1
|
Roscales S, Csáky AG. Metal-Free Aminophosphonation: Eco-Friendly Synthesis and Photophysical Properties of Fluorescent 3-(Aminoimidazo[1,2-a]Pyridin-2-yl)Phosphonates. Angew Chem Int Ed Engl 2024:e202412300. [PMID: 39218782 DOI: 10.1002/anie.202412300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/27/2024] [Accepted: 08/31/2024] [Indexed: 09/04/2024]
Abstract
We report a novel, metal-free procedure for the direct aminophosphonation of imidazo[1,2-a]pyridines in green solvents under open air conditions. This method is characterized by its mild and sustainable conditions, ease of operation, scalability, and excellent functional group compatibility. The synthesized compounds exhibit promising photophysical properties, including significant Stokes shifts and quantum yields, making them potential candidates for innovative fluorescent probes.
Collapse
Affiliation(s)
- Silvia Roscales
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| | - Aurelio G Csáky
- Instituto Pluridisciplinar, Universidad Complutense, Paseo de Juan XXIII, 1, 28040-, Madrid, Spain
| |
Collapse
|
2
|
Tyagi S, Mishra R, Mazumder R, Mazumder A. Current Market Potential and Prospects of Copper-based Pyridine Derivatives: A Review. Curr Mol Med 2024; 24:1111-1123. [PMID: 37496249 DOI: 10.2174/1566524023666230726160056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 05/28/2023] [Accepted: 05/31/2023] [Indexed: 07/28/2023]
Abstract
Nicotine, minodronic acid, nicotinamide (niacin), zolpidem, zolimidine, and other pyridine-based chemicals play vital roles in medicine and biology. Pyridinecontaining drugs are widely available on the market to treat a wide range of human ailments. As a result of these advances, pyridine research is continually expanding, and there are now higher expectations for how it may aid in the treatment of numerous ailments. This evaluation incorporates data acquired from sources, like PubMed, to provide a thorough summary of the approved drugs and bioactivity data for compounds containing pyridine. Most of the reactions discussed in this article will provide readers with a deeper understanding of various pyridine-related examples, which is necessary for the creation of copper catalysis-based synthetic processes that are more accessible, secure, environmentally friendly, and practical, and that also have higher accuracy and selectivity. This paper also discusses significant innovations in the multi-component copper-catalyzed synthesis of N-heterocycles (pyridine), with the aim of developing precise, cost-effective, and environmentally friendly oxygenation and oxidation synthetic methods for the future synthesis of additional novel pyridine base analogs. Therefore, the review article will serve as a novel platform for researchers investigating copperbased pyridine compounds.
Collapse
Affiliation(s)
- Shivani Tyagi
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rakhi Mishra
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Rupa Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| | - Avijit Mazumder
- Noida Institute of Engineering and Technology (Pharmacy Institute), Knowledge Park-2, Plot 19, Greater Noida, 201306, India
| |
Collapse
|
3
|
Tali JA, Kumar G, Sharma BK, Rasool Y, Sharma Y, Shankar R. Synthesis and site selective C-H functionalization of imidazo-[1,2- a]pyridines. Org Biomol Chem 2023; 21:7267-7289. [PMID: 37655687 DOI: 10.1039/d3ob00849e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Imidazo[1,2-a]pyridine has attracted much interest in drug development because of its potent medicinal properties, therefore the discovery of novel methods for its synthesis and functionalization continues to be an exciting area of research. Although transition metal catalysis has fuelled the most significant developments, extremely beneficial metal-free approaches have also been identified. Even though pertinent reviews focused on imidazo[1,2-a]pyridine synthesis, properties (physicochemical and medicinal), and functionalization at the C3 position have been published, none of these reviews has focused on the outcomes obtained in the field of global ring functionalization. We wish here to describe a brief synthesis and an overview of all the functionalization reactions at each carbon atom, viz, C2, C3, C5, C6, C7 and C8 of this scaffold, divided into sections based on site-selectivity and the type of functionalization methods used.
