1
|
Husain S, Mutalik C, Yougbaré S, Chen CY, Kuo TR. Plasmonic Au@Ag Core-Shell Nanoisland Film for Photothermal Inactivation and Surface-Enhanced Raman Scattering Detection of Bacteria. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:695. [PMID: 38668189 PMCID: PMC11053632 DOI: 10.3390/nano14080695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/10/2024] [Accepted: 04/15/2024] [Indexed: 04/29/2024]
Abstract
Plasmonic metal nanomaterials have been extensively investigated for their utilizations in biomedical sensing and treatment. In this study, plasmonic Au@Ag core-shell nanoisland films (Au@AgNIFs) were successfully grown onto a glass substrate using a seed-mediated growth procedure. The nanostructure of the Au@AgNIFs was confirmed through scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDX), and atomic force microscopy (AFM). The UV-Vis spectra of the Au@AgNIFs exhibited a broad absorption in the visible range from 300 to 800 nm because of the surface plasmon absorption. Under simulated sunlight exposure, the temperature of optimal Au@AgNIF was increased to be 66.9 °C to meet the requirement for photothermal bacterial eradication. Furthermore, the Au@AgNIFs demonstrated a consistent photothermal effect during the cyclic on/off exposure to light. For photothermal therapy, the Au@AgNIFs revealed superior efficiency in the photothermal eradication of Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus). With their unique nanoisland nanostructure, the Au@AgNIFs exhibited excellent growth efficiency of bacteria in comparison with that of the bare glass substrate. The Au@AgNIFs were also validated as a surface-enhanced Raman scattering (SERS) substrate to amplify the Raman signals of E. coli and S. aureus. By integrating photothermal therapy and SERS detection, the Au@AgNIFs were revealed to be a potential platform for bacterial theranostics.
Collapse
Affiliation(s)
- Sadang Husain
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Physics, Faculty of Mathematics and Natural Science, Lambung Mangkurat University, Banjarmasin 70124, Indonesia
| | - Chinmaya Mutalik
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de La Santé/Direction Régionale du Centre Ouest (IRSS/DRCO), Nanoro BP 218, 11, Burkina Faso;
| | - Chun-You Chen
- Artificial Intelligence Research and Development Center, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Department of Radiation Oncology, Wan Fang Hospital, Taipei Medical University, Taipei 11696, Taiwan
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- Stanford Byers Center for Biodesign, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
2
|
de la Asunción-Nadal V, Perales-Rondon JV, Colina A, Jurado-Sánchez B, Escarpa A. Photoactive Au@MoS 2 Micromotors for Dynamic Surface-Enhanced Raman Spectroscopy Sensing. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54829-54837. [PMID: 37971838 PMCID: PMC10694815 DOI: 10.1021/acsami.3c12895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/24/2023] [Accepted: 11/01/2023] [Indexed: 11/19/2023]
Abstract
Photophoretic Au@MoS2 micromotors are used as smart mobile substrates for dynamic surface-enhanced Raman spectroscopy (SERS) sensing. The photophoretic capabilities and swarming-like propulsion of the micromotors allow for their schooling and accumulation in the measuring spot, increasing the density of SERS-active gold nanoparticles for Raman mapping and, simultaneously, the preconcentration of the target analyte. The generation of "hot-microflake spots" directly in the Raman irradiation point results in a 15-18-fold enhancement in the detection of crystal violet without the requirement for additional external sources for propulsion. Moreover, the reproducible collective micromotor motion does not depend on the exact position of the laser spot concerning individual micromotors, which greatly simplifies the experimental setup, avoiding the requirements of sophisticated equipment. The strategy was further applied for the detection of malachite green and paraquat with a good signal enhancement. The new on-the-move-based SERS strategy holds great promise for on-site detection with portable instrumentation in a myriad of environmental monitoring and clinical applications.
Collapse
Affiliation(s)
- Víctor de la Asunción-Nadal
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain
| | - Juan Victor Perales-Rondon
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain
- Department
of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Alvaro Colina
- Department
of Chemistry, University of Burgos, Pza. Misael Bañuelos s/n, E-09001 Burgos, Spain
| | - Beatriz Jurado-Sánchez
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain
- Chemical
Research Institute “Andres M. del Rio”, Universidad de Alcala, E-28802 Madrid, Spain
| | - Alberto Escarpa
- Department
of Analytical Chemistry, Physical Chemistry, and Chemical Engineering, Universidad de Alcala, Alcala de Henares, E-28802 Madrid, Spain
- Chemical
Research Institute “Andres M. del Rio”, Universidad de Alcala, E-28802 Madrid, Spain
| |
Collapse
|
3
|
Kim M, Ahn HJ, Silalahi VC, Heo D, Adhikari S, Jang Y, Lee J, Lee D. Dual-Dewetting Process for Self-Assembled Nanoparticle Clusters in Wafer Scale. Int J Mol Sci 2023; 24:13102. [PMID: 37685909 PMCID: PMC10488070 DOI: 10.3390/ijms241713102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/08/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
Plasmonic molecules, which are geometrically well-defined plasmonic metal nanoparticle clusters, have attracted significant attention due to their enhancement of light-matter interactions owing to a stronger electric field enhancement than that by single particles. High-resolution lithography techniques provide precise positioning of plasmonic nanoparticles, but their fabrication costs are excessively high. In this study, we propose a lithography-free, self-assembly fabrication method, termed the dual-dewetting process, which allows the control of the size and density of gold nanoparticles. This process involves depositing a gold thin film on a substrate and inducing dewetting through thermal annealing, followed by a second deposition and annealing. The method achieves a uniform distribution of particle size and density, along with increased particle density, across a 6-inch wafer. The superiority of the method is confirmed by a 30-fold increase in the signal intensity of surface-enhanced Raman scattering following the additional dewetting with an 8 nm film, compared to single dewetting alone. Our findings indicate that the dual-dewetting method provides a simple and efficient approach to enable a variety of plasmonic applications through efficient plasmonic molecule large-area fabrication.
Collapse
Affiliation(s)
- Minjun Kim
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Hyun-Ju Ahn
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | | | - Damun Heo
- School of Semiconductor Display Technology, Hallym University, Chuncheon 24252, Republic of Korea
| | - Samir Adhikari
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Yudong Jang
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| | - Jongmin Lee
- School of Semiconductor Display Technology, Hallym University, Chuncheon 24252, Republic of Korea
- Nano Convergence Technology Center, Hallym University, Chuncheon 24252, Republic of Korea
| | - Donghan Lee
- Department of Physics, Chungnam National University, Daejeon 34134, Republic of Korea
- Institute of Quantum Systems (IQS), Chungnam National University, Daejeon 34134, Republic of Korea
| |
Collapse
|
4
|
Lu Y, Lei B, Zhao Q, Yang X, Wei Y, Xiao T, Zhu S, Ouyang Y, Zhang H, Cai W. Solid-State Au Nanocone Arrays Substrate for Reliable SERS Profiling of Serum for Disease Diagnosis. ACS OMEGA 2023; 8:29836-29846. [PMID: 37599935 PMCID: PMC10433333 DOI: 10.1021/acsomega.3c04910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023]
Abstract
Surface-enhanced Raman scattering (SERS) is a widely used rapid and noninvasive method for detecting biological substances in serum samples and is commonly employed in disease screening and diagnosis. Solid-state nanoarray SERS substrates used in serum detection may cause spectral instability due to imperfections in the detection method. For the purpose of identifying optimal detection conditions, various dilution levels of the serum were tested in this study. The study found that a complete and stable serum SERS spectrum can be obtained when the serum is diluted by a factor of 50. The study reports the successful preparation of an Au nanocone array (Au NCA) plasmonic substrate with a uniform, controllable microstructure and high activity, achieved through a combination of PS colloidal sphere template-assisted reactive ion etching (RIE) process and magnetron sputtering deposition technology. Based on this substrate, a standard detection scheme was developed to obtain highly stable and repeatable serum SERS spectra. The study verified the reliability of the optimized serum detection scheme by comparing the SERS spectra of serum samples from healthy individuals and gastric cancer patients, and confirmed the potential benefits of the scheme for disease screening and diagnosis.
