-1,2,3-triazole (FNPT) as a preferred reagent for the synthesis of 1-alkyl-4-formyltriazoles is described, making use of the commercially available 3-dimethylaminoacrolein and 4-nitrophenyl azide. Next, the earlier reported reaction of FNPT with alkylamines is further explored, and for hexylamine, the one-pot sequential cycloaddition and Cornforth rearrangement is demonstrated. In addition, a useful protocol for the in situ diazotization of 4-nitroaniline is provided. This facilitated the complete hydrolysis of rearranged 4-iminomethyl-1,2,3-triazoles and allowed for the recycling of 4-nitrophenyl azide.
Collapse
|
12
|
Shirzaei F, Shaterian HR. Basic ionic liquid, 2-hydroxyethylammonium formate, catalyzed one-pot synthesis of novel 2-(phenylsulfonyl)-1H-benzo[a]pyrano[2,3-c]phenazin-3-amine derivatives. RESEARCH ON CHEMICAL INTERMEDIATES 2021. [DOI: 10.1007/s11164-021-04627-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Vellingiri A, Murugan D, Gnana Kumar G, Alagusundaram P. An elegant and efficient synthesis of heterocycles integrated with
bis
‐
N
‐acyl
pyrazoline and
bis
‐1, 2,
3‐triazole
via a green synthetic methodology. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4362] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
| | - Dinesh Murugan
- School of Chemistry, Madurai Kamaraj University Madurai India
| | | | | |
Collapse
|
14
|
Danne A, Deshpande MV, Sangshetti JN, Khedkar VM, Shingate BB. New 1,2,3-Triazole-Appended Bis-pyrazoles: Synthesis, Bioevaluation, and Molecular Docking. ACS OMEGA 2021; 6:24879-24890. [PMID: 34604669 PMCID: PMC8482464 DOI: 10.1021/acsomega.1c03734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Indexed: 05/22/2023]
Abstract
The present work describes design of a small library of new 1,2,3-triazole-appended bis-pyrazoles by using a molecular hybridization approach, and the synthesized hybrids were evaluated for their antifungal activity against different fungal strains, namely, Candida albicans, Cryptococcus neoformans, Candida glabrata, Candida tropicalis, Aspergillus niger, and Aspergillus fumigatus. All the compounds exhibited broad-spectrum activity against the tested fungal strains with excellent minimum inhibitory concentration values. The molecular docking study against sterol 14α-demethylase (CYP51) could provide valuable insights into the binding modes and affinity of these compounds. Furthermore, these compounds were also evaluated for their antioxidant activity, which also resulted in promising data.
Collapse
Affiliation(s)
- Ashruba
B. Danne
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431 004, Maharashtra, India
| | - Mukund V. Deshpande
- Biochemical
Sciences Division, CSIR-National Chemical
Laboratory, Dr. Homi
Bhabha Road, Pune 411008, Maharashtra, India
| | - Jaiprakash N. Sangshetti
- Y.
B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad 431001, Maharashtra, India
| | - Vijay M. Khedkar
- School
of Pharmacy, Vishwakarma University, Pune 411048, Maharashtra, India
| | - Bapurao B. Shingate
- Department
of Chemistry, Dr. Babasaheb Ambedkar Marathwada
University, Aurangabad 431 004, Maharashtra, India
| |
Collapse
|
15
|
Haroun M, Tratrat C, Kochkar H, Nair AB. CDATA[Recent Advances in the Development of 1,2,3-Triazole-containing Derivatives as Potential Antifungal Agents and Inhibitors of Lanoster ol 14α-Demethylase. Curr Top Med Chem 2021; 21:462-506. [PMID: 33319673 DOI: 10.2174/1568026621999201214232018] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/12/2020] [Accepted: 11/03/2020] [Indexed: 11/22/2022]
Abstract
1,2,3-Triazole, a five-membered heterocyclic nucleus, is widely recognized as a key chromophore of great value in medicinal chemistry for delivering compounds possessing innumerable biological activities, including antimicrobial, antitubercular, antidiabetic, antiviral, antitumor, antioxidants, and anti-inflammatory activities. Mainly, in the past years, diverse conjugates carrying this biologically valuable core have been reported due to their attractive fungicidal potential and potent effects on various infective targets. Hence, hybridization of 1,2,3-triazole with other antimicrobial pharmacophores appears to be a judicious strategy to develop new effective anti-fungal candidates to combat the emergence of drug-sensitive and drug-resistant infectious diseases. Thus, the current review highlights the recent advances of this promising category of 1,2,3-triazole-containing hybrids incorporating diverse varieties of bioactive heterocycles such as conozole, coumarin, imidazole, benzimidazole, pyrazole, indole, oxindole, chromene, pyrane, quinazoline, chalcone, isoflavone, carbohydrates, and amides. It underlies their inhibition behavior against a wide array of infectious fungal species during 2015-2020.
