1
|
Liu X, Lu Z, Huang S, Chen N, Xiao X, Zhu X, Zhang R. A practical fluorometric and colorimetric dual-mode sensing platform based on two-dimensional porous organic nanosheets for rapid determination of trifluralin. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2025; 17:1188-1195. [PMID: 39820884 DOI: 10.1039/d4ay02200a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
Trifluralin, a widely used dinitroaniline herbicide, poses significant toxic risks, necessitating the development of rapid detection methods for food safety. In this study, we prepared ultrathin two-dimensional triphenylamine porous organic nanosheets (TPA-PONs) through a facile liquid-phase exfoliation process. The TPA-PONs, characterized by their exceptional fluorescence properties and nanoscale thickness (1.65 ± 0.3 nm), demonstrated a remarkable fluorescence quenching response upon exposure to trifluralin. Spectroscopic analysis combined with DFT calculations revealed that the quenching mechanism is driven by electron and energy transfer. TPA-PONs-based fluorescence sensor exhibited a linear response to trifluralin concentrations ranging from 0.01 to 10.0 μmol L-1 with a limit of detection as low as 3.50 nmol L-1. Additionally, the sensor was applied to detect trifluralin residues in vegetables, achieving recoveries of 89.08-102.84%. To facilitate on-site detection, a novel TPA-PONs-based colorimetric film sensor has been developed, enabling visual analysis of trifluralin using a smartphone. This dual-mode sensing platform holds significant potential for enhancing food safety monitoring.
Collapse
Affiliation(s)
- Xue Liu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Zhenyu Lu
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Shijun Huang
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Na Chen
- School of Chemistry and Chemical Engineering, Henan Institute of Science and Technology, Xinxiang 453000, China.
| | - Xue Xiao
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
| | - Xiaohui Zhu
- Key Laboratory of Environmental Pollution Health Risk Assessment, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, 510655, PR China.
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Runkun Zhang
- School of Public Health, Guangdong Pharmaceutical University, Guangzhou 510310, PR China
| |
Collapse
|
2
|
Durmus MT, Bozkurt E. Green synthesis of carbon dot structures from Rheum Ribes and Schottky diode fabrication. BEILSTEIN JOURNAL OF NANOTECHNOLOGY 2024; 15:1369-1375. [PMID: 39530023 PMCID: PMC11552443 DOI: 10.3762/bjnano.15.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
In this study, we aimed to synthesize new carbon dot structures (CDs) in a single step by using the plant Rheum Ribes for the first time and to contribute to the studies in the field of diode fabrication by using the new CDs. The CDs were obtained by hydrothermal synthesis, which is commonly used in the literature. TEM and zeta potential measurements were used to determine morphology and sizes of the CDs, and XRD, XPS, and FTIR and micro-Raman spectroscopy were used for structural characterization. Optical characterization of the CDs was done by absorption and steady-state fluorescence measurements. In the second part of the study, CDs were dripped onto silicon substrates, and a CDs thin film was formed by evaporation. A diode structure was obtained by evaporating gold with the shadow mask technique on the CDs film, and the current-voltage characteristics of this diode were examined. The synthesized CDs are spherical with an average size of 5.5 nm, have a negative surface charge and contain 73.3 atom % C, 24.0 atom % O, and 2.7 atom % N. The CDs exhibit fluorescence at approximately 394 nm. The layer thickness and bandgap energy of the prepared CDs film were calculated as 566 nm and 5.25 eV, respectively. The ideality factor and the measured barrier height (Φb) of the CDs-based Schottky diode were calculated as 9.1 and 0.364 eV, respectively. The CDs were used as semiconductor material in a Schottky diode, and the diode exhibited rectification behavior. The results obtained from this study showed that CDs can be applied in the field of electronics, apart from sensor studies, which are common application areas.
Collapse
Affiliation(s)
- Muhammed Taha Durmus
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, 25240, Erzurum, Turkey
| | - Ebru Bozkurt
- Department of Nanoscience and Nanoengineering, Graduate School of Natural and Applied Sciences, Atatürk University, 25240, Erzurum, Turkey
- Program of Occupational Health and Safety, Vocational College of Technical Sciences, Atatürk University, 25240 Erzurum, Turkey
| |
Collapse
|
3
|
Deo SS, Naser SS, Sinha A, Mohapatra SK, Parmar AS, Kujawska M, Verma SK, Tripathy J. Biophysical translational posterity of green carbon quantum dots: the unparalleled versatility. Nanomedicine (Lond) 2024; 19:2747-2776. [PMID: 39311508 DOI: 10.1080/17435889.2024.2402682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 09/06/2024] [Indexed: 12/12/2024] Open
Abstract
Carbon dots (CQDs), zero-dimensional carbon nanostructures, have attracted considerable interest among researchers due to their versatile applications. CQDs exhibit exceptional photoluminescent properties and high quantum yield, making them ideal candidates for bioimaging, drug delivery and environmental sensing. Their biocompatibility and tunable surface chemistry enable targeted therapeutic delivery and real-time imaging with minimal toxicity. Additionally, CQDs are emerging as promising materials in optoelectronics, offering sustainable alternatives in light-emitting diodes and solar cells. This review underscores the unparalleled adaptability of green CQDs in bridging the gap between laboratory research and practical applications, paving the way for innovative solutions in healthcare and environmental monitoring. Through comprehensive analysis, it advances the understanding of CQDs, positioning them at the forefront of next-generation nanomaterials with significant translational impact.