Collapse
Affiliation(s)
- Javeed Ahmad Tali
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Gulshan Kumar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Bhupesh Kumar Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Younis Rasool
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| | - Yashika Sharma
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
| | - Ravi Shankar
- Natural Product and Medicinal Chemistry Division (NPMC), CSIR-Indian Institute of Integrative Medicine, Jammu-180001, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
4
|
Meena N, Shinde VN, Sonam, Swami PN, Rangan K, Kumar A. Catalyst-Controlled Regiodivergent Oxidative Annulation of 2-Arylimidazo[1,2- a]pyridines with Cinnamaldehyde Derivatives for Construction of Fused N-Heterocyclic Frameworks. J Org Chem 2023; 88:12902-12913. [PMID: 37672762 DOI: 10.1021/acs.joc.3c00717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Catalyst-dependent regioselective oxidative annulation of 2-arylimidazo[1,2-a]pyridines with cinnamaldehyde derivatives to construct fused N-heterocyclic frameworks has been described. The annulation reaction afforded 5-arylnaphtho[1',2':4,5]imidazo[1,2-a]pyridine-6-carbaldehydes in the presence of [RhCp*Cl2]2 as catalyst while 1,7-diarylimidazo[5,1,2-cd]indolizine-6-carbaldehydes were obtained using Pd(OAc)2 as catalyst. The reaction produced annulated products in good yields and exhibited broad substrate scope and excellent functional group tolerance. The method provides two different isomeric annulated products bearing an aldehyde functionality which can be elaborated into an array of functionalities leading to valuable compounds.
Collapse
Affiliation(s)
- Neha Meena
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Vikki N Shinde
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Sonam
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Prakash N Swami
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| | - Krishnan Rangan
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Hyderabad Campus, Telangana 500078, India
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science Pilani, Pilani Campus, Rajasthan 333031, India
| |
Collapse
|
5
|
Olyaei A, Shafie Z, Vessally E. One-pot synthesis of a new series of 2-phenylimidazo[1,2-a]pyridine-3-yl derivatives. SYNTHETIC COMMUN 2023. [DOI: 10.1080/00397911.2023.2191205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Affiliation(s)
- Abolfazl Olyaei
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Zahra Shafie
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| | - Esmail Vessally
- Department of Chemistry, Payame Noor University (PNU), Tehran, Iran
| |
Collapse
|
6
|
Zhang Q, Huang X, Gui Y, He Y, Liao S, Huang G, Liang T, Zhang Z. Unlocking Regiodivergence in Pd II- and Rh III-Mediated Site-Selective C-H Bond Alkynylation of Imidazopyridines. Org Lett 2023; 25:1447-1452. [PMID: 36826371 DOI: 10.1021/acs.orglett.3c00178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Abstract
An efficient PdII- and RhIII-controlled site-selective C-H bond alkynylation of imidazopyridines using (bromoethynyl)triisopropylsilane is disclosed. The divergent methodology allows straightforward access to a wide range of products alkynylated at the C3 and ortho positions. This strategy is suggestive of a practical platform that can be suitable for late-stage diversification and may assist in the design of more selective and complementary catalytic systems.