Collapse
Affiliation(s)
- Michelyne Haroun
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Christophe Tratrat
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Hafedh Kochkar
- Department of Chemistry, College of Science, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Anroop B Nair
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| |
Collapse
|
16
|
Prashanthi M, Babu HR, Rani JU. Design, Synthesis and Molecular Docking Studies of Novel Indole–Isoxazole–Triazole Conjugates as Potent Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021020217] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Triazole-containing hybrids with anti- Mycobacterium tuberculosis potential - Part I: 1,2,3-Triazole. Future Med Chem 2021; 13:643-662. [PMID: 33619989 DOI: 10.4155/fmc-2020-0301] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Tuberculosis regimens currently applied in clinical practice require months of multidrug therapy, which imposes a major challenge of patient compliance and drug resistance development. Moreover, because of the increasing emergence of hard-to-treat tuberculosis, this disease continues to be a significant threat to the human population. 1,2,3-triazole as a privileged structure has been widely used as an effective template for drug discovery, and 1,2,3-triazole-containing hybrids that can simultaneously act on dual or multiple targets in Mycobacterium tuberculosis have the potential to circumvent drug resistance, enhance efficacy, reduce side effects and improve pharmacokinetic as well as pharmacodynamic profiles. Thus, 1,2,3-triazole-containing hybrids are useful scaffolds for the development of antitubercular agents. This review aims to highlight recent advances of 1,2,3-triazole-containing hybrids with potential activity against various forms of M. tuberculosis, covering articles published between 2015 and 2020. The structure-activity relationship and the mechanism of action are also discussed to facilitate further rational design of more effective drug candidates.
Collapse
|
18
|
Deshmukh TR, Khedkar VM, Jadhav RG, Sarkate AP, Sangshetti JN, Tiwari SV, Shingate BB. A copper-catalyzed synthesis of aryloxy-tethered symmetrical 1,2,3-triazoles as potential antifungal agents targeting 14 α-demethylase. NEW J CHEM 2021. [DOI: 10.1039/d1nj01759d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The search for potent therapeutic agents has prompted the design and synthesis of a library of twenty-six aryloxy-tethered and amide-linked symmetrical 1,2,3-triazoles (8a–z) using a copper(i)-catalyzed click chemistry approach.
Collapse
Affiliation(s)
- Tejshri R. Deshmukh
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- Vishwakarma University
- Pune-411048
- India
| | - Rohit G. Jadhav
- Department of Chemistry
- Indian Institute of Technology
- Indore-453552
- India
| | - Aniket P. Sarkate
- Department of Chemical Technology
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| | | | - Shailee V. Tiwari
- Department of Pharmaceutical Chemistry
- Durgamata Institute of Pharmacy
- Dharmapuri, Parbhani-431401
- India
| | - Bapurao B. Shingate
- Department of Chemistry
- Dr. Babasaheb Ambedkar Marathwada University
- Aurangabad-431004
- India
| |
Collapse
|
19
|
Akolkar SV, Nagargoje AA, Shaikh MH, Warshagha MZA, Sangshetti JN, Damale MG, Shingate BB. New N-phenylacetamide-linked 1,2,3-triazole-tethered coumarin conjugates: Synthesis, bioevaluation, and molecular docking study. Arch Pharm (Weinheim) 2020; 353:e2000164. [PMID: 32776355 DOI: 10.1002/ardp.202000164] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/22/2020] [Accepted: 07/11/2020] [Indexed: 12/18/2022]
Abstract
A series of new 1,2,3-triazole-tethered coumarin conjugates linked by N-phenylacetamide was efficiently synthesized via the click chemistry approach in excellent yields. The synthesized conjugates were evaluated for their in vitro antifungal and antioxidant activities. Antifungal activity determination was carried out against fungal strains such as Candida albicans, Fusarium oxysporum, Aspergillus flavus, Aspergillus niger and Cryptococcus neoformans. Compounds 7b, 7d, 7e, 8b and 8e displayed higher potency than the standard drug miconazole, with lower minimum inhibitory concentration values. Also, compound 7a exhibited potential radical scavenging activity as compared with the standard antioxidant butylated hydroxytoluene. In addition, a molecular docking study of the newly synthesized compounds was carried out, and the results showed a good binding mode at the active site of the fungal (C. albicans) P450 cytochrome lanosterol 14α-demethylase enzyme. Furthermore, the synthesized compounds were also tested for ADME properties, and they demonstrated potential as good candidates for oral drugs.