Collapse
Affiliation(s)
- Simran Singh Deo
- School of Applied Sciences, KIIT University, Bhubaneswar, 751024, India
| | | | - Adrija Sinha
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
| | - Swagat K Mohapatra
- Department of Industrial & Engineering Chemistry, ICT-IOCB, Bhubaneswar, Odisha, 751013, India
| | | | | | - Suresh K Verma
- School of Biotechnology, KIIT University, Bhubaneswar, Odisha, 751024, India
- Department of Toxicology, Poznan University of Medical Sciences, Poland
| | | |
Collapse
|
4
|
El-Gendy NS, Hosny M, Ismail AR, Radwan AA, Ali BA, Ali HR, El-Salamony RA, Abdelsalam KM, Mubarak M. A Study on the Potential of Valorizing Sargassum latifolium into Biofuels and Sustainable Value-Added Products. Int J Biomater 2024; 2024:5184399. [PMID: 39410935 PMCID: PMC11479779 DOI: 10.1155/2024/5184399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/14/2024] [Accepted: 08/12/2024] [Indexed: 10/19/2024] Open
Abstract
To increase the limited commercial utility and lessen the negative environmental effects of the massive growth of brown macroalgae, this work illustrates the feasibility of valorizing the invasively proliferated Sargassum latifolium into different value-added products. The proximate analysis recommends its applicability as a solid biofuel with a sufficient calorific value (14.82 ± 0.5 MJ/kg). It contains 6.00 ± 0.07% N + P2O5 + K2O and 29.61 ± 0.05% organic C. Its nutritional analysis proved notable carbohydrate, ash, protein, and fiber contents with a rational amount of lipid and a considerable amount of beneficial macronutrients and micronutrients, with a low concentration of undesirable heavy metals. That recommends its application in the organic fertilizer, food, medicine, and animal fodder industries. A proposed eco-friendly sequential integrated process valorized its biomass into 77.6 ± 0.5 mg/g chlorophyll, 180 ± 0.5 mg/g carotenoids, 5.86 ± 0.5 mg/g fucoxanthin, 0.93 ± 0.5 mg/g β-carotene, 21.97 ± 0.5% (w/w) alginate, and 16.40 ± 0.5% (w/w) cellulose, with different industrial and bioprocess applications. Furthermore, Aspergillus galapagensis SBWF1, Mucor hiemalis SBWF2, and Penicillium oxalicum SBWF3 (GenBank accession numbers OR636487, OR636488, and OR636489) have been isolated from its fresh biomass. Those showed wide versatility for hydrolyzing and saccharifying its polysaccharides. A Gram-negative Stutzerimonas stutzeri SBB1(GenBank accession number OR764547) has also been isolated with good capabilities to ferment the produced pentoses, hexoses, and mannitol from the fungal saccharification, yielding 0.25 ± 0.014, 0.26 ± 0.018, and 0.37 ± 0.020 g ethanol/g algal biomass, respectively. Furthermore, in a pioneering step for valuing the suggested sequential biomass hydrolysis and bioethanol fermentation processes, the spent waste S. latifolium disposed of from the saccharification process has been valorized into C-dots with potent biocidal activity against pathogenic microorganisms.