Collapse
Affiliation(s)
- Qiang Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Xuecong Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Yuting Gui
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Youyuan He
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Siyang Liao
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Guan Huang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Taoyuan Liang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| | - Zhuan Zhang
- Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, China
| |
Collapse
|
7
|
Liu Y, Wang Z, Lei T, Li Y. Ag(I)‐Promoted Decarboxylative Annulation of Alkynoic Acids towards 2‐Arylimidazo[1,2‐
a
]pyridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yun Liu
- School of Chemistry and Material Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Ziqing Wang
- School of Chemistry and Material Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Ting Lei
- School of Chemistry and Material Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| | - Yuling Li
- School of Chemistry and Material Science Jiangsu Normal University Xuzhou 221116 Jiangsu P. R. China
| |
Collapse
|
8
|
Zhan G, Zhao H, Li DA, Wu Y, Fang H, Peng C, Han B. Synthesis of 2,3-bifunctional imidazo[1,2-a]pyridines through cycloadditions of pyridinium ylides with N-cyano-4-methyl-N-phenylbenzenesulfonamide. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
9
|
Hong B, Lin B, Yao Y, Li S, Weng Z. Synthesis of 3-substituted 2-trifluomethyl imidazo[1,2-a]pyridine through [3+2] cycloaddition of pyridinium ylide with trifluoroacetonitrile. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
10
|
Mishra NP, Mohapatra S, Das T, Nayak S. Imidazo[1,2‐a]pyridine as a promising scaffold for the development of antibacterial agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | | | - Tapaswini Das
- Department of Chemistry Ravenshaw University Cuttack India
| | - Sabita Nayak
- Department of Chemistry Ravenshaw University Cuttack India
| |
Collapse
|
11
|
Matsumura M, Tsukada K, Sugimoto K, Murata Y, Yasuike S. Synthesis of novel alkynyl imidazopyridinyl selenides: copper-catalyzed tandem selenation of selenium with 2-arylimidazo[1,2- a]pyridines and terminal alkynes. Beilstein J Org Chem 2022; 18:863-871. [PMID: 35957751 PMCID: PMC9344556 DOI: 10.3762/bjoc.18.87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/05/2022] [Indexed: 12/04/2022] Open
Abstract
Alkynyl selenides have attracted considerable research interest recently, owing to their applications in the biological and pharmaceutical fields. The Cu-catalyzed tandem reaction for the synthesis of novel alkynyl imidazopyridinyl selenides is presented. A one-pot synthesis route afforded alkynyl imidazopyridinyl selenides in moderate to good yields. This was achieved by a two-step reaction between terminal alkynes and diimidazopyridinyl diselenides, generated from imidazo[1,2-a]pyridines and Se powder, using 10 mol % of CuI and 1,10-phenanthroline as the catalytic system under aerobic conditions. The C(sp2)–Se and C(sp)–Se bond-formation reaction can be performed in one-pot by using inexpensive and easy to handle Se powder as the Se source. The reaction proceeded with terminal alkynes having various substitutions, such as aryl, vinyl, and alkyl groups. The obtained alkynyl imidazopyridinyl selenide was found to undergo nucleophilic substitution reaction on Se atom using organolithium reagents and 1,3-dipolar azide–alkyne cycloaddition based on the alkyne moiety.
Collapse
Affiliation(s)
- Mio Matsumura
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Kaho Tsukada
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Kiwa Sugimoto
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Yuki Murata
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| | - Shuji Yasuike
- School of Pharmaceutical Sciences, Aichi Gakuin University, 1-100 Kusumoto-cho, Chikusa-ku, Nagoya 464-8650, Japan
| |
Collapse
|
12
|
Kumbhar VV, Khairnar BB, Chaskar MG, Pawar RA, Gugale GS. Synthetic strategies in development of 3-aroylimidazo[1,2-a]pyridines and 2-aroylimidazo[1,2-a]pyridines: A decade update. SYNTHETIC COMMUN 2022. [DOI: 10.1080/00397911.2022.2056057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Vikrant V. Kumbhar
- Department of Chemistry, PDEA’s Prof. Ramkrishna More College, Pune, India
- Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Pune, India
| | - Bhushan B. Khairnar
- Department of Chemistry, PDEA’s Prof. Ramkrishna More College, Pune, India
- Interdisciplinary School of Science (IDSS), Savitribai Phule Pune University, Pune, India
| | - Manohar G. Chaskar
- Department of Chemistry, PDEA’s Prof. Ramkrishna More College, Pune, India
| | - Ramdas A. Pawar
- Department of Chemistry, PDEA’s Prof. Ramkrishna More College, Pune, India
| | - Gulab S. Gugale
- Department of Chemistry, PDEA’s Prof. Ramkrishna More College, Pune, India
- Department of Chemistry, Haribhai V. Desai College, Pune, India
| |
Collapse
|
13
|
Feng Z, Deng L, Wei J, Wu Y, Jiang Z, Wang Y. Metal- and additive-free direct C3-aminomethylation of imidazo[1,2-a]pyridines with 1,3,5-triazinanes. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.153790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
14
|
Kianmehr E, Bari B, Jafarzadeh M, Rostami A, Golshani M, Foroumadi A. Reaction of imidazo[1,2- a]pyridines with coumarin-3-carboxylic acids: a domino Michael addition/decarboxylation/oxidation/annulation. NEW J CHEM 2022. [DOI: 10.1039/d2nj02706b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A palladium-catalyzed decarboxylative domino reaction of imidazo[1,2-a]pyridines and coumarin-3-carboxylic acids has been developed, which provides access to dibenzoisochromenoimidazo[1,2-a]pyridin-6-ones possessing six fused rings.
