1
|
Villarroel-Rocha D, Villarroel-Rocha J, Amaya-Roncancio S, García-Carvajal C, Barrera DA, Arroyo-Gómez J, Torres-Ceron DA, Restrepo-Parra E, Sapag K. Influence of Pressure and Temperature on the Flexible Behavior of Iron-Based MIL-53 with the CO 2 Host: A Comprehensive Experimental and DFT Study. ACS OMEGA 2024; 9:21930-21938. [PMID: 38799319 PMCID: PMC11112720 DOI: 10.1021/acsomega.3c09842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 03/11/2024] [Accepted: 03/14/2024] [Indexed: 05/29/2024]
Abstract
This research focuses on developing MIL-53-type compounds with Fe obtained with ligands derived from PET waste, followed by the controlled addition of hydrofluoric acid (HF). Incorporating HF into the MOF structure induced substantial changes in the material textural properties, resulting in a significant change in CO2 adsorption. Furthermore, a distinctive structural alteration (breathing effect) was observed in the CO2 isotherms at different temperatures; these structural changes have not been observed by X-ray diffraction (XRD) because this characterization has been performed at room temperature, whereas the adsorption experiments were conducted at 260, 273, and 303 K and different pressures. Subsequently, DFT studies were performed to investigate the CO2-filling mechanisms and elucidate the material respiration effect. This approach offers promising opportunities for sustainable materials with improved gas adsorption properties.
Collapse
Affiliation(s)
- Dimar Villarroel-Rocha
- Laboratorio
de Solidos Porosos (LabSop), Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Jhonny Villarroel-Rocha
- Laboratorio
de Solidos Porosos (LabSop), Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Sebastian Amaya-Roncancio
- PCM
Computational Applications, Universidad
Nacional de Colombia Sede Manizales, Manizales 170003, Colombia
- Natural
and Exact Sciences Department, Universidad
de la Costa, Barranquilla 080002, Colombia
| | - Celene García-Carvajal
- Laboratorio
de Solidos Porosos (LabSop), Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Deicy Amparo Barrera
- Laboratorio
de Solidos Porosos (LabSop), Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, San Luis 5700, Argentina
| | - Jose Arroyo-Gómez
- Departamento
de Almacenamiento y Conversión de la Energía, Subgerencia
Operativa de Energía y Movilidad, Instituto Nacional de Tecnología Industrial (INTI), Avenida General Paz 5445, San Martín, Buenos Aires 1650, Argentina
- Consejo
Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290, Argentina
| | - Darwin Augusto Torres-Ceron
- Laboratorio
de Física del Plasma, Universidad
Nacional de Colombia Sede Manizales, Manizales 170003, Colombia
- Gestión
& Medio Ambiente, Manizales 170004, Colombia
- Departamento
de Física, Universidad Tecnológica
de Pereira (UTP), Pereira 660003, Colombia
| | - Elisabeth Restrepo-Parra
- PCM
Computational Applications, Universidad
Nacional de Colombia Sede Manizales, Manizales 170003, Colombia
- Laboratorio
de Física del Plasma, Universidad
Nacional de Colombia Sede Manizales, Manizales 170003, Colombia
| | - Karim Sapag
- Laboratorio
de Solidos Porosos (LabSop), Instituto de Física Aplicada (INFAP), Universidad Nacional de San Luis, San Luis 5700, Argentina
| |
Collapse
|
2
|
Ding G, Zhao J, Zhou K, Zheng Q, Han ST, Peng X, Zhou Y. Porous crystalline materials for memories and neuromorphic computing systems. Chem Soc Rev 2023; 52:7071-7136. [PMID: 37755573 DOI: 10.1039/d3cs00259d] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
Porous crystalline materials usually include metal-organic frameworks (MOFs), covalent organic frameworks (COFs), hydrogen-bonded organic frameworks (HOFs) and zeolites, which exhibit exceptional porosity and structural/composition designability, promoting the increasing attention in memory and neuromorphic computing systems in the last decade. From both the perspective of materials and devices, it is crucial to provide a comprehensive and timely summary of the applications of porous crystalline materials in memory and neuromorphic computing systems to guide future research endeavors. Moreover, the utilization of porous crystalline materials in electronics necessitates a shift from powder synthesis to high-quality film preparation to ensure high device performance. This review highlights the strategies for preparing porous crystalline materials films and discusses their advancements in memory and neuromorphic electronics. It also provides a detailed comparative analysis and presents the existing challenges and future research directions, which can attract the experts from various fields (e.g., materials scientists, chemists, and engineers) with the aim of promoting the applications of porous crystalline materials in memory and neuromorphic computing systems.