Collapse
Affiliation(s)
- Nour Sh. El-Gendy
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
- Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, P.O. 12566, Egypt
| | - Mohamed Hosny
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | - Abdallah R. Ismail
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | - Ahmad A. Radwan
- National Research Centre (NRC), El-Dokki, Cairo, P.O. 12622, Egypt
| | - Basma A. Ali
- General Organization for Export and Import Control (GOEIC), Cairo, Egypt
| | - Hager R. Ali
- Egyptian Petroleum Research Institute (EPRI), Nasr City, P.O. 11727, Egypt
| | | | - Khaled M. Abdelsalam
- Marine Environment Division, National Institute of Oceanography and Fisheries NIOF, Alexandria Branch, P.O. 21519, Egypt
| | - Manal Mubarak
- Soil and Water Department, Faculty of Agriculture, Ain Shams University, Cairo, P.O. 11241, Egypt
| |
Collapse
|
5
|
Liu W, Zheng P, Xia Y, Li F, Zhang M. A simple AIE probe to pesticide trifluralin residues in aqueous phase: Ultra-fast response, high sensitivity, and quantitative detection utilizing a portable platform. Talanta 2024; 269:125352. [PMID: 37984233 DOI: 10.1016/j.talanta.2023.125352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/22/2023]
Abstract
The threat from pesticide trifluralin residues to ecological environment and public health is becoming a growing problem. Thus, rapid and sensitive detection, particularly a simple and portable detected platform for trifluralin residues, are highly desired. Here, a small organic aggregation-induced emission (AIE) molecule (TPETPy) is facilely synthesized and applied to detect trifluralin both in lab and in actual water systems. Based on the photo-induced electron transfer (PET) mechanism, the emissive peak of TPETPy located at 475 nm in tetrahydrofuran (THF)/water mixture (ƒw = 90 %) under the excitation of 340 nm, decreases dramatically upon trace trifluralin addition and exhibits ultra-fast response (3 s), high sensitivity and selectivity, and good anti-interference ability. The fluorescence sensing correlation with the concentration of trifluralin shows good linearity in the range of 20-90 μg L-1 with the limit of detection of 6.28 μg L-1. Moreover, a portable smartphone-integrated detected platform based on fluorescent pattern Red/Green/Blue (RGB) values is first employed to realize the real-time and on-site quantitative fluorescent detection of trifluralin in actual water sources, featuring good accuracy and reproducibility. Hereby, this work provides not only a highly efficient trifluralin residues fluorescent probe but also a portable and straightforward operating platform to detect trifluralin pesticides quantitatively.
Collapse
Affiliation(s)
- Wenjing Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ping Zheng
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Yuanxing Xia
- Department of Fundamental Study of Public Security, Criminal Investigation Police University of China, Shenyang, 110854, PR China
| | - Feng Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China
| | - Ming Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, PR China.
| |
Collapse
|
6
|
Anpalagan K, Karakkat JV, Jelinek R, Kadamannil NN, Zhang T, Cole I, Nurgali K, Yin H, Lai DTH. A Green Synthesis Route to Derive Carbon Quantum Dots for Bioimaging Cancer Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2103. [PMID: 37513114 PMCID: PMC10385789 DOI: 10.3390/nano13142103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/30/2023]
Abstract
Carbon quantum dots (CQDs) are known for their biocompatibility and versatile applications in the biomedical sector. These CQDs retain high solubility, robust chemical inertness, facile modification, and good resistance to photobleaching, which makes them ideal for cell bioimaging. Many fabrication processes produce CQDs, but most require expensive equipment, toxic chemicals, and a long processing time. This study developed a facile and rapid toasting method to prepare CQDs using various slices of bread as precursors without any additional chemicals. This fast and cost-effective toasting method could produce CQDs within 2 h, compared with the 10 h process in the commonly used hydrothermal method. The CQDs derived from the toasting method could be used to bioimage two types of colon cancer cells, namely, CT-26 and HT-29, derived from mice and humans, respectively. Significantly, these CQDs from the rapid toasting method produced equally bright images as CQDs derived from the hydrothermal method.
Collapse
Affiliation(s)
- Karthiga Anpalagan
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC 3011, Australia
| | | | - Raz Jelinek
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Nila Nandha Kadamannil
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben Gurion University of the Negev, Beer Sheva 8410501, Israel
| | - Tian Zhang
- Department of Chemical and Biological Engineering, Monash University, Melbourne, VIC 3800, Australia
| | - Ivan Cole
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Kulmira Nurgali
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC 3011, Australia
| | - Hong Yin
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Daniel T H Lai
- Institute of Health and Sport (IHeS), Victoria University, Melbourne, VIC 3011, Australia
| |
Collapse
|
7
|
Zhang C, Qiu M, Wang J, Liu Y. Recent Advances in Nanoparticle-Based Optical Sensors for Detection of Pesticide Residues in Soil. BIOSENSORS 2023; 13:bios13040415. [PMID: 37185490 PMCID: PMC10136432 DOI: 10.3390/bios13040415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/11/2023] [Accepted: 03/17/2023] [Indexed: 05/17/2023]
Abstract
The excessive and unreasonable use of pesticides has adversely affected the environment and human health. The soil, one of the most critical natural resources supporting human survival and development, accumulates large amounts of pesticide residues. Compared to traditional spectrophotometry analytical methods, nanoparticle-based sensors stand out for their simplicity of operation as well as their high sensitivity and low detection limits. In this review, we focus primarily on the functions that various nanoparticles have and how they can be used to detect various pesticide residues in soil. A detailed discussion was conducted on the properties of nanoparticles, including their color changeability, Raman enhancement, fluorescence enhancement and quenching, and catalysis. We have also systematically reviewed the methodology for detecting insecticides, herbicides, and fungicides in soil by using nanoparticles.