Collapse
Affiliation(s)
- Yanyan Lu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Biao Lei
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Qian Zhao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Xiaowei Yang
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Wei
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Tingting Xiao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Shuyi Zhu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yu Ouyang
- Department
of Clinical Laboratory, The Affiliated Taizhou
Second People’s Hospital of Yangzhou University, Taizhou 225300, P. R. China
| | - Hongwen Zhang
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
- Lu’an
Branch, Anhui Institute of Innovation for
Industrial Technology, Lu’an 237100, P. R. China
| | - Weiping Cai
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS,
Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
5
|
Sun N, Zhang C, Wang J, Yue X, Kim HY, Zhang RY, Liu H, Widjaja J, Tang H, Zhang TX, Ye J, Qian A, Liu C, Wu A, Wang K, Johanis M, Yang P, Liu H, Meng M, Liang L, Pei R, Chai-Ho W, Zhu Y, Tseng HR. Hierarchical integration of DNA nanostructures and NanoGold onto a microchip facilitates covalent chemistry-mediated purification of circulating tumor cells in head and neck squamous cell carcinoma. NANO TODAY 2023; 49:101786. [PMID: 38037608 PMCID: PMC10688595 DOI: 10.1016/j.nantod.2023.101786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
It is well-established that the combined use of nanostructured substrates and immunoaffinity agents can enhance the cell-capture performance of the substrates, thus offering a practical solution to effectively capture circulating tumor cells (CTCs) in peripheral blood. Developing along this strategy, this study first demonstrated a top-down approach for the fabrication of tetrahedral DNA nanostructure (TDN)-NanoGold substrates through the hierarchical integration of three functional constituents at various length-scales: a macroscale glass slide, sub-microscale self-organized NanoGold, and nanoscale self-assembled TDN. The TDN-NanoGold substrates were then assembled with microfluidic chaotic mixers to give TDN-NanoGold Click Chips. In conjunction with the use of copper (Cu)-catalyzed azide-alkyne cycloaddition (CuAAC)-mediated CTC capture and restriction enzyme-triggered CTC release, TDN-NanoGold Click Chips allow for effective enumeration and purification of CTCs with intact cell morphologies and preserved molecular integrity. To evaluate the clinical utility of TDN-NanoGold Click Chips, we used these devices to isolate and purify CTCs from patients with human papillomavirus (HPV)-positive (+) head and neck squamous cell carcinoma (HNSCC). The purified HPV(+) HNSCC CTCs were then subjected to RT-ddPCR testing, allowing for detection of E6/E7 oncogenes, the characteristic molecular signatures of HPV(+) HNSCC. We found that the resulting HPV(+) HNSCC CTC counts and E6/E7 transcript copy numbers are correlated with the treatment responses in the patients, suggesting the potential clinical utility of TDN-NanoGold Click Chips for non-invasive diagnostic applications of HPV(+) HNSCC.
Collapse
Affiliation(s)
- Na Sun
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, China
| | - Ceng Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jing Wang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Xinmin Yue
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Hyo Yong Kim
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Ryan Y. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hongtao Liu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong 250014, China
| | - Josephine Widjaja
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hubert Tang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Tiffany X. Zhang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Jinglei Ye
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Audrey Qian
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Chensong Liu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Alex Wu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Katharina Wang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Johanis
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Peng Yang
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Honggang Liu
- Department of Pathology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Meng Meng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology and Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300353, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital and School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
- Guangdong Province Key Laboratory of Molecular Tumor Pathology, Guangzhou 510515, Guangdong Province, China
| | - Renjun Pei
- Key Laboratory for Nano-Bio Interface, Suzhou Institute of Nano-Tech and Nano-Bionics, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Suzhou 215123, China
| | - Wanxing Chai-Ho
- Department of Medicine, Division of Hematology/Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yazhen Zhu
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Hsian-Rong Tseng
- California NanoSystems Institute, Crump Institute for Molecular Imaging, Department of Molecular and Medical Pharmacology, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
6
|
Abu Bakar N, Shapter JG. Silver nanostar films for surface-enhanced Raman spectroscopy (SERS) of the pesticide imidacloprid. Heliyon 2023; 9:e14686. [PMID: 36994401 PMCID: PMC10040700 DOI: 10.1016/j.heliyon.2023.e14686] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/12/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Strategies for synthetic control of anisotropic metal nanostructures have grown in recent years in part due to their great potential for application as surface-enhanced Raman scattering (SERS) sensing substrates. It has been shown that SERS using silver substrates is a powerful tool for identification and qualification of trace chemical analysis on the basis of their unique molecular vibrations. In this work, we synthesized star-shaped silver nanostructures and fabricated SERS substrates to use the SERS enhancement of the Raman signal to detect neonicotinoid pesticides. These silver nanostar substrates were prepared by assembling the nanostar particles on a glass substrate surface using a self-assembly technique with various layers of silver nanostars film. The silver nanostar distribution on the solid substrate surface was found to have good reproducibility, reusability and were a stable SERS substrate giving SERS enhancements for pesticide detection at concentrations as low as 10−6 mg/ml. The distribution of these silver nanostars on the surface allowed excellent reproducibility of the detection with a low relative standard derivation (RSD) of SERS intensity of 8%. This work potentially builds a platform for an ultrasensitive detector where samples can be probed with little to no pre-processing and a range of pollutants can be detected at very low levels.
Collapse
Affiliation(s)
- Norhayati Abu Bakar
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia
- Institute of Microengineering and Nanoelectronic, Universiti Kebangsaan Malaysia, UKM Bangi, 43600, Selangor, Malaysia
- Corresponding author.
| | - Joseph G. Shapter
- Australian Institute for Bioengineering and Nanotechnology, University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia
| |
Collapse
|
7
|
Streletskiy O, Zavidovskiy I, Yakubovsky D, Doroshina N, Syuy A, Lebedinskij Y, Markeev A, Arsenin A, Volkov V, Novikov S. Tailoring of the Distribution of SERS-Active Silver Nanoparticles by Post-Deposition Low-Energy Ion Beam Irradiation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:7721. [PMID: 36363312 PMCID: PMC9659245 DOI: 10.3390/ma15217721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/19/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
The possibility of controlled scalable nanostructuring of surfaces by the formation of the plasmonic nanoparticles is very important for the development of sensors, solar cells, etc. In this work, the formation of the ensembles of silver nanoparticles on silicon and glass substrates by the magnetron deposition technique and the subsequent low-energy Ar+ ion irradiation was studied. The possibility of controlling the sizes, shapes and aerial density of the nanoparticles by the variation of the deposition and irradiation parameters was systematically investigated. Scanning electron microscopy studies of the samples deposited and irradiated in different conditions allowed for analysis of the morphological features of the nanoparticles and the distribution of their sizes and allowed for determination of the optimal parameters for the formation of the plasmonic-active structures. Additionally, the plasmonic properties of the resulting nanoparticles were characterized by means of linear spectroscopy and surface-enhanced Raman spectroscopy. Hereby, in this work, we demonstrate the possibility of the fabrication of silver nanoparticles with a widely varied range of average sizes and aerial density by means of a post-deposition ion irradiation technique to form nanostructured surfaces which can be applied in sensing technologies and surface-enhanced Raman spectroscopy (SERS).