Collapse
Affiliation(s)
- Guanglong Ding
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - JiYu Zhao
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Kui Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Qi Zheng
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| | - Su-Ting Han
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Xiaojun Peng
- State Key Laboratory of Fine Chemicals, Frontiers Science Center for Smart Materials, Dalian University of Technology, Dalian 116024, China
- State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ye Zhou
- Institute for Advanced Study, Shenzhen University, Shenzhen, China.
| |
Collapse
|
3
|
Xu MM, Liu YH, Zhang X, Lv JA, Zhao RC, Xie LH, Li JR. Highly Efficient Propyne/Propylene Separation in a "Flexible-Robust" and Hydrolytically Stable Cu(II)-MOF. Inorg Chem 2023. [PMID: 37478416 DOI: 10.1021/acs.inorgchem.3c01285] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
Propyne/propylene separation is important in the petrochemical industry but challenging due to their similar physical properties and close molecular sizes. Metal-organic frameworks (MOFs) are a class of promising adsorbents for light hydrocarbon separations. Among them, the so-called "flexible-robust" MOFs combine the advantages of flexibility and rigidity in structure and could show enhanced gas separation selectivity as well as improved gas uptake at low pressure. Interpenetrated MOFs offer a platform to explore the "flexible-robust" feature of MOFs based on their subnetwork displacement in the process of gas adsorption. Herein, we present two hydrolytically stable MOFs (BUT-308 and BUT-309) with interpenetrated structures and fascinating propyne/propylene separation performance. BUT-308 is composed of interpenetrated 2D Cu(BDC-NH2)BPB layers (H2BDC-NH2 = 2-aminobenzene-1,4-dicarboxylic acid; BPB = 1,4-bis(4-pyridyl)benzene), while BUT-309 consists of twofold interpenetrated 3D pillared-layer Cu2(BDC-NH2)2(BPB-CF3) nets (BPB-CF3 = 2-trifluoromethyl-1,4-bis(4-pyridyl)benzene). Gas adsorption measurements showed that BUT-309 was a "flexible-robust" adsorbent with multistep adsorption isotherms for C3H4 rather than C3H6 at a wide temperature range. The guest-dependent pore-opening behavior endows BUT-309 with high potential in the C3H4/C3H6 separation. The C3H4 adsorption measurements of BUT-309 at 273-323 K showed that the lowering of the temperature induced the pore-opening action at lower pressure. Column breakthrough experiments further confirmed the capability of BUT-309 for the efficient removal of C3H4 from a C3H4/C3H6 binary gas, and the C3H6 processing capacity at 273 K (15.7 cm3 g-1) was higher than that at 298 K (35.2 cm3 g-1). This work shows a rare example of "flexible-robust" MOFs and demonstrated its high potential for C3H4/C3H6 separation.
Collapse
Affiliation(s)
- Ming-Ming Xu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yu-Hui Liu
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xin Zhang
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jia-Ao Lv
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chao Zhao
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Lin-Hua Xie
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Jian-Rong Li
- Beijing Key Laboratory for Green Catalysis and Separation and Department of Environmental Chemical Engineering, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Demakov PA. Properties of Aliphatic Ligand-Based Metal-Organic Frameworks. Polymers (Basel) 2023; 15:2891. [PMID: 37447535 DOI: 10.3390/polym15132891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Ligands with a purely aliphatic backbone are receiving rising attention in the chemistry of coordination polymers and metal-organic frameworks. Such unique features inherent to the aliphatic bridges as increased conformational freedom, non-polarizable core, and low light absorption provide rare and valuable properties for their derived MOFs. Applications of such compounds in stimuli-responsive materials, gas, and vapor adsorbents with high and unusual selectivity, light-emitting, and optical materials have extensively emerged in recent years. These properties, as well as other specific features of aliphatic-based metal-organic frameworks are summarized and analyzed in this short critical review. Advanced characterization techniques, which have been applied in the reported works to obtain important data on the crystal and molecular structures, dynamics, and functionalities, are also reviewed within a general discussion. In total, 132 references are included.
