1
|
Kunz S, Barnå F, Urrutia MP, Ingner FJL, Martínez-Topete A, Orthaber A, Gates PJ, Pilarski LT, Dyrager C. Derivatization of 2,1,3-Benzothiadiazole via Regioselective C-H Functionalization and Aryne Reactivity. J Org Chem 2024; 89:6138-6148. [PMID: 38648018 PMCID: PMC11077497 DOI: 10.1021/acs.joc.4c00122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/29/2024] [Accepted: 03/15/2024] [Indexed: 04/25/2024]
Abstract
Despite growing interest in 2,1,3-benzothiadiazole (BTD) as an integral component of many functional molecules, methods for the functionalization of its benzenoid ring have remained limited, and many even simply decorated BTDs have required de novo synthesis. We show that regioselective Ir-catalyzed C-H borylation allows access to versatile 5-boryl or 4,6-diboryl BTD building blocks, which undergo functionalization at the C4, C5, C6, and C7 positions. The optimization and regioselectivity of C-H borylation are discussed. A broad reaction scope is presented, encompassing ipso substitution at the C-B bond, the first examples of ortho-directed C-H functionalization of BTD, ring closing reactions to generate fused ring systems, as well as the generation and capture reactions of novel BTD-based heteroarynes. The regioselectivity of the latter is discussed with reference to the Aryne Distortion Model.
Collapse
Affiliation(s)
- Susanna Kunz
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Fredrik Barnå
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | | | | | | | - Andreas Orthaber
- Department
of Chemistry—Ångström, Uppsala University, Box 523, Uppsala 75120, Sweden
| | - Paul J. Gates
- School
of Chemistry, University of Bristol, Cantock’s Close, Clifton, Bristol BS8 1TS, U.K.
| | - Lukasz T. Pilarski
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| | - Christine Dyrager
- Department
of Chemistry—BMC, Uppsala University, Box 576, Uppsala 75123, Sweden
| |
Collapse
|
2
|
Pankov RO, Prima DO, Kostyukovich AY, Minyaev ME, Ananikov VP. Synthesis and a combined experimental/theoretical structural study of a comprehensive set of Pd/NHC complexes with o-, m-, and p-halogen-substituted aryl groups (X = F, Cl, Br, CF 3). Dalton Trans 2023; 52:4122-4135. [PMID: 36883531 DOI: 10.1039/d2dt03665g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023]
Abstract
Pd/NHC complexes (NHCs - N-heterocyclic carbenes) with electron-withdrawing halogen groups were prepared by developing an optimized synthetic procedure to access imidazolium salts and the corresponding metal complexes. Structural X-ray analysis and computational studies have been carried out to evaluate the effect of halogen and CF3 substituents on the Pd-NHC bond and have provided insight into the possible electronic effects on the molecular structure. The introduction of electron-withdrawing substituents changes the ratio of σ-/π-contributions to the Pd-NHC bond but does not affect the Pd-NHC bond energy. Here, we report the first optimized synthetic approach to access a comprehensive range of o-, m-, and p-XC6H4-substituted NHC ligands, including incorporation into Pd complexes (X = F, Cl, Br, CF3). The catalytic activity of the obtained Pd/NHC complexes was compared in the Mizoroki-Heck reaction. For substitution with halogen atoms, the following relative trend was observed: X = Br > F > Cl, and for all halogen atoms, the catalytic activity changed in the following order: m-X, p-X > o-X. Evaluation of the relative catalytic activity showed a significant increase in the catalyst performance in the case of Br and CF3 substituents compared to the unsubstituted Pd/NHC complex.