Collapse
Affiliation(s)
- Oleg Streletskiy
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Ilya Zavidovskiy
- Department of Physics, M.V. Lomonosov Moscow State University, Leninskie Gory 1, 119991 Moscow, Russia
| | - Dmitry Yakubovsky
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Natalia Doroshina
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Alexander Syuy
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
- Institute of High Technologies and Advanced Materials, Far Eastern Federal University, 690091 Vladivostok, Russia
| | - Yury Lebedinskij
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Andrey Markeev
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Aleksey Arsenin
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Valentyn Volkov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| | - Sergey Novikov
- Center for Photonics and 2D Materials, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russia
| |
Collapse
|
8
|
Bioprobes-regulated precision biosensing of exosomes: From the nanovesicle surface to the inside. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214538] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
9
|
A microfluidic surface-enhanced Raman scattering (SERS) sensor for microRNA in extracellular vesicles with nucleic acid-tyramine cascade amplification. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.08.047] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Jin C, Wu Z, Molinski JH, Zhou J, Ren Y, Zhang JX. Plasmonic nanosensors for point-of-care biomarker detection. Mater Today Bio 2022; 14:100263. [PMID: 35514435 PMCID: PMC9062760 DOI: 10.1016/j.mtbio.2022.100263] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 01/17/2023] Open
Abstract
Advancement of materials along with their fascinating properties play increasingly important role in facilitating the rapid progress in medicine. An excellent example is the recent development of biosensors based on nanomaterials that induce surface plasmon effect for screening biomarkers of various diseases ranging from cancer to Covid-19. The recent global pandemic re-confirmed the trend of real-time diagnosis in public health to be in point-of-care (POC) settings that can screen interested biomarkers at home, or literally anywhere else, at any time. Plasmonic biosensors, thanks to its versatile designs and extraordinary sensitivities, can be scaled into small and portable devices for POC diagnostic tools. In the meantime, efforts are being made to speed up, simplify and lower the cost of the signal readout process including converting the conventional heavy laboratory instruments into lightweight handheld devices. This article reviews the recent progress on the design of plasmonic nanomaterial-based biosensors for biomarker detection with a perspective of POC applications. After briefly introducing the plasmonic detection working mechanisms and devices, the selected highlights in the field focusing on the technology's design including nanomaterials development, structure assembly, and target applications are presented and analyzed. In parallel, discussions on the sensor's current or potential applicability in POC diagnosis are provided. Finally, challenges and opportunities in plasmonic biosensor for biomarker detection, such as the current Covid-19 pandemic and its testing using plasmonic biosensor and incorporation of machine learning algorithms are discussed.
Collapse
Affiliation(s)
| | | | | | - Junhu Zhou
- Thayer School of Engineering, Dartmouth College, NH, USA
| | - Yundong Ren
- Thayer School of Engineering, Dartmouth College, NH, USA
| | | |
Collapse
|
11
|
Kozik A, Pavlova M, Petrov I, Bychkov V, Kim L, Dorozhko E, Cheng C, Rodriguez RD, Sheremet E. A review of surface-enhanced Raman spectroscopy in pathological processes. Anal Chim Acta 2021; 1187:338978. [PMID: 34753586 DOI: 10.1016/j.aca.2021.338978] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 12/17/2022]
Abstract
With the continuous growth of the human population and new challenges in the quality of life, it is more important than ever to diagnose diseases and pathologies with high accuracy, sensitivity and in different scenarios from medical implants to the operation room. Although conventional methods of diagnosis revolutionized healthcare, alternative analytical methods are making their way out of academic labs into clinics. In this regard, surface-enhanced Raman spectroscopy (SERS) developed immensely with its capability to achieve single-molecule sensitivity and high-specificity in the last two decades, and now it is well on its way to join the arsenal of physicians. This review discusses how SERS is becoming an essential tool for the clinical investigation of pathologies including inflammation, infections, necrosis/apoptosis, hypoxia, and tumors. We critically discuss the strategies reported so far in nanoparticle assembly, functionalization, non-metallic substrates, colloidal solutions and how these techniques improve SERS characteristics during pathology diagnoses like sensitivity, selectivity, and detection limit. Moreover, it is crucial to introduce the most recent developments and future perspectives of SERS as a biomedical analytical method. We finally discuss the challenges that remain as bottlenecks for a routine SERS implementation in the medical room from in vitro to in vivo applications. The review showcases the adaptability and versatility of SERS to resolve pathological processes by covering various experimental and analytical methods and the specific spectral features and analysis results achieved by these methods.
Collapse
Affiliation(s)
- Alexey Kozik
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Marina Pavlova
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia; Siberian Medical State University, Moskovskiy Trakt, 2, Tomsk, 634050, Russia
| | - Ilia Petrov
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Vyacheslav Bychkov
- Tomsk National Research Medical Center of the Russian Academy of Sciences, Cancer Research Institute, 5 Kooperativny Street, Tomsk, 634009, Russia
| | - Larissa Kim
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Elena Dorozhko
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Raul D Rodriguez
- Tomsk Polytechnic University, Lenin Ave, 30, Tomsk, 634050, Russia.
| | | |
Collapse
|
12
|
Tan SH, Yougbaré S, Tao HY, Chang CC, Kuo TR. Plasmonic Gold Nanoisland Film for Bacterial Theranostics. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:3139. [PMID: 34835903 PMCID: PMC8621882 DOI: 10.3390/nano11113139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 11/18/2021] [Indexed: 12/28/2022]
Abstract
Plasmonic nanomaterials have been intensively explored for applications in biomedical detection and therapy for human sustainability. Herein, plasmonic gold nanoisland (NI) film (AuNIF) was fabricated onto a glass substrate by a facile seed-mediated growth approach. The structure of the tortuous gold NIs of the AuNIF was demonstrated by scanning electron microscopy and energy-dispersive X-ray spectroscopy. Based on the ultraviolet-visible spectrum, the AuNIF revealed plasmonic absorption with maximum intensity at 624 nm. With the change to the surface topography created by the NIs, the capture efficiency of Escherichia coli (E. coli) by the AuNIF was significantly increased compared to that of the glass substrate. The AuNIF was applied as a surface-enhanced Raman scattering (SERS) substrate to enhance the Raman signal of E. coli. Moreover, the plasmonic AuNIF exhibited a superior photothermal effect under irradiation with simulated AM1.5 sunlight. For photothermal therapy, the AuNIF also displayed outstanding efficiency in the photothermal killing of E. coli. Using a combination of SERS detection and photothermal therapy, the AuNIF could be a promising platform for bacterial theranostics.
Collapse
Affiliation(s)
- Shih-Hua Tan
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Sibidou Yougbaré
- Institut de Recherche en Sciences de la Santé (IRSS-DRCO)/Nanoro, 03 B.P 7192, Ouagadougou 03, Burkina Faso;
| | - Hsuan-Ya Tao
- School of Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
| | - Che-Chang Chang
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- International Ph.D. Program for Translational Science, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Tsung-Rong Kuo
- Graduate Institute of Nanomedicine and Medical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan;
- International Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
13
|
Guo WJ, Yang XY, Wu Z, Zhang ZL. A colorimetric and electrochemical dual-mode biosensor for thrombin using a magnetic separation technique. J Mater Chem B 2021; 8:3574-3581. [PMID: 31746938 DOI: 10.1039/c9tb02170a] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In general, protein detection relies primarily on enzyme-linked immunosorbent assays. Here, we constructed a colorimetric and electrochemical dual-mode biosensor for thrombin detection based on the mechanism of aptamer recognition. Magnetic nanobeads (MBs) were used as carriers for separation and enrichment to quickly capture thrombin (TB) in the complex matrix. Also, the combination of MBs and the magnetic electrode array (MEA) effectively avoided the poisoning of the electrode by biological samples. Furthermore, hybridization chain reaction (HCR) was indirectly used to achieve amplification of TB. A large number of horseradish peroxidases (HRPs) were coupled with the amplified long nucleic acid fragments. Based on the color and current response of the substrate TMB catalyzed by HRP, a dual-mode detection system for thrombin was established to ensure the accuracy of the test results. The method had a minimum resolution of 10 nM to the naked eye and an electrochemical detection limit as low as 0.35 nM. In addition, the sensor provided good anti-interference ability in a complex matrix and showed great potential to detect TB in complex samples.