Collapse
Affiliation(s)
- Satish V Akolkar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.,Department of Chemistry, Khopoli Municipal Council College, Khopoli, India
| | - Mubarak H Shaikh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India.,Department of Chemistry, Radhabai Kale Mahila Mahavidyalaya, Ahmednagar, India
| | - Murad Z A Warshagha
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| | - Jaiprakash N Sangshetti
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus, Aurangabad, India
| | - Manoj G Damale
- Department of Pharmaceutical Chemistry, Srinath College of Pharmacy, Aurangabad, India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, India
| |
Collapse
|
20
|
Adardour M, Boutafda A, Hdoufane I, Aghraz A, Hafidi M, Zaballos-García E, Cherqaoui D, Baouid A. Efficient and simple synthesis of novel 1,2,3-triazolyl-linked benzimidazolone, molecular docking and evaluation of their antimicrobial activity. SYNTHETIC COMMUN 2020. [DOI: 10.1080/00397911.2020.1803913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Mohamed Adardour
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Aziz Boutafda
- Laboratory of Ecology and Environment–MARK Herbarium, Department of Biology, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Ismail Hdoufane
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Abdellah Aghraz
- Laboratory of Biotechnology, Protection and Valorization of Plant Resources (URAC35 Association unit), Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Mohamed Hafidi
- Laboratory of Ecology and Environment–MARK Herbarium, Department of Biology, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
- Mohamed VI Polytechnic University (UM6P), Benguerir, Morocco
| | - Elena Zaballos-García
- Departamento de Quimica Organica, Facultad de Farmacia, Universidad de Valencia, Valencia, España
| | - Driss Cherqaoui
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| | - Abdesselam Baouid
- Laboratory of Molecular Chemistry, Department of Chemistry, Faculty of Sciences Semlalia, University of Cadi Ayyad, Marrakech, Morocco
| |
Collapse
|
21
|
Badar AD, Sulakhe SM, Muluk MB, Rehman NNMA, Dixit PP, Choudhari PB, Rekha EM, Sriram D, Haval KP. Synthesis of isoniazid‐1,2,3‐triazole conjugates: Antitubercular, antimicrobial evaluation and molecular docking study. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Adinath D. Badar
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Shubham M. Sulakhe
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Mahesh B. Muluk
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Naziya N. M. A. Rehman
- Department of Microbiology Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Prashant P. Dixit
- Department of Microbiology Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| | - Prafulla B. Choudhari
- Department of Pharmaceutical Chemistry Bharati Vidyapeeth College of Pharmacy Kolhapur India
| | - Estharla Madhu Rekha
- Department of Pharmacy Birla Institute of Technology and Science‐Pilani Hyderabad India
| | - Dharmarajan Sriram
- Department of Pharmacy Birla Institute of Technology and Science‐Pilani Hyderabad India
| | - Kishan P. Haval
- Department of Chemistry Dr. Babasaheb Ambedkar Marathwada University SubCampus Osmanabad India
| |
Collapse
|
22
|
Patil PS, Kasare SL, Haval NB, Khedkar VM, Dixit PP, Rekha EM, Sriram D, Haval KP. Novel isoniazid embedded triazole derivatives: Synthesis, antitubercular and antimicrobial activity evaluation. Bioorg Med Chem Lett 2020; 30:127434. [PMID: 32717369 DOI: 10.1016/j.bmcl.2020.127434] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Revised: 06/17/2020] [Accepted: 07/21/2020] [Indexed: 12/24/2022]
Abstract
In the present study, a series of new isoniazid embedded triazole derivatives have been synthesized. These compounds were evaluated for their in vitro antitubercular and antimicrobial activities. Among the screened compounds, six have exhibited potent antitubercular activity against Mycobacterium tuberculosis H37Rv strain with MIC value 0.78 μg/mL, whereas, three compounds have displayed activity with MIC value ranging from 1.56 to 3.125 μg/mL. The cytotoxicity of the active compounds was studied against RAW 264.7 cell line by MTT assay and no toxicity was observed even at 25 μg/mL concentration. The five compounds have displayed good antimicrobial activities. Molecular docking have been performed against mycobacterial InhA enzyme to gain an insight into the plausible mechanism of action which could pave the way for our endeavor to identify potent antitubercular candidates. We believe that further optimization of these molecules may lead to potent antitubercular agents.