Collapse
Affiliation(s)
- Roman O Pankov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Darya O Prima
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Alexander Yu Kostyukovich
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Mikhail E Minyaev
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
3
|
Parman E, Lõkov M, Järviste R, Tshepelevitsh S, Semenov NA, Chulanova EA, Salnikov GE, Prima DO, Slizhov YG, Leito I, Zibarev AV. Acid-Base and Anion Binding Properties of Tetrafluorinated 1,3-Benzodiazole, 1,2,3-Benzotriazole and 2,1,3-Benzoselenadiazole. Chemphyschem 2021; 22:2329-2335. [PMID: 34397136 DOI: 10.1002/cphc.202100475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/30/2021] [Indexed: 11/06/2022]
Abstract
The influence of fluorination on the acid-base properties and the capacity of structurally related 6-5 bicyclic compounds - 1,3-benzodiazole 1, 1,2,3-benzotriazole 2 and 2,1,3-benzoselenadiazole 3 to σ-hole interactions, i. e. hydrogen (1 and 2) and chalcogen (3) bondings, is studied experimentally and computationally. The tetrafluorination increases the Brønsted acidity of the diazole and triazole scaffolds and the Lewis acidity of selenadiazole scaffold decreases the basicity. Increased Brønsted acidity facilitates anion binding via the formation of hydrogen bonds; particularly, tetrafluorinated derivative of 1 (compound 4) binds Cl- . Increased Lewis acidity of tetrafluorinated derivative of 3 (compound 10), however, is not enough for binding with Cl- and F- via chalcogen bonds in contrast to previously studied Te analog of 10. It is suggested that the maximum positive values of molecular electrostatic potential at the σ-holes, VS,max , can be a reasonable metric for design and synthesis of new anion receptors with selenadiazole-diazole/triazole hybrids as a special target. Related chlorinated compounds are also discussed.
Collapse
Affiliation(s)
- Elisabeth Parman
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Märt Lõkov
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Robert Järviste
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Sofja Tshepelevitsh
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Nikolay A Semenov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Elena A Chulanova
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Georgy E Salnikov
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| | - Darya O Prima
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia.,Present address: Institute of Organic Chemistry, Russian Academy of Sciences, 47 Leninsky Avenue, 119991, Moscow, Russia
| | - Yuri G Slizhov
- Department of Chemistry, National Research University - Tomsk State University, 36 Lenin Avenue, 634050, Tomsk, Russia
| | - Ivo Leito
- Institute of Chemistry, University of Tartu, Ravila 14a, 50411, Tartu, Estonia
| | - Andrey V Zibarev
- Institute of Organic Chemistry, Siberian Branch, Russian Academy of Sciences, 9 Lavrentiev Avenue, 630090, Novosibirsk, Russia
| |
Collapse
|
4
|
Konstantinova LS, Rakitin OA. Chalcogen exchange in chalcogen–nitrogen π-heterocycles. MENDELEEV COMMUNICATIONS 2021. [DOI: 10.1016/j.mencom.2021.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Chugunova E, Gazizov A, Sazykina M, Akylbekov N, Gildebrant A, Sazykin I, Burilov A, Appazov N, Karchava S, Klimova M, Voloshina A, Sapunova A, Gumerova S, Khamatgalimov A, Gerasimova T, Dobrynin A, Gogoleva O, Gorshkov V. Design of Novel 4-Aminobenzofuroxans and Evaluation of Their Antimicrobial and Anticancer Activity. Int J Mol Sci 2020; 21:ijms21218292. [PMID: 33167439 PMCID: PMC7663979 DOI: 10.3390/ijms21218292] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 10/28/2020] [Accepted: 10/29/2020] [Indexed: 12/01/2022] Open
Abstract
A series of novel 4-aminobenzofuroxan derivatives containing aromatic/aliphatic amines fragments was achieved via aromatic nucleophilic substitution reaction of 4,6-dichloro-5-nitrobenzofuroxan. The quantum chemistry calculations were performed to identify the factors affecting the regioselectivity of the reaction. The formation of 4-substituted isomer is favored both by its greater stability and the lower activation barrier. Antimicrobial activity of the obtained compounds has been evaluated and some of them were found to suppress effectively bacterial biofilm growth. Fungistatic activity of 4-aminobenzofuroxans were tested on two genetically distinct isolates of M. nivale. The effect of some benzofuroxan derivatives is likely to be more universal against different varieties of M. nivale compared with benzimidazole and carbendazim. Additionally, their anti-cancer activity in vitro has been tested. 4-aminofuroxans possessing aniline moiety showed a high selectivity towards MCF-7 and M-HeLa tumor cell lines. Moreover, they exhibit a significantly lower toxicity towards normal liver cells compared to Doxorubicin and Tamoxifen. Thus, benzofuroxans containing aromatic amines fragments in their structure are promising candidates for further development both as anti-cancer and anti-microbial agents.