Collapse
Affiliation(s)
- Wen-Jing Guo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, P. R. China.
| | | | | | | |
Collapse
|
14
|
Abstract
As one kind of noble metal nanostructures, the plasmonic gold nanostructures possess unique optical properties as well as good biocompatibility, satisfactory stability, and multiplex functionality. These distinctive advantages make the plasmonic gold nanostructures an ideal medium in developing methods for biosensing and bioimaging. In this review, the optical properties of the plasmonic gold nanostructures were firstly introduced, and then biosensing in vitro based on localized surface plasmon resonance, Rayleigh scattering, surface-enhanced fluorescence, and Raman scattering were summarized. Subsequently, application of the plasmonic gold nanostructures for in vivo bioimaging based on scattering, photothermal, and photoacoustic techniques has been also briefly covered. At last, conclusions of the selected examples are presented and an outlook of this research topic is given.
Collapse
|
15
|
|
16
|
Yen HC, Kuo TR, Huang MH, Huang HK, Chen CC. Design of Fluorescence-Enhanced Silver Nanoisland Chips for High-Throughput and Rapid Arsenite Assay. ACS OMEGA 2020; 5:19771-19777. [PMID: 32803072 PMCID: PMC7424703 DOI: 10.1021/acsomega.0c02533] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 07/16/2020] [Indexed: 05/03/2023]
Abstract
High-throughput and rapid arsenite (As(III)) monitoring is an urgent task to deal with the critical threat from As(III) contamination in the environment. In this study, an effective, portable, and sensitive As(III) assay was developed using the plasmonic silver (pAg) chips for As(III) detection. The pAg chips were fabricated by a simple seed-mediated method to grow the silver nanoisland films (Ag-NIFs) with the compact nanoislands and adjustable interisland gaps on the large-sized substrates. With appropriate surface functionalization and optimal chip manufacturing, Cy7.5 fluorescence dye can be immobilized on the surface of Ag-NIFs in the presence of As(III) to output the enhanced fluorescence signals up to 10-fold and improve the detection limit of As(III) less than 10 ppb. According to our results, the high-throughput detection measurements and wide dynamic range over 4 orders of magnitude implied the broad prospects of pAg chips in fluorescence-enhanced assays. The proposed As(III) assay has shown great opportunities for the practical application of ultratrace As(III) monitoring.
Collapse
Affiliation(s)
- Hung-Chi Yen
- Department
of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Tsung-Rong Kuo
- Graduate
Institute of Nanomedicine and Medical Engineering, College of Biomedical
Engineering, Taipei Medical University, Taipei 110, Taiwan
- International
Ph.D. Program in Biomedical Engineering, College of Biomedical Engineering, Taipei Medical University, Taipei 110, Taiwan
| | - Min-Hui Huang
- Department
of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Hao-Kang Huang
- Department
of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| | - Chia-Chun Chen
- Department
of Chemistry, National Taiwan Normal University, Taipei 116, Taiwan
| |
Collapse
|
17
|
Gao X, Wu H, Hao Z, Ji X, Lin X, Wang S, Liu Y. A multifunctional plasmonic chip for bacteria capture, imaging, detection, and in situ elimination for wound therapy. NANOSCALE 2020; 12:6489-6497. [PMID: 32154542 DOI: 10.1039/d0nr00638f] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
A multifunctional plasmonic gold chip has been constructed for early diagnosis and highly effective killing of bacteria, which is critical for human health. The chip features high bacterial capture efficiency, plasmon-enhanced fluorescence (PEF) and surface-enhanced Raman scattering (SERS) and can act as a highly sensitive sensor for dual-mode bacteria imaging and detection (down to 102 CFU mL-1) with good reliability and accuracy. The developed assay can distinguish Gram-positive S. aureus bacteria from Gram-negative E. coli bacteria, providing valuable information for therapy. Importantly, the chip presents excellent photothermal antibacterial activity (98%) and can inactivate both Gram-positive and Gram-negative bacteria in situ. Furthermore, the chip was used to effectively promote the wound healing process in bacteria infected mice in vivo, showing great potential for antibacterial applications.
Collapse
Affiliation(s)
- Xia Gao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Haotian Wu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Zhe Hao
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiangyi Ji
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Xiaodong Lin
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China.
| | - Yaqing Liu
- State Key Laboratory of Food Nutrition and Safety, College of Food Science and Engineering, Tianjin University of Science and Technology, Tianjin 300457, China. and Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
18
|
Zhao Y, Tang P, He X, Xie Y, Cheng W, Xing X, Xing M, Lu X, Liu S, Zhong L. Study on the precise mechanism of Mitoxantrone-induced Jurkat cell apoptosis using surface enhanced Raman scattering. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 228:117718. [PMID: 31818647 DOI: 10.1016/j.saa.2019.117718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 10/09/2019] [Accepted: 10/26/2019] [Indexed: 06/10/2023]
Abstract
Mitoxantrone (MTX), one representative of anthraquinone ring anticancer drugs, reveals excellent anticancer effects in acute leukemia. Though current studies have shown that MTX-induced acute leukemia cell apoptosis is implemented by inserting into DNA, and then leading to DNA breakage and the subsequent transcription termination, but the specific location information of MTX embedded in DNA remains unknown. In this study, combining surface enhanced Raman scattering (SERS) and principal component analysis (PCA), we achieve the biochemical changes of MTX-induced Jurkat cell apoptosis and the location information of MTX embedded in DNA. In contrast, we also present the corresponding result of Daunorubicin (DNR)-induced Jurkat cell apoptosis. It is found that the location of MTX embedded in DNA of Jurkat cell is different from DNR, in which the action site of MTX is mainly implemented by blocking and destroying AT base pairs while DNR is performed by embedding and destroying GC base pairs and then the base A. Clearly, this achieved information is very useful for the designing and modification of anthraquinone ring anticancer drugs.
Collapse
Affiliation(s)
- Yao Zhao
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Ping Tang
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xuanmeng He
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Yue Xie
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China; Brain Academy of South China Normal University, Guangzhou 510631, China
| | - Wendai Cheng
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xinyue Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Meishuang Xing
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Xiaoxu Lu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Shengde Liu
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China
| | - Liyun Zhong
- Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
19
|
Lee JM, Choi EJ, Park J, Devaraj V, Kim C, Han J, Kim WG, Kim K, Kang YC, Kim KH, Oh JW. Improvement of High Affinity and Selectivity on Biosensors Using Genetically Engineered Phage by Binding Isotherm Screening. Viruses 2019; 11:v11030248. [PMID: 30871031 PMCID: PMC6466209 DOI: 10.3390/v11030248] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 03/05/2019] [Accepted: 03/08/2019] [Indexed: 12/27/2022] Open
Abstract
The genetically engineered M13 bacteriophage (M13 phage), developed via directed evolutionary screening process, can improve the sensitivity of sensors because of its selective binding to a target material. Herein, we propose a screening method to develop a selective and sensitive bioreporter for toxic material based on genetically engineered M13 phage. The paraquat (PQ)-binding M13 phage, developed by directed evolution, was used. The binding affinities of the PQ-binding M13 phage to PQ and similar molecules were analyzed using isothermal titration calorimetry (ITC). Based on the isotherms measured by ITC, binding affinities were calculated using the one-site binding model. The binding affinity was 5.161 × 10−7 for PQ, and 3.043 × 10−7 for diquat (DQ). The isotherm and raw ITC data show that the PQ-binding M13 phage does not selectively bind to difenzoquat (DIF). The phage biofilter experiment confirmed the ability of PQ-binding M13 bacteriophage to bind PQ. The surface-enhanced Raman scattering (SERS) platform based on the bioreporter, PQ-binding M13 phage, exhibited 3.7 times the signal intensity as compared with the wild-type-M13-phage-coated platform.