Collapse
Affiliation(s)
- Pavel A Demakov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Akad. Lavrentieva Ave., Novosibirsk 630090, Russia
| |
Collapse
|
5
|
Fatima SF, Sabouni R, Garg R, Gomaa H. Recent advances in Metal-Organic Frameworks as nanocarriers for triggered release of anticancer drugs: Brief history, biomedical applications, challenges and future perspective. Colloids Surf B Biointerfaces 2023; 225:113266. [PMID: 36947901 DOI: 10.1016/j.colsurfb.2023.113266] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/22/2023] [Accepted: 03/12/2023] [Indexed: 03/17/2023]
Abstract
Metal-Organic Frameworks (MOFs) have emerged as a promising biomedical material due to its unique features such as high surface area, pore volume, variable pore size, flexible functional groups, and excellent efficiency for drug loading. In this review, we explored the use of novel and smart metal organic frameworks as drug delivery vehicles to discover a safer and more controlled mode of drug release aiming to minimize their side effects. Here, we systematically discussed the background of MOFs following a thorough review on structural and physical properties of MOFs, their synthesis techniques, and the important characteristics to establish a strong foundation for future research. Furthermore, the current status on the potential applications of MOF-based stimuli-responsive drug delivery systems, including pH-, ion-, temperature-, light-, and multiple responsive systems for the delivery of anticancer drugs has also been presented. Lastly, we discuss the prospects and challenges in implementation of MOF-based materials in the drug delivery. Therefore, this review will help researchers working in the relevant fields to enhance their understanding of MOFs for encapsulation of various drugs as well as their stimuli responsive mechanism.
Collapse
Affiliation(s)
- Syeda Fiza Fatima
- Master of Science in Biomedical Engineering Program, College of Engineering, American University of Sharjah, P.O. BOX 26666, Sharjah, United Arab Emirates
| | - Rana Sabouni
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates.
| | - Renuka Garg
- Department of Chemical and Biological Engineering, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Hassan Gomaa
- Department of Chemical and Biochemical Engineering, Western University, London, Canada
| |
Collapse
|
6
|
Maliuta M, Senkovska I, Thümmler R, Ehrling S, Becker S, Romaka V, Bon V, Evans JD, Kaskel S. Particle size-dependent flexibility in DUT-8(Cu) pillared layer metal-organic framework. Dalton Trans 2023; 52:2816-2824. [PMID: 36752342 DOI: 10.1039/d3dt00085k] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The nature of metal in the isomorphous flexible metal-organic frameworks is often reported to influence flexibility and responsivity. A prominent example of such behaviour is the DUT-8(M) family ([M2(2,6-ndc)2(dabco)]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4-diazabicyclo-[2.2.2]-octane), where the isostructural compounds with Ni, Zn, Co, and Cu in the paddle wheel cluster are known. The macro-sized crystals of Ni, Co, and Zn based compounds transform to the closed pore (cp) phase under desolvation and show typical gate opening behaviour upon adsorption. The choice of metal, in this case, allows the adjustment of switching kinetics, selectivity in adsorption, and gate-opening pressures. The submicron-sized crystals of of Ni, Co, and Zn based compounds remain in the open pore (op) phase after desolvation. In this contribution, we demonstrate that the presence of Cu in the paddle wheel leads to fundamentally different flexible behaviour. The DUT-8(Cu) desolvation does not lead to the formation of the cp phase, independent of the particle size regime. However, according to in situ powder diffraction analysis, the desolvated, macro-sized crystals of DUT-8(Cu)_op show breathing upon adsorption of CO2 at 195 K. The submicron-sized particles show rigid, nonresponsive behaviour.
Collapse
Affiliation(s)
- Mariia Maliuta
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Irena Senkovska
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Ronja Thümmler
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Sebastian Ehrling
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Sophi Becker
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Vitaliy Romaka
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Volodymyr Bon
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Jack D Evans
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| | - Stefan Kaskel
- Chair of Inorganic Chemistry, Technische Universität Dresden, Bergstraße 66, D-01069 Dresden, Germany.