Collapse
Affiliation(s)
- Chunhong Zhang
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Mingle Qiu
- Xi'an Key Laboratory of Advanced Control and Intelligent Process, School of Automation, Xi'an University of Posts & Telecommunications, Xi'an 710121, China
| | - Jinglin Wang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| | - Yongchun Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710062, China
| |
Collapse
|
8
|
Yakusheva A, Aly-Eldeen M, Gusev A, Zakharova O, Kuznetsov D. Cyan Fluorescent Carbon Quantum Dots with Amino Derivatives for the Visual Detection of Copper (II) Cations in Sea Water. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1004. [PMID: 36985898 PMCID: PMC10055749 DOI: 10.3390/nano13061004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/02/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
Amino- and carboxyl-functionalized carbon quantum dots (Amino-CQDs) were synthesized through fast and simple microwave treatment of a citric acid, ethylenediamine and ethylenediaminetetraacetic acid (EDTA) mix. The reproducible and stable optical properties from newly synthesized CQD dispersion with a maximum absorbance spectra at 330 nm and the symmetric emission maximum at 470 nm made the Amino-CQDs a promising fluorescence material for analytical applications. The highly aminated and chelate moieties on the CQDs was appropriate for a copper (Cu2+) cation sensor in the linear range from 1 × 10-4 mg/mL to 10 mg/mL with a limit of detection at 0.00036 mg/mL by static fluorescence quenching effects. Furthermore, Amino-CQDs demonstrated stable fluorescence parameters for assays in diluted alkali metal solution (Na+ and K+) and sea water. Finally, a visual sensor, based on Amino-CQDs, was successfully created for the 0.01-100 mg/mL range to produce a colorimetric effect that can be registered by computer vision software (Open CV Python).
Collapse
Affiliation(s)
- Anastasia Yakusheva
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
| | - Mohamed Aly-Eldeen
- Marine Chemistry Laboratory, National Institute of Oceanography & Fisheries, Kayet-Bey, Al-Anfoushi, Alexandria 5321430, Egypt
| | - Alexander Gusev
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33, Internatsionalnaya Str., 392000 Tambov, Russia
| | - Olga Zakharova
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
- Research Institute for Environmental Science and Biotechnology, Derzhavin Tambov State University, 33, Internatsionalnaya Str., 392000 Tambov, Russia
| | - Denis Kuznetsov
- Department of Functional Nanosystems and High-Temperature Materials, National University of Science and Technology MISIS, Leninsky Prospect 4, 119049 Moscow, Russia
| |
Collapse
|
9
|
A chemiluminescent probe for highly sensitive detection of trifluralin based on cobalt ion-complexed boron nitride quantum dots as efficient nanocatalysts. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Manikandan V, Lee NY. Green synthesis of carbon quantum dots and their environmental applications. ENVIRONMENTAL RESEARCH 2022; 212:113283. [PMID: 35461844 DOI: 10.1016/j.envres.2022.113283] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 05/25/2023]
Abstract
Green synthesis of scalable, high-quality, fluorescent carbon quantum dots (CQDs) from natural biomass remains attractive due to their outstanding environmental application. CQDs are an emerging class of zero-dimensional carbon nanomaterials (<10 nm) that have recently attracted much attention due to their strong optical properties, biocompatibility, nontoxicity, uniform particle size, high photostability, low-cost synthesis, and highly tunable photoluminescence. The unique properties of CQDs possess a broad range of prospective applications in a number of fields such as metal ions detection, photocatalysis, sensing, medical diagnosis, bioimaging, and drug delivery. CQD nanostructures are synthesized using various techniques such as hydrothermal method, laser ablation, microwave irradiation, electrochemical oxidation, reflux method, and ultrasonication. However, this type of fabrication approach requires several chemical reactions including oxidation, carbonization, and pyrolysis. Green synthesis of CQDs has several advantages such as the use of low-cost and non-toxic raw materials, renewable resources, simple operations, and being environment-friendly. This review article will discuss the physicochemical properties of CQDs techniques used in the production of CQDs, and the stability of CQDs along with their applications in wastewater treatment and biomedical fields.