Collapse
Affiliation(s)
- Jong-Min Lee
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
| | - Eun Jung Choi
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
| | - Juyun Park
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Vasanthan Devaraj
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
| | - ChunTae Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
| | - Jiye Han
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
| | - Won-Geun Kim
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
| | - Kyujung Kim
- Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Korea.
| | - Yong-Cheol Kang
- Department of Chemistry, Pukyong National University, Busan 48513, Korea.
| | - Kwang Ho Kim
- School of Materials Science and Engineering, Pusan National University, Busan 46241, Korea.
| | - Jin-Woo Oh
- Research Center for Energy Convergence and Technology, Pusan National University, Busan 46241, Korea.
- Department of Nano Fusion Technology, Pusan National University, Busan 46241, Korea.
- Department of Nanoenergy Engineering, Pusan National University, Busan 46241, Korea.
| |
Collapse
|
20
|
Jiménez-Marín E, Moreno-Valenzuela J, Trejo-Valdez M, Martinez-Rivas A, Vargas-García JR, Torres-Torres C. Laser-induced electrical signal filtering by multilayer reduced graphene oxide decorated with Au nanoparticles. OPTICS EXPRESS 2019; 27:7330-7343. [PMID: 30876298 DOI: 10.1364/oe.27.007330] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Nanoscale plasmonic particles represent a crucial transformation on optical and electronic properties exhibited by advanced materials. Herein are reported remarkable interferometric optical effects with dependence on polarization for filtering or modulating electronic signals in multilayer nanostructures. Metallic nanoparticles were incorporated in randomly distributed networks of reduced graphene oxide by an in-situ vapor-phase deposition method. The polarization-selectable nonlinear optical absorption contribution on the photoconductivity of reduced graphene oxide decorated with gold nanoparticles was analyzed. Nanosecond pulses at 532 nm wavelength were employed in a two-wave mixing experiment to study photoconduction and nonlinear optical absorption in this nanohybrid material. The ablation threshold of the sample was measured in 0.4 J/cm2. Electrochemical impedance spectroscopy measurements revealed a capacitive response that can be enhanced by gold decoration in carbon nanostructures. A strong two-photon absorption process characterized by 5 × 10-7 m/W was identified as a physical mechanism responsible for the nonlinear photoconductive behavior of the nanostructures. Experimental shift of 1 MHz for the cutoff frequency associated with an electrical filter function performed by the sample in film form was demonstrated. Moreover, amplitude modulation of electronic signals controlled by the polarization of a two-wave mixing experiment was proposed. All-optical and optoelectronic nanosystems controlled by multi-photonic interactions in carbon-based materials were discussed. The key role of the vectorial nature of light in two-wave mixing experiments is a fascinating tool for the exploration of low-dimensional systems.
Collapse
|
21
|
Hung TY, Liu JAC, Lee WH, Li JR. Hierarchical Nanoparticle Assemblies Formed via One-Step Catalytic Stamp Pattern Transfer. ACS APPLIED MATERIALS & INTERFACES 2019; 11:4667-4677. [PMID: 30607942 DOI: 10.1021/acsami.8b19807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The one-step catalytic stamp pattern transfer process is described for producing arrays of hierarchical nanoparticle assemblies. The method simply combines in situ nanoparticle synthesis triggered by free residual Si-H groups on PDMS stamps and the lift-off pattern transfer technique. No additional nanoparticle synthesis procedure is required before the pattern transfer process. Exquisitely uniform and precisely spaced hierarchical nanoparticle assemblies with designed geometry can be rapidly produced using the catalytic stamp pattern transfer process. Sequential catalytic stamp pattern transfer also is described to generate multilayered, hierarchical nanoparticle assemblies with various geometries. The hierarchical nanoparticle assemblies catalytically transferred onto the surface are not just nanoparticles but nanoparticle-polydimethylsiloxane residue composites. The in situ-synthesized nanoparticles retain optical properties. The hierarchical nanoparticle assemblies with precisely controlled geometry further show potential in the application of surface-enhanced Raman scattering. The capability of one-step catalytic stamp pattern transfer allows the scalable and reproducible fabrication of well-defined hierarchical nanoparticle assemblies.
Collapse
Affiliation(s)
- Tzu-Yi Hung
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Jessica An-Chieh Liu
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Wen-Hsiu Lee
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| | - Jie-Ren Li
- Department of Chemistry , National Cheng Kung University , No. 1 College Road , Tainan 70101 , Taiwan
| |
Collapse
|
22
|
Theodorou IG, Ruenraroengsak P, Gonzalez-Carter DA, Jiang Q, Yagüe E, Aboagye EO, Coombes RC, Porter AE, Ryan MP, Xie F. Towards multiplexed near-infrared cellular imaging using gold nanostar arrays with tunable fluorescence enhancement. NANOSCALE 2019; 11:2079-2088. [PMID: 30648720 DOI: 10.1039/c8nr09409h] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Sensitive detection of disease biomarkers expressed by human cells is critical to the development of novel diagnostic and therapeutic methods. Here we report that plasmonic arrays based on gold nanostar (AuNS) monolayers enable up to 19-fold fluorescence enhancement for cellular imaging in the near-infrared (NIR) biological window, allowing the application of low quantum yield fluorophores for sensitive cellular imaging. The high fluorescence enhancement together with low autofluorescence interference in this wavelength range enable higher signal-to-noise ratio compared to other diagnostic modalities. Using AuNSs of different geometries and therefore controllable electric field enhancement, cellular imaging with tunable enhancement factors is achieved, which may be useful for the development of multicolour and multiplexed platforms for a panel of biomarkers, allowing to distinguish different subcell populations at the single cell level. Finally, the uptake of AuNSs within HeLa cells and their high biocompatibility, pave the way for novel high-performance in vitro and in vivo diagnostic platforms.
Collapse
Affiliation(s)
- Ioannis G Theodorou
- Department of Materials and London Centre for Nanotechnology, Imperial College London, Exhibition Road, London SW7 2AZ, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Sun Y, Li T. Composition-Tunable Hollow Au/Ag SERS Nanoprobes Coupled with Target-Catalyzed Hairpin Assembly for Triple-Amplification Detection of miRNA. Anal Chem 2018; 90:11614-11621. [PMID: 30175580 DOI: 10.1021/acs.analchem.8b03067] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Detecting disease-related biomarkers is of great significance for disease diagnosis and therapy. In this work, we develop an ultrasensitive surface-enhanced Raman scattering (SERS) biosensor for the detection of an acute myocardial infarction-related miRNA (miR-133a) using composition-adjustable hollow Ag/Au nanosphere-based SERS probes coupled with the target-catalyzed hairpin assembly (CHA) strategy. Bimetallic probes displaying high stability and a strong surface plasmon resonance effect were synthesized with a controllable ratio of silver and gold by a galvanic replacement method and then captured by a duplex linker produced in the CHA process to accomplish signal amplification. In this way, the target miR-133a can be detected in a wide linear range with a detection limit of 0.306 fM and high selectivity over other miRNAs expressed in human hearts. Practical applications in human blood samples reveal the strong anti-interference ability and ideal sensitivity of our developed sensing platform in physiological environments, benefiting its potential biomedical applications.