Collapse
Affiliation(s)
- Pravin S Patil
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Sanghratna L Kasare
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Nitin B Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Vijay M Khedkar
- Department of Pharmaceutical Chemistry, School of Pharmacy, Vishwakarma University, Pune 411048, MS, India
| | - Prashant P Dixit
- Department of Microbiology, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India
| | - Estharla Madhu Rekha
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet Mandal, R. R. District, Hyderabad 500078, India
| | - Kishan P Haval
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University SubCampus, Osmanabad 413501, MS, India.
| |
Collapse
|
23
|
Synthesis and bioevaluation of α,α’-bis(1H-1,2,3-triazol-5-ylmethylene) ketones. CHEMICAL PAPERS 2020. [DOI: 10.1007/s11696-019-00908-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Akolkar SV, Kharat ND, Nagargoje AA, Subhedar DD, Shingate BB. Ultrasound-Assisted β-Cyclodextrin Catalyzed One-Pot Cascade Synthesis of Pyrazolopyranopyrimidines in Water. Catal Letters 2019. [DOI: 10.1007/s10562-019-02968-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
25
|
Akolkar SV, Nagargoje AA, Krishna VS, Sriram D, Sangshetti JN, Damale M, Shingate BB. New N-phenylacetamide-incorporated 1,2,3-triazoles: [Et 3NH][OAc]-mediated efficient synthesis and biological evaluation. RSC Adv 2019; 9:22080-22091. [PMID: 35518861 PMCID: PMC9066712 DOI: 10.1039/c9ra03425k] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 06/27/2019] [Indexed: 11/21/2022] Open
Abstract
A facile, highly efficient, and greener method for the synthesis of new 1,4-disubstituted-1,2,3-triazoles was conducted using [Et3NH][OAc] as a medium by the implementation of ultrasound irradiation via click chemistry, affording excellent yields. The present synthetic method exhibited numerous advantages such as mild reaction conditions, excellent product yields, minimal chemical waste, operational simplicity, shorter reaction time, and a wide range of substrate scope. The synthesized compounds were further evaluated for in vitro antifungal activity against five fungal strains, and some of the compounds displayed equivalent or greater potency than the standard drug. A molecular docking study against the modelled three-dimensional structure of cytochrome P450 lanosterol 14α-demethylase was also performed to understand the binding affinity and binding interactions of the enzyme. Furthermore, the synthesized compounds were evaluated for DPPH radical scavenging activity and antitubercular activity against Mycobacterium tuberculosis H37Rv strain.
Collapse
Affiliation(s)
- Satish V Akolkar
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431 004 India +91-240-2403113 +91-240-2403313
| | - Amol A Nagargoje
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431 004 India +91-240-2403113 +91-240-2403313
| | - Vagolu S Krishna
- Department of Pharmacy, Birla Institute of Technology & Science-Hyderabad Campus Jawahar Nagar Hyderabad 500 078 India
| | - Dharmarajan Sriram
- Department of Pharmacy, Birla Institute of Technology & Science-Hyderabad Campus Jawahar Nagar Hyderabad 500 078 India
| | - Jaiprakash N Sangshetti
- Department of Pharmaceutical Chemistry, Y. B. Chavan College of Pharmacy, Dr. Rafiq Zakaria Campus Aurangabad 431 001 India
| | - Manoj Damale
- Department of Pharmaceutical Chemistry, Srinath College of Pharmacy Aurangabad 431136 MS India
| | - Bapurao B Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University Aurangabad 431 004 India +91-240-2403113 +91-240-2403313
| |
Collapse
|
26
|
Khare SP, Deshmukh TR, Sangshetti JN, Khedkar VM, Shingate BB. Ultrasound assisted rapid synthesis, biological evaluation, and molecular docking study of new 1,2,3-triazolyl pyrano[2,3-c]pyrazoles as antifungal and antioxidant agent. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1631849] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Smita P. Khare
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MH, India
| | - Tejshri R. Deshmukh
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MH, India
| | | | - Vijay M. Khedkar
- Department of Pharmaceutical Chemistry, Shri Vile Parle Kelavani Mandal’s Institute of Pharmacy, Dhule, MH, India
| | - Bapurao B. Shingate
- Department of Chemistry, Dr. Babasaheb Ambedkar Marathwada University, Aurangabad, MH, India
| |
Collapse
|