| |
Collapse
|
7
|
Lang F, Singh DCNG, Rao AB, Romer C, Wright JS, Smith R, Adams H, Brammer L. Metal-ligand Lability and Ligand Mobility Enables Framework Transformation via Ligand Release in a Family of Crystalline 2D Coordination Polymers. Chemistry 2022; 28:e202201408. [PMID: 35675317 PMCID: PMC9543667 DOI: 10.1002/chem.202201408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Indexed: 11/13/2022]
Abstract
A family of seven silver(I)-perfluorocarboxylate-quinoxaline coordination polymers, [Ag4 (O2 CRF )4 (quin)4 ] 1-5 (RF =(CF2 )n-1 CF3 )4 , n=1 to 5); [Ag4 (O2 C(CF2 )2 CO2 )2 (quin)4 ] 6; [Ag4 (O2 CC6 F5 )4 (quin)4 ] 7 (quin=quinoxaline), denoted by composition as 4 : 4 : 4 phases, was synthesised from reaction of the corresponding silver(I) perfluorocarboxylate with excess quinoxaline. Compounds 1-7 adopt a common 2D layered structure in which 1D silver-perfluorcarboxylate chains are crosslinked by ditopic quinoxaline ligands. Solid-state reaction upon heating, involving loss of one equivalent of quinoxaline, yielding new crystalline 4 : 4 : 3 phases [Ag4 (O2 C(CF2 )n-1 CF3 )4 (quin)3 ]n (8-10, n=1 to 3), was followed in situ by PXRD and TGA studies. Crystal structures were confirmed by direct syntheses and structure determination. The solid-state reaction converting 4 : 4 : 4 to 4 : 4 : 3 phase materials involves cleavage and formation of Ag-N and Ag-O bonds to enable the structural rearrangement. One of the 4 : 4 : 3 phase coordination polymers (10) shows the remarkably high dielectric constant in the low electric field frequency range.
Collapse
Affiliation(s)
- Feifan Lang
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | | | - Abhishek B. Rao
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Catherine Romer
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - James S. Wright
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
- Current address: Department of ChemistryUniversity of SurreyGuildfordSurreyGU2 7XHUK
| | - Rebecca Smith
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
- Current address: Eos Energy EnterprisesEdisonNJ 08820USA
| | - Harry Adams
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| | - Lee Brammer
- Department of ChemistryUniversity of SheffieldBrook HillSheffieldS3 7HFUK
| |
Collapse
|
8
|
Ghorbani-Choghamarani A, Taherinia Z, Tyula YA. Efficient biodiesel production from oleic and palmitic acid using a novel molybdenum metal-organic framework as efficient and reusable catalyst. Sci Rep 2022; 12:10338. [PMID: 35725895 PMCID: PMC9209509 DOI: 10.1038/s41598-022-14341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, metal-organic framework based on molybdenum and piperidine-4-carboxylic acid, was synthesized through a simple solvothermal method and employed as an effective catalyst for biodiesel production from oleic acid and palmitic acid via esterification reaction. The prepared catalyst was characterized by XRD, FTIR, TGA, DSC, BET, SEM, TEM, ICP-OES, X-ray mapping and EDX analysis. The resulting Mo-MOF catalyst exhibit a rod-like morphology, specific surface area of 56 m2/g, and thermal stability up to 300 °C. The solid catalyst exhibited high activities for esterification of oleic acid and palmitic acid. Moreover, the catalyst could be simply recovered and efficiently reutilized for several times without significant loss in its activity, also obtained results revealed that metal-organic framework could be used for the appropriate and rapid biodiesel production.
Collapse
Affiliation(s)
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
9
|
Zn(II) Coordination Polymer with π-Stacked 4,4’-Bipyridine Dimers: Synthesis, STRUCTURE and Luminescent Properties. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
10
|
Chen X, Xie H, Lorenzo ER, Zeman CJ, Qi Y, Syed ZH, Stone AEBS, Wang Y, Goswami S, Li P, Islamoglu T, Weiss EA, Hupp JT, Schatz GC, Wasielewski MR, Farha OK. Direct Observation of Modulated Radical Spin States in Metal–Organic Frameworks by Controlled Flexibility. J Am Chem Soc 2022; 144:2685-2693. [DOI: 10.1021/jacs.1c11417] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Xiaofeng Chen
- School of Environmental and Geographical Sciences, Shanghai Normal University, Shanghai 200234, China
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Haomiao Xie
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emmaline R. Lorenzo
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Charles J. Zeman
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yue Qi
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Zoha H. Syed
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Aaron E. B. S. Stone
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Yao Wang
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Subhadip Goswami
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Peng Li
- Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Timur Islamoglu
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily A. Weiss
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Joseph T. Hupp
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Michael R. Wasielewski
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Omar K. Farha
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
11
|
Versatile monometallic coordination polymers constructed from 4,4′-thiobis(methylene)bibenzoic acid and 1,10-phenanthroline. Synthesis, structure, magnetic and luminescence properties. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120712] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|