Collapse
Affiliation(s)
- Yudie Sun
- Department of Chemistry , University of Science & Technology of China , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science & Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
24
|
Guo R, Yin F, Sun Y, Mi L, Shi L, Tian Z, Li T. Ultrasensitive Simultaneous Detection of Multiplex Disease-Related Nucleic Acids Using Double-Enhanced Surface-Enhanced Raman Scattering Nanosensors. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25770-25778. [PMID: 29979030 DOI: 10.1021/acsami.8b06757] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Developing ultrasensitive probes holds great significance for simultaneous detection of multiplexed cancer-associated nucleic acids. Bimetallic nanoparticles containing silver may be exploited as nanoprobes for disease detection, which can produce stable and strong surface-enhanced Raman scattering (SERS) signals. However, it remains extremely challenging that such SERS nanoprobes are directly synthesized. Herein gold-silver nanosnowmen, grown via a DNA-mediated approach and attached to thiol-containing Raman dyes, are successfully synthesized. Stable SERS-enhanced gold substrates are also prepared and used as the enriching containers, where the capture DNAs are tethered to sense the target genes jointly enhanced by the SERS nanoprobes in a sandwich hybridization assay. This means detection of the target gene can obtain a limit of detection close to 0.839 fM. Such double-enhanced SERS nanosensors are further employed to simultaneously detect the three types of prostate carcinoma-related genes with high sensitivity and specificity, which meanwhile exhibit robust capacity of resisting disturbance in practical samples. Simultaneous and multiplexed detection of cancer-related genes may provide further biomedical applications with new opportunity.
Collapse
Affiliation(s)
- Ruiyan Guo
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Fangfei Yin
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Yudie Sun
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lan Mi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lin Shi
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Zhijin Tian
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Tao Li
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|
25
|
Gao X, Li Q, Wang F, Liu X, Liu D. Dual-Responsive Self-Assembled Monolayer for Specific Capture and On-Demand Release of Live Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:8145-8153. [PMID: 29933692 DOI: 10.1021/acs.langmuir.8b00676] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We report a dual-responsive self-assembled monolayer (SAM) on a well-defined rough gold substrate for dynamic capture and release of live cells. By incorporating 5'-triphosphate (ATP) aptamer into a SAM, we can accurately isolate specific cell types and subsequently release captured cells at either population or desired-group (or even single-cell) levels. On one hand, the whole SAMs can be disassembled through addition of ATP solution, leading to the entire release of the captured cells from the supported substrate. On the other hand, desired cells can be selectively released using near-infrared light irradiation, with relatively high spatial and temporal precision. The proposed dual-responsive cell capture-and-release system is biologically friendly and is reusable with another round of modification, showing great usefulness in cancer diagnosis and molecular analysis.
Collapse
Affiliation(s)
- Xia Gao
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| | - Qiang Li
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Fengchao Wang
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Xuehui Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
| | - Dingbin Liu
- College of Chemistry, Research Center for Analytical Sciences, State Key Laboratory of Medicinal Chemical Biology, and Tianjin Key Laboratory of Molecular Recognition and Biosensing , Nankai University , Tianjin 300071 , China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin) , Tianjin 300071 , China
| |
Collapse
|
26
|
Sun Y, Peng P, Guo R, Wang H, Li T. Exonuclease III-boosted cascade reactions for ultrasensitive SERS detection of nucleic acids. Biosens Bioelectron 2017; 104:32-38. [PMID: 29306030 DOI: 10.1016/j.bios.2017.12.047] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 12/18/2017] [Accepted: 12/28/2017] [Indexed: 12/14/2022]
Abstract
A variety of nucleic acid amplification techniques have been integrated into different detection methods to promote the development of sensitive and convenient analysis of nucleic acids. However, it is still in urgent need to develop amplified nucleic acid biosensors for the analysis of susceptible gene and even distinguishing single-base mismatched DNA in complex biological samples. Benefiting from the achieved detection strategies, here we boost isothermal nucleic acid amplification by resorting to enzyme amplification, and combine this two-stage amplification method with surface-enhanced Raman spectroscopy (SERS) to develop a signal-on nucleic acid detection platform. Due to the high cleavage efficiency of Exonuclease III (Exo III), a large amount of trigger DNA are produced to initiate multiple hybridization chain reaction circles. The product structure tagged with Tamra is then anchored onto the plasmonic SERS substrate and meanwhile enriched. It is demonstrated that this detection platform is sensitive toward the myocardial infarction disease related gene. A detection limit of 1 fM for the gene analysis in a linear relationship in the wide range from 1 fM to 10nM is achieved, better than most of previous counterparts. Meanwhile, our developed detection platform exhibits a high selectivity for the target gene over mismatched analogues. Our strategy provides a robust tool for signal amplification of gene detection even in blood samples.
Collapse
Affiliation(s)
- Yudie Sun
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Pai Peng
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Ruiyan Guo
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Huihui Wang
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China
| | - Tao Li
- Department of Chemistry, University of Science & Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
27
|
Zhang J, Zhao Q, Wu Y, Zhang B, Peng W, Piao J, Zhou Y, Gao W, Gong X, Chang J. The construction of a novel nucleic acids detection microplatform based on the NSET for one-step detecting TK1-DNA and microRNA-21. Biosens Bioelectron 2017; 97:26-33. [DOI: 10.1016/j.bios.2017.05.039] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
28
|
Xu DD, Liu C, Li CY, Song CY, Kang YF, Qi CB, Lin Y, Pang DW, Tang HW. Dual Amplification Fluorescence Assay for Alpha Fetal Protein Utilizing Immunohybridization Chain Reaction and Metal-Enhanced Fluorescence of Carbon Nanodots. ACS APPLIED MATERIALS & INTERFACES 2017; 9:37606-37614. [PMID: 28994579 DOI: 10.1021/acsami.7b11659] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
As an emerging fascinating fluorescent nanomaterial, carbon nanodots (CDs) have attracted much attention owing of their unique properties such as small size, antiphotobleaching, and biocompatibility. However, its use in biomedical analysis is limited because of its low quantum yield. Herein, we constructed a dual amplification fluorescence sensor by incorporating immunohybridization chain reaction (immuno-HCR) and metal-enhanced fluorescence (MEF) of CDs for the detection of alpha fetal protein (AFP). The immunoplasmonic slide and detection antibodies-conjugated oligonucleotide initiator are served to capture and probe AFP molecules, respectively. Then, CD-tagged hairpin nucleic acids were introduced to trigger the HCR, in which the hairpin nucleic acid and oligonucleotide initiator are complementary. The interaction between CDs and the gold nanoisland film greatly improves the radiative decay rate, increases the quantum yield, and enhances the fluorescence emission of the CDs. Furthermore, the HCR provides secondary amplification of fluorescence intensity. Therefore, the MEF-capable immunohybridization reactions provide obvious advantages and result in exceptional sensitivity. In addition, the sandwich immunoassay method offers high specificity. The results show a wide linearity between the fluorescence intensity and AFP concentration over 5 orders of magnitude (0.0005-5 ng/mL), and the detection limit reaches as low as 94.3 fg/mL. This method offers advantages of high sensitivity and reliability, wide detection range, and versatile plasmonic chips, thus presenting an alternative for the technologies in biomedical analysis and clinical applications.