Collapse
Affiliation(s)
- Ebrahim Kianmehr
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Bahareh Bari
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Mahdi Jafarzadeh
- School of Chemistry, College of Science, University of Tehran, Tehran 1417614411, Iran
| | - Ali Rostami
- Natural and Medical Sciences Research Center (NMSRC), University of Nizwa, Nizwa 616, Sultanate of Oman
| | - Mostafa Golshani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
15
|
Kurteva V. Recent Progress in Metal-Free Direct Synthesis of Imidazo[1,2- a]pyridines. ACS OMEGA 2021; 6:35173-35185. [PMID: 34984250 PMCID: PMC8717391 DOI: 10.1021/acsomega.1c03476] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
This Mini-Review highlights the most effective protocols for metal-free direct synthesis of imidazo[1,2-a]pyridines, crucial target products and key intermediates, developed in the past decade. The emphases is given on the ecological impact of the methods and on the mechanistic aspects as well. The procedures efficiently applied in the preparation of important drugs and promising drug candidates are also underlined.
Collapse
Affiliation(s)
- Vanya Kurteva
- Institute of Organic Chemistry
with Centre of Phytochemistry, Bulgarian
Academy of Sciences, Acad. G. Bonchev str., bl. 9, 1113 Sofia, Bulgaria
| |
Collapse
|
16
|
Ghosh S, Laru S, Hajra A. Ortho C-H Functionalization of 2-Arylimidazo[1,2-a]pyridines. CHEM REC 2021; 22:e202100240. [PMID: 34757691 DOI: 10.1002/tcr.202100240] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/19/2021] [Accepted: 10/25/2021] [Indexed: 11/09/2022]
Abstract
C-H activation and functionalization is quite promising in recent days as the strategy offers a go-to general method for different bond formations and hence grants synthetic versatility. At the same time, imidazopyridine, a fused bicycle of imidazole moiety with pyridine ring, has a profound impact due to its ubiquitous and prodigious application in medicinal as well as material chemistry. The presence of N-1 atom in 2-arylImidazo[1,2-a]pyridine facilitates the coordination with metal catalysts leading to the formation of ortho-substituted products. This review summarizes all the articles on ortho C-H functionalization of 2-arylImidazo[1,2-a]pyridines published till August 2021.
Collapse
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Sudip Laru
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| | - Alakananda Hajra
- Department of Chemistry, Visva-Bharati (A Central University), Santiniketan, 731235, India
| |
Collapse
|
17
|
Ghosh D, Ghosh S, Hajra A. Electrochemical Functionalization of Imidazopyridine and Indazole: An Overview. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100981] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Debashis Ghosh
- Department of Chemistry St. Joseph's College (Autonomous) Bangalore 560027 Karnataka India
| | - Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
18
|
Ghosh S, Khandelia T, Patel BK. Solvent-Switched Manganese(I)-Catalyzed Regiodivergent Distal vs Proximal C-H Alkylation of Imidazopyridine with Maleimide. Org Lett 2021; 23:7370-7375. [PMID: 34543041 DOI: 10.1021/acs.orglett.1c02536] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A sustainable Mn(I)-catalyzed exclusive solvent-dependent functionalization of imidazopyridine with maleimide via an electrophilic metalation at the distal (in 2,2,2-trifluoroethanol (TFE)) and chelation assisted at the proximal (in tetrahydrofuran (THF)) has been developed. The strategy was successfully applied to the drug Zolimidine and a broad range of substrates, thereby reflecting the method's versatility.
Collapse
Affiliation(s)
- Subhendu Ghosh
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Tamanna Khandelia
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|