Collapse
Affiliation(s)
- Velu Manikandan
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| | - Nae Yoon Lee
- Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, South Korea
| |
Collapse
|
11
|
Omar NAS, Fen YW, Irmawati R, Hashim HS, Ramdzan NSM, Fauzi NIM. A Review on Carbon Dots: Synthesis, Characterization and Its Application in Optical Sensor for Environmental Monitoring. NANOMATERIALS 2022; 12:nano12142365. [PMID: 35889589 PMCID: PMC9321155 DOI: 10.3390/nano12142365] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/11/2022] [Accepted: 06/15/2022] [Indexed: 01/17/2023]
Abstract
The development of carbon dots (CDs), either using green or chemical precursors, has inevitably led to their wide range application, from bioimaging to optoelectronic devices. The reported precursors and properties of these CDs have opened new opportunities for the future development of high-quality CDs and applications. Green precursors were classified into fruits, vegetables, flowers, leaves, seeds, stem, crop residues, fungi/bacteria species, and waste products, while the chemical precursors were classified into acid reagents and non-acid reagents. This paper quickly reviews ten years of the synthesis of CDs using green and chemical precursors. The application of CDs as sensing materials in optical sensor techniques for environmental monitoring, including the detection of heavy metal ions, phenol, pesticides, and nitroaromatic explosives, was also discussed in this review. This profound review will offer knowledge for the upcoming community of researchers interested in synthesizing high-quality CDs for various applications.
Collapse
Affiliation(s)
- Nur Alia Sheh Omar
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| | - Yap Wing Fen
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
- Correspondence:
| | - Ramli Irmawati
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Hazwani Suhaila Hashim
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nur Syahira Md Ramdzan
- Faculty of Science, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia; (N.A.S.O.); (R.I.); (H.S.H.); (N.S.M.R.)
| | - Nurul Illya Muhamad Fauzi
- Institute of Nanoscience and Nanotechnology, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia;
| |
Collapse
|
12
|
Ghereghlou M, Esmaeili AA, Darroudi M. Adsorptive Removal of Methylene Blue from Aqueous Solutions Using Magnetic Fe3O4@C-dots: Removal and kinetic studies. SEP SCI TECHNOL 2022. [DOI: 10.1080/01496395.2022.2029490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mahnaz Ghereghlou
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Abbas Ali Esmaeili
- Department of Chemistry, Faculty of Sciences, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Majid Darroudi
- Nuclear Medicine Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Medical Biotechnology and Nanotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
13
|
Biocompatibility and Antioxidant Capabilities of Carbon Dots Obtained from Tomato (Solanum lycopersicum). APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12020773] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Since their discovery in 2004, carbon dots have attracted strong interest in the scientific community due to their characteristic properties, particularly their luminescence and their ease of synthesis and derivatization. Carbon dots can be obtained from different carbon sources, including natural products, resulting in a so-called ’green synthesis’. In this work, we obtain carbon dots from tomato juice in order to obtain nanoparticles with the antioxidant capabilities of the natural antioxidants present in that fruit. The obtained material is characterized regarding nanoparticle size distribution, morphology, surface functional groups and optic properties. Antioxidant properties are also evaluated through the DPPH method and their cytotoxicity is checked against human dermal fibroblast and A549 cell-lines. The results indicate that carbon dots obtained from tomato have a higher antioxidant power than other already-published antioxidant carbon dots. The bandgap of the synthesized materials was also estimated and coherent with the literature values. Moreover, carbon dots obtained from tomato juice are barely toxic for healthy cells up to 72 h, while they induce a certain cytotoxicity in A549 lung carcinoma cells.
Collapse
|
14
|
Nkeumaleu AT, Benetti D, Haddadou I, Di Mare M, Ouellet-Plamondon CM, Rosei F. Brewery spent grain derived carbon dots for metal sensing. RSC Adv 2022; 12:11621-11627. [PMID: 35481069 PMCID: PMC9009306 DOI: 10.1039/d2ra00048b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 04/07/2022] [Indexed: 01/02/2023] Open
Abstract
This article presents a proof-of-concept to recycle microbrewery waste as a carbon source for synthesizing carbon dots (CDs). A simple method has been developed to synthesize water-soluble CDs based on microwave irradiation of brewery spent grain. The structures and optical properties of the CDs were characterized by ultraviolet-visible (UV-Vis) spectroscopy, photoluminescence spectroscopy (PL), X-ray photoelectron spectroscopy (XPS) and transmission electron microscopy. The effects of reaction time, temperature and pH on the properties of carbon dots were studied. These CDs were found to be spherical with an average diameter of 5.3 nm, N-doped, containing many functional groups (hydroxyl, ethers, esters, carboxyl and amino groups), and to exhibit good photoluminescence with a fluorescent quantum yield of 14%. Finally, the interaction between carbon dots and metal ions was investigated towards developing CDs as a sensing technology for water treatment, food quality and safety detection. This article presents a proof-of-concept to recycle microbrewery waste as a carbon source for synthesizing carbon dots (CDs).![]()
Collapse
Affiliation(s)
- Aurel Thibaut Nkeumaleu
- École de technologie supérieure, Université du Québec, 1100 Notre-Dame West, Montréal, H3C 1K3, Canada
| | - Daniele Benetti
- INRS, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| | - Imane Haddadou
- École de technologie supérieure, Université du Québec, 1100 Notre-Dame West, Montréal, H3C 1K3, Canada
| | - Michael Di Mare