Collapse
Affiliation(s)
- Dang-Dang Xu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Cui Liu
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Cheng-Yu Li
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Chong-Yang Song
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Ya-Feng Kang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Chu-Bo Qi
- Hubei Cancer Hospital , Wuhan 430079, People's Republic of China
| | - Yi Lin
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Dai-Wen Pang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| | - Hong-Wu Tang
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University , Wuhan 430072, People's Republic of China
| |
Collapse
|
29
|
Wu Z, Hu J, Zeng T, Zhang ZL, Chen J, Wong G, Qiu X, Liu W, Gao GF, Bi Y, Pang DW. Ultrasensitive Ebola Virus Detection Based on Electroluminescent Nanospheres and Immunomagnetic Separation. Anal Chem 2017; 89:2039-2048. [DOI: 10.1021/acs.analchem.6b04632] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Zhen Wu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jiao Hu
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Tao Zeng
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Zhi-Ling Zhang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| | - Jianjun Chen
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Special Pathogens and Biosafety, Wuhan Institute
of Virology, Chinese Academy of Sciences, Hubei 430071, People’s Republic of China
| | - Gary Wong
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - Xiangguo Qiu
- Special
Pathogens Program, National Microbiology Laboratory, Public Health
Agency of Canada, Department of Medical Microbiology, University of Manitoba, Winnipeg, Manitoba R3E 3R2, Canada
| | - Wenjun Liu
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
| | - George F. Gao
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, People’s Republic of China
| | - Yuhai Bi
- Center
for Influenza Research and Early warning (CASCIRE), Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- CAS
Key Laboratory of Pathogenic Microbiology and Immunology, Institute
of Microbiology, Chinese Academy of Sciences, Beijing 100101, People’s Republic of China
- Shenzhen
Key Laboratory of Pathogen and Immunity, State Key Discipline of Infectious
Disease, Shenzhen Third People’s Hospital, Shenzhen 518112, People’s Republic of China
| | - Dai-Wen Pang
- Key
Laboratory of Analytical Chemistry for Biology and Medicine (Ministry
of Education), College of Chemistry and Molecular Sciences, State
Key Laboratory of Virology, Wuhan University, Wuhan 430072, People’s Republic of China
| |
Collapse
|
30
|
Liu J, Cai J, Chen H, Zhang S, Kong J. A label-free impedimetric cytosensor based on galactosylated gold-nanoisland biointerfaces for the detection of liver cancer cells in whole blood. J Electroanal Chem (Lausanne) 2016. [DOI: 10.1016/j.jelechem.2016.10.042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
31
|
Scaramuzza S, Badocco D, Pastore P, Coral DF, Fernández van Raap MB, Amendola V. Magnetically Assembled SERS Substrates Composed of Iron-Silver Nanoparticles Obtained by Laser Ablation in Liquid. Chemphyschem 2016; 18:1026-1034. [DOI: 10.1002/cphc.201600651] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Indexed: 01/20/2023]
Affiliation(s)
| | - Denis Badocco
- University of Padua; Department of Chemical Sciences; Padua Italy
| | - Paolo Pastore
- University of Padua; Department of Chemical Sciences; Padua Italy
| | - Diego F. Coral
- Physics Institute of La Plata (IFLP-CONICET); Physics Department; Faculty of Exact Sciences; National University of La Plata; La Plata Argentina
| | - Marcela B. Fernández van Raap
- Physics Institute of La Plata (IFLP-CONICET); Physics Department; Faculty of Exact Sciences; National University of La Plata; La Plata Argentina
| | | |
Collapse
|
32
|
Meng Y, Yan X, Wang Y. A simple preparation of Ag@graphene nanocomposites for surface-enhanced Raman spectroscopy of fluorescent anticancer drug. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.03.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|
33
|
Lee I, Park JY, Hong K, Son JH, Kim S, Lee JL. The effect of localized surface plasmon resonance on the emission color change in organic light emitting diodes. NANOSCALE 2016; 8:6463-6467. [PMID: 26934838 DOI: 10.1039/c5nr07438j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Three primary colors, cyan, yellow, and green, are obtained from Ag nano-dot embedded organic light emitting diodes (OLEDs) by localized surface plasmon resonance (LSPR). By changing the thickness of the Ag film, the size and spacing of Ag nano-dots are controlled. The generated light from the emissive layer in the OLEDs interacts with the free electrons near the surface of the Ag nano-dots, which leads to LSPR absorption and scattering. The UV-visible absorption spectra of glass/ITO/Ag nano-dot samples show intense peaks from 430 nm to 520 nm with an increase of Ag nano-dot size. And also, the Rayleigh scattering spectra results show the plasmon resonance wavelength in the range of 470-550 nm. The effect of the LSPR of Ag nano-dots on the change of emission color in OLEDs is demonstrated using 2 dimensional finite-difference time-domain simulations. The intensity of the electro-magnetic field in the sample with 5 nm-thick Ag is low at the incident wavelength of 500 nm, but it increases with the incident wavelength. This provides evidence that the emission color change in OLEDs originates from LSPR at the Ag nano-dots. As a result, the emission peak wavelength of OLEDs shifted toward longer wavelengths, from cyan to yellow-green, with the increase of Ag nano-dot size.
Collapse
Affiliation(s)
- Illhwan Lee
- Department of Material Science and Engineering, POSTECH, Hyojadong, Namgu San 31, Pohang, Kyungbuk, Republic of Korea.
| | - Jae Yong Park
- Department of Material Science and Engineering, POSTECH, Hyojadong, Namgu San 31, Pohang, Kyungbuk, Republic of Korea.
| | - Kihyon Hong
- Department of Material Science and Engineering, POSTECH, Hyojadong, Namgu San 31, Pohang, Kyungbuk, Republic of Korea.
| | - Jun Ho Son
- Department of Bioengineering, UC Berkeley, 442 Stanley Hall, Berkeley, California, USA
| | - Sungjun Kim
- Department of Material Science and Engineering, POSTECH, Hyojadong, Namgu San 31, Pohang, Kyungbuk, Republic of Korea.
| | - Jong-Lam Lee
- Department of Material Science and Engineering, POSTECH, Hyojadong, Namgu San 31, Pohang, Kyungbuk, Republic of Korea.
| |
Collapse
|
34
|
Ilkhani H, Hughes T, Li J, Zhong CJ, Hepel M. Nanostructured SERS-electrochemical biosensors for testing of anticancer drug interactions with DNA. Biosens Bioelectron 2016; 80:257-264. [PMID: 26851584 DOI: 10.1016/j.bios.2016.01.068] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/26/2016] [Accepted: 01/28/2016] [Indexed: 12/31/2022]
Abstract
Widely used anti-cancer treatments involving chemotherapeutic drugs result in cancer cell damage due to their strong interaction with DNA. In this work, we have developed laboratory biosensors for screening chemotherapeutic drugs and to aid in the assessment of DNA modification/damage caused by these drugs. The sensors utilize surface-enhanced Raman scattering (SERS) spectroscopy and electrochemical methods to monitor sensory film modification and observe the drug-DNA reactivity. The self-assembled monolayer protected gold-disk electrode (AuDE) was coated with a reduced graphene oxide (rGO), decorated with plasmonic gold-coated Fe2Ni@Au magnetic nanoparticles functionalized with double-stranded DNA (dsDNA), a sequence of the breast cancer gene BRCA1. The nanobiosensors AuDE/SAM/rGO/Fe2Ni@Au/dsDNA were then subjected to the action of a model chemotherapeutic drug, doxorubicin (DOX), to assess the DNA modification and its dose dependence. The designed novel nanobiosensors offer SERS/electrochemical transduction, enabling chemically specific and highly sensitive analytical signals generation. The SERS measurements have corroborated the DOX intercalation into the DNA duplex whereas the electrochemical scans have indicated that the DNA modification by DOX proceeds in a concentration dependent manner, with limit of detection LOD=8 µg/mL (S/N=3), with semilog linearity over 3 orders of magnitude. These new biosensors are sensitive to agents that interact with DNA and facilitate the analysis of functional groups for determination of the binding mode. The proposed nanobiosensors can be applied in the first stage of the drug development for testing the interactions of new drugs with DNA before the drug efficacy can be assessed in more expensive testing in vitro and in vivo.