Collapse
Affiliation(s)
- Elena Chugunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
- Correspondence: (E.C.); (A.G.); (N.A.); Tel.: +7-843-272-7324 (E.C.); +7-843-272-7324 (A.G.); +7-724-223-1041 (N.A.)
| | - Almir Gazizov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
- Correspondence: (E.C.); (A.G.); (N.A.); Tel.: +7-843-272-7324 (E.C.); +7-843-272-7324 (A.G.); +7-724-223-1041 (N.A.)
| | - Marina Sazykina
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Nurgali Akylbekov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan;
- Correspondence: (E.C.); (A.G.); (N.A.); Tel.: +7-843-272-7324 (E.C.); +7-843-272-7324 (A.G.); +7-724-223-1041 (N.A.)
| | - Anastasiya Gildebrant
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Ivan Sazykin
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Alexander Burilov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
| | - Nurbol Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Kyzylorda 120014, Kazakhstan;
- I. Zhakaev Kazakh Scientific Research Institute of Rice Growing, Kyzylorda 120008, Kazakhstan
| | - Shorena Karchava
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Maria Klimova
- Southern Federal University, Rostov-on-Don 344090, Russia; (M.S.); (A.G.); (I.S.); (S.K.); (M.K.)
| | - Alexandra Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Anastasia Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Syumbelya Gumerova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Ayrat Khamatgalimov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Tatiana Gerasimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Alexey Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Kazan, Tatarstan 420088, Russia; (A.B.); (A.V.); (A.S.); (S.G.); (A.K.); (T.G.); (A.D.)
| | - Olga Gogoleva
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
| | - Vladimir Gorshkov
- Laboratory of Plant Infectious Diseases, FRC Kazan Scientific Center of Russian Academy of Sciences, Kazan, Tatarstan 420111, Russia; (O.G.); (V.G.)
| |
Collapse
|
6
|
Khisamov R, Sukhikh T, Bashirov D, Ryadun A, Konchenko S. Structural and Photophysical Properties of 2,1,3-Benzothiadiazole-Based Phosph(III)azane and Its Complexes. Molecules 2020; 25:E2428. [PMID: 32456016 PMCID: PMC7288126 DOI: 10.3390/molecules25102428] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/17/2020] [Accepted: 05/17/2020] [Indexed: 01/19/2023] Open
Abstract
Here we describe the synthesis of a novel N,N'-bis(2,1,3-benzothiadiazol-4-yl)-1-phenylphosphanediamine (H2L) and its zinc (II) and copper (I) coordination compounds [Zn2L2]·nC7H8 (1·nC7H8), [Zn2(H2L)2Cl4]·nC7H8 (2·nC7H8), and [Cu(H2L)Cl]n·nTHF (3·THF). According to single crystal X-ray diffraction analysis, H2L ligand and its deprotonated species exhibit different coordination modes. An interesting isomerism is observed for the complexes [Zn2(H2L)2Cl4] (2a and 2b) that differ by the arrangement of H2L. Both complexes possess internal cavities capable of incorporating toluene molecules. Upon toluene release, the geometry of 2b changes substantially, while that of 2a changes slightly. Due to the diverse structures, the compounds 1-3 reveal different photophysical properties. These results are discussed based on previously reported studies and DFT (density functional theory) calculations.
Collapse
Affiliation(s)
| | - Taisiya Sukhikh
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 630090 Novosibirsk, Russia; (R.K.); (D.B.); (A.R.); (S.K.)
| | | | | | | |
Collapse
|