- École de technologie supérieure, Université du Québec, 1100 Notre-Dame West, Montréal, H3C 1K3, Canada
| | | | - Federico Rosei
- INRS, 1650 Boulevard Lionel-Boulet, Varennes, QC J3X 1P7, Canada
| |
Collapse
|
15
|
Chan MH, Chen BG, Ngo LT, Huang WT, Li CH, Liu RS, Hsiao M. Natural Carbon Nanodots: Toxicity Assessment and Theranostic Biological Application. Pharmaceutics 2021; 13:1874. [PMID: 34834289 PMCID: PMC8618595 DOI: 10.3390/pharmaceutics13111874] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/27/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
This review outlines the methods for preparing carbon dots (CDs) from various natural resources to select the process to produce CDs with the best biological application efficacy. The oxidative activity of CDs mainly involves photo-induced cell damage and the destruction of biofilm matrices through the production of reactive oxygen species (ROS), thereby causing cell auto-apoptosis. Recent research has found that CDs derived from organic carbon sources can treat cancer cells as effectively as conventional drugs without causing damage to normal cells. CDs obtained by heating a natural carbon source inherit properties similar to the carbon source from which they are derived. Importantly, these characteristics can be exploited to perform non-invasive targeted therapy on human cancers, avoiding the harm caused to the human body by conventional treatments. CDs are attractive for large-scale clinical applications. Water, herbs, plants, and probiotics are ideal carbon-containing sources that can be used to synthesize therapeutic and diagnostic CDs that have become the focus of attention due to their excellent light stability, fluorescence, good biocompatibility, and low toxicity. They can be applied as biosensors, bioimaging, diagnosis, and treatment applications. These advantages make CDs attractive for large-scale clinical application, providing new technologies and methods for disease occurrence, diagnosis, and treatment research.
Collapse
Affiliation(s)
- Ming-Hsien Chan
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Bo-Gu Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Loan Thi Ngo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
- Nano Science and Technology Program, Taiwan International Graduate Program, Academia Sinica and National Taiwan University, Taipei 115, Taiwan
| | - Wen-Tse Huang
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Chien-Hsiu Li
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
| | - Ru-Shi Liu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan; (B.-G.C.); (L.T.N.); (W.-T.H.)
| | - Michael Hsiao
- Genomics Research Center, Academia Sinica, Taipei 115, Taiwan; (M.-H.C.); (C.-H.L.)
- Department of Biochemistry, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
16
|
Wang J, Xia T, Lan Z, Liu G, Hou S, Hou S. Facile synthesis of an aggregation-induced emission (AIE) active imidazoles for sensitive detection of trifluralin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 259:119880. [PMID: 33965889 DOI: 10.1016/j.saa.2021.119880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 04/17/2021] [Accepted: 04/23/2021] [Indexed: 06/12/2023]
Abstract
A novel imidazoles fluorescent probe (2) was synthesized from vanillin, o-phenylenediamine, and N,N-diphenylcarbamyl chloride. Its structure was characterized by fluorescence spectra, UV-Vis spectra, 1H NMR, 13C NMR, and high-resolution mass spectrometry (HRMS). Moreover, its aggregation-induced emission (AIE) feature was investigated in THF/MeOH solution. Furthermore, the fluorescence quenching experimental results suggest that compound 2 is the potential fluorescent probe of small organic molecules showing high selectivity and sensitivity for nitroaromatic compounds. In addition, the probe could be applied in the determination of trifluralin with fast response and stability. The fluorescence response of the probe exhibited a good linear correlation with the concentration of trifluralin ranging from 10 to 100 μM, and the limit of detection (LOD) was as low as 5.066 μM. Finally, the probe was successfully utilized to determine the amount of trifluralin in real samples, and the recoveries were 91.1% to 111.2%, indicating the applicability and reliability of the probe.
Collapse
Affiliation(s)
- Junjie Wang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Tianzi Xia
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Zhenni Lan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Guangyan Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China
| | - Shili Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China.
| | - Shifeng Hou
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guangxi 541006, PR China; National Engineering and Technology Research Center for Colloidal Materials, Shandong University, Jinan, Shandong 250100, PR China.
| |
Collapse
|
17
|
Hu H, Hu Y, Xia L, Li G. Tetraphenylethene Functionalized Polyhedral Oligomeric Silsesquioxane Fluorescent Probe for Rapid and Selective Trifluralin Sensing in Vegetables and Fruits. Chem Asian J 2021; 16:3970-3977. [PMID: 34606687 DOI: 10.1002/asia.202101024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 09/30/2021] [Indexed: 01/08/2023]
Abstract
A novel fluorescent probe was designed and synthesized from tetraphenylethene (TPE) and polyhedral oligomeric silsesquioxanes (POSS) via Heck-palladium catalyzed cross-coupling reaction. The as-synthesized TPE functionalized probe performed good solvent stability and selectively preconcentration capability towards target analyte due to its stable structure and the adsorption property. The morphology as well as the physical and chemical properties of the POSS@TPE were carefully characterized. The POSS@TPE was employed to develop an effective fluorescent probe for trifluralin, with a response range of 0.1-80 mg/kg and a detection limit of 0.102 mg/kg. The mixed mechanisms of inner-filter effect (IFE) and photoinduced electron transfer (PET) explain the selectivity of POSS@TPE. Rapid detection for trifluralin in tomato and celery has been achieved with recoveries between 99.4-120.7% (RSD≤3.4%), and the results were verified compared with GC-MS method.
Collapse
Affiliation(s)
- Hongzhi Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Yufei Hu
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Ling Xia
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Gongke Li
- School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
18
|
Chahal S, Macairan JR, Yousefi N, Tufenkji N, Naccache R. Green synthesis of carbon dots and their applications. RSC Adv 2021; 11:25354-25363. [PMID: 35478913 PMCID: PMC9037072 DOI: 10.1039/d1ra04718c] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 11/23/2022] Open
Abstract
Carbon dots (CDs) are nanoparticles with tunable physicochemical and optical properties. Their resistance to photobleaching and relatively low toxicity render them attractive alternatives to fluorescent dyes and heavy metal-based quantum dots in the fields of bioimaging, sensing, catalysis, solar cells, and light-emitting diodes, among others. Moreover, they have garnered considerable attention as they lend themselves to green synthesis methods. Increasingly, one-pot syntheses comprising exclusively of renewable raw materials or renewable refined compounds are gaining favor over traditional approaches that rely on harsh chemicals and energy intensive conditions. The field of green CD synthesis is developing rapidly; however, challenges persist in ensuring the consistency of their properties (e.g., fluorescence quantum yield) relative to conventional preparation methods. This has mostly limited their use to sensing and bioimaging, leaving opportunities for development in optoelectronic applications. Herein, we discuss the most common green CD synthesis and purification methods reported in the literature and the renewable precursors used. The physical, chemical, and optical properties of the resulting green-synthesized CDs are critically reviewed, followed by a detailed description of their applications in sensing, bioimaging, biomedicine, inks, and catalysis. We conclude with an outlook on the future of green CD synthesis. Future research efforts should address the broad knowledge gap between CDs synthesized from renewable versus non-renewable precursors, focusing on discrepancies in their physical, chemical, and optical properties. The development of cost effective, safe, and sustainable green CDs with tunable properties will broaden their implementation in largely untapped applications, which include drug delivery, photovoltaics, catalysis, and more. A review of the green carbon dot synthesis literature outlining the various precursors used, synthesis and purification methods employed, the resulting physicochemical properties of the carbon dots, and their applications.![]()
Collapse
Affiliation(s)
- Shawninder Chahal
- Department of Chemical Engineering, McGill University 3610 University St, Montreal Quebec H3A 0C5 Canada
| | - Jun-Ray Macairan
- Department of Chemistry and Biochemistry, The Centre for NanoScience Research, Concordia University 7141 Sherbrooke St. West, Montreal Quebec H4B 1R6 Canada
| | - Nariman Yousefi
- Department of Chemical Engineering, Ryerson University 350 Victoria St Toronto Ontario M5B 2K3 Canada
| | - Nathalie Tufenkji
- Department of Chemical Engineering, McGill University 3610 University St, Montreal Quebec H3A 0C5 Canada.,Quebec Centre for Advanced Materials Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry, The Centre for NanoScience Research, Concordia University 7141 Sherbrooke St. West, Montreal Quebec H4B 1R6 Canada .,Quebec Centre for Advanced Materials Canada
| |
Collapse
|
19
|
An Overview of the Recent Developments in Carbon Quantum Dots—Promising Nanomaterials for Metal Ion Detection and (Bio)Molecule Sensing. CHEMOSENSORS 2021. [DOI: 10.3390/chemosensors9060138] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The fluorescent carbon quantum dots (CQDs) represent an emerging subset of carbonaceous nanomaterials, recently becoming a powerful tool for biosensing, bioimaging, and drug and gene delivery. In general, carbon dots are defined as zero-dimensional (0D), spherical-like nanoparticles with <10 nm in size. Their unique chemical, optical, and electronic properties make CQDs versatile materials for a wide spectrum of applications, mainly for the sensing and biomedical purposes. Due to their good biocompatibility, water solubility, and relatively facile modification, these novel materials have attracted tremendous interest in recent years, which is especially important for nanotechnology and nanoscience expertise. The preparation of the biomass-derived CQDs has attracted growing interest recently due to their low-cost, renewable, and green biomass resources, presenting also the variability of possible modification for the enhancement of CQDs’ properties. This review is primarily focused on the recent developments in carbon dots and their application in the sensing of different chemical species within the last five years. Furthermore, special emphasis has been made regarding the green approaches for obtaining CQDs and nanomaterial characterization toward better understanding the mechanisms of photoluminescent behavior and sensing performance. In addition, some of the challenges and future outlooks in CQDs research have been briefly outlined.
Collapse
|
20
|
Green Sources Derived Carbon Dots for Multifaceted Applications. J Fluoresc 2021; 31:915-932. [PMID: 33786684 DOI: 10.1007/s10895-021-02721-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Accepted: 03/17/2021] [Indexed: 10/21/2022]
Abstract
For the past decade, the Carbon dots (CDs) a tiny sized carbon nanomaterial are typically much attentive due to their outstanding properties. Nature is a fortune of exciting starting materials that provides many inexpensive and renewable resources which have received the topmost attention of researchers because of non-hazardous and eco-friendly nature that can be used to prepare green CDs by top-down and bottom-up synthesis including hydrothermal carbonization, microwave synthesis, and pyrolysis due to its simple synthetic process, speedy reactions and clear-cut end steps. Compared to chemically derived CDs, green CDs are varied by their properties such as less toxicity, high water dispersibility, superior biocompatibility, good photostability, bright fluorescence, and ease of modification. These nanomaterials are a promising material for sensor and biological fields, especially in electrochemical sensing of toxic and trace elements in ecosystems, metal sensing, diagnosis of diseases through bio-sensing, and detection of cancerous cells by in-vitro and in-vivo bio-imaging applications. In this review, the various synthetic routes, fluorescent mechanisms, and applications of CDs from discovery to the present are briefly discussed. Herein, the latest developments on the synthesis of CDs derived from green carbon materials and their promising applications in sensing, catalysis and bio-imaging were summarized. Moreover, some challenging problems, as well as upcoming perspectives of this powerful and tremendous material, are also discussed.
Collapse
|
21
|
Recent Developments in Carbon Quantum Dots: Properties, Fabrication Techniques, and Bio-Applications. Processes (Basel) 2021. [DOI: 10.3390/pr9020388] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Carbon dots have gained tremendous interest attributable to their unique features. Two approaches are involved in the fabrication of quantum dots (Top-down and Bottom-up). Most of the synthesis methods are usually multistep, required harsh conditions, and costly carbon sources that may have a toxic effect, therefore green synthesis is more preferable. Herein, the current review presents the green synthesis of carbon quantum dots (CQDs) and graphene quantum dots (GQDs) that having a wide range of potential applications in bio-sensing, cellular imaging, and drug delivery. However, some drawbacks and limitations are still unclear. Other biomedical and biotechnological applications are also highlighted.
Collapse
|
22
|
Lou Y, Hao X, Liao L, Zhang K, Chen S, Li Z, Ou J, Qin A, Li Z. Recent advances of biomass carbon dots on syntheses, characterization, luminescence mechanism, and sensing applications. NANO SELECT 2021. [DOI: 10.1002/nano.202000232] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Affiliation(s)
- Ying Lou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Xinyu Hao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Lei Liao
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Kaiyou Zhang
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Shuoping Chen
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Ziyuan Li
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Jun Ou
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Aimiao Qin
- Key Lab New Processing Technology for Nonferrous Metals & Materials Ministry of Education College of Materials science and engineering College of Environmental Science and Engineering Guilin University of Technology Guilin China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems Chinese Academy of Sciences Beijing China
| |
Collapse
|
23
|
Caglayan MO, Mindivan F, Şahin S. Sensor and Bioimaging Studies Based on Carbon Quantum Dots: The Green Chemistry Approach. Crit Rev Anal Chem 2020; 52:814-847. [PMID: 33054365 DOI: 10.1080/10408347.2020.1828029] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Since carbon quantum dots have high photoluminescent efficiency, it has been a desired material in sensor and bioimaging applications. In recent years, the green chemistry approach has been preferred and the production of quantum dots has been reported in many studies using different precursors from natural, abundant, or waste sources. Hydrothermal, chemical oxidation, microwave supported, ultrasonic, solvothermal, pyrolysis, laser etching, solid-state, plasma, and electrochemical methods have been reported in the literature. In this review article, green chemistry strategies for carbon quantum dot synthesis is summarized and compared with conventional methods using methodologic and statistical data. Furthermore, a detailed discussion on sensor and bioimaging applications of carbon quantum dots produced with green synthesis approaches are presented with a special focus on the last decade.
Collapse
Affiliation(s)
- Mustafa Oguzhan Caglayan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Ferda Mindivan
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Samet Şahin
- Faculty of Engineering, Department of Bioengineering, Bilecik Şeyh Edebali University, Bilecik, Turkey
| |
Collapse
|