Collapse
Affiliation(s)
- Hoda Ilkhani
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Taylor Hughes
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA
| | - Jing Li
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Chuan Jian Zhong
- Department of Chemistry, State University of New York at Binghamton, Binghamton, NY 13902, USA
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam, Potsdam, NY 13676, USA.
| |
Collapse
|
35
|
Pan X, Dong J, Li Y, Sun X, Yuan C, Qian W. The strategy of two-scale interface enrichment for constructing ultrasensitive SERS substrates based on the coffee ring effect of AgNP@β-CD. RSC Adv 2016. [DOI: 10.1039/c6ra01101b] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Herein we introduced a Raman technique for the detection of aromatic compounds. The combination of the pre-concentration of β-CD and the SERS effect of the coffee-ring enhanced the detection ability of SERS to aromatic compounds.
Collapse
Affiliation(s)
- Xiaoyu Pan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Jian Dong
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Yan Li
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Xiang Sun
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Chunwei Yuan
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Weiping Qian
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
36
|
Li MY, Sui M, Pandey P, Zhang QZ, Kunwar S, Salamo GJ, Lee J. Precise control of configuration, size and density of self-assembled Au nanostructures on 4H-SiC (0001) by systematic variation of deposition amount, annealing temperature and duration. CrystEngComm 2016. [DOI: 10.1039/c5ce02439k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hexagonal Au nano-crystals, round dome-shaped droplets and irregular nano-mounds were fabricated on GaN (0001) based on the combinational effects of thermal dewetting and surface free energy minimization.
Collapse
Affiliation(s)
- Ming-Yu Li
- College of Electronics and Information
- Kwangwoon University
- Nowon-gu, South Korea
| | - Mao Sui
- College of Electronics and Information
- Kwangwoon University
- Nowon-gu, South Korea
| | - Puran Pandey
- College of Electronics and Information
- Kwangwoon University
- Nowon-gu, South Korea
| | - Quan-zhen Zhang
- College of Electronics and Information
- Kwangwoon University
- Nowon-gu, South Korea
| | - Sundar Kunwar
- College of Electronics and Information
- Kwangwoon University
- Nowon-gu, South Korea
| | - Gregory. J. Salamo
- Institute of Nanoscale Science and Engineering
- University of Arkansas
- Fayetteville, USA
| | - Jihoon Lee
- College of Electronics and Information
- Kwangwoon University
- Nowon-gu, South Korea
- Institute of Nanoscale Science and Engineering
- University of Arkansas
| |
Collapse
|
37
|
Shi S, Wang L, Su R, Liu B, Huang R, Qi W, He Z. A polydopamine-modified optical fiber SPR biosensor using electroless-plated gold films for immunoassays. Biosens Bioelectron 2015; 74:454-60. [DOI: 10.1016/j.bios.2015.06.080] [Citation(s) in RCA: 103] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Revised: 06/24/2015] [Accepted: 06/30/2015] [Indexed: 11/16/2022]
|
38
|
Malerba M, Alabastri A, Miele E, Zilio P, Patrini M, Bajoni D, Messina GC, Dipalo M, Toma A, Proietti Zaccaria R, De Angelis F. 3D vertical nanostructures for enhanced infrared plasmonics. Sci Rep 2015; 5:16436. [PMID: 26552340 PMCID: PMC4639734 DOI: 10.1038/srep16436] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Accepted: 10/12/2015] [Indexed: 11/09/2022] Open
Abstract
The exploitation of surface plasmon polaritons has been mostly limited to the visible and near infrared range, due to the low frequency limit for coherent plasmon excitation and the reduction of confinement on the metal surface for lower energies. In this work we show that 3D--out of plane--nanostructures can considerably increase the intrinsic quality of the optical output, light confinement and electric field enhancement factors, also in the near and mid-infrared. We suggest that the physical principle relies on the combination of far field and near field interactions between neighboring antennas, promoted by the 3D out-of-plane geometry. We first analyze the changes in the optical behavior, which occur when passing from a single on-plane nanostructure to a 3D out-of-plane configuration. Then we show that by arranging the nanostructures in periodic arrays, 3D architectures can provide, in the mid-IR, a much stronger plasmonic response, compared to that achievable with the use of 2D configurations, leading to higher energy harvesting properties and improved Q-factors, with bright perspective up to the terahertz range.
Collapse
Affiliation(s)
- Mario Malerba
- Istituto Italiano di Tecnologia - Via Morego, 30, I-16163 Genova, Italy
| | | | - Ermanno Miele
- Istituto Italiano di Tecnologia - Via Morego, 30, I-16163 Genova, Italy
| | | | - Maddalena Patrini
- University of Pavia, Physics Department - Via Bassi, 6, I-27100 Pavia, Italy
| | - Daniele Bajoni
- University of Pavia, Department of Industrial and Information Engineering - Via Ferrata, 1, I-27100 Pavia, Italy
| | | | - Michele Dipalo
- Istituto Italiano di Tecnologia - Via Morego, 30, I-16163 Genova, Italy
| | - Andrea Toma
- Istituto Italiano di Tecnologia - Via Morego, 30, I-16163 Genova, Italy
| | | | | |
Collapse
|
39
|
Li J, Skeete Z, Shan S, Yan S, Kurzatkowska K, Zhao W, Ngo QM, Holubovska P, Luo J, Hepel M, Zhong CJ. Surface Enhanced Raman Scattering Detection of Cancer Biomarkers with Bifunctional Nanocomposite Probes. Anal Chem 2015; 87:10698-702. [PMID: 26479337 DOI: 10.1021/acs.analchem.5b03456] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
This report describes new findings of an investigation of a bifunctional nanocomposite probe for the detection of cancer biomarkers, demonstrating the viability of magnetic focusing and SERS detection in a microfluidic platform. The nanocomposite probe consists of a magnetic nickel-iron core and a gold shell. Upon bioconjugation, the nanoprobes are magnetically focused on a specific spot in a microfluidic channel, enabling an enrichment of "hot spots" for surface enhanced Raman scattering detection of the targeted carcinoembryonic antigen. The detection sensitivity, with a limit of detection of ∼0.1 pM, is shown to scale with the magnetic focusing time and the nanoparticle size. The latter is also shown to exhibit an excellent agreement between the experimental data and the theoretical simulation. Implications of the findings to the development of rapid and sensitive microfluidic detection of cancer biomarkers are also discussed.
Collapse
Affiliation(s)
- Jing Li
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Zakiya Skeete
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Shiyao Shan
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Shan Yan
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Katarzyna Kurzatkowska
- Department of Chemistry, State University of New York at Potsdam , Potsdam, New York 13676, United States
| | - Wei Zhao
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Quang Minh Ngo
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Polina Holubovska
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Jin Luo
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| | - Maria Hepel
- Department of Chemistry, State University of New York at Potsdam , Potsdam, New York 13676, United States
| | - Chuan-Jian Zhong
- Department of Chemistry, State University of New York at Binghamton , Binghamton, New York 13902, United States
| |
Collapse
|
40
|
Ma L, Huang Y, Hou M, Xie Z, Zhang Z. Silver Nanorods Wrapped with Ultrathin Al2O3 Layers Exhibiting Excellent SERS Sensitivity and Outstanding SERS Stability. Sci Rep 2015; 5:12890. [PMID: 26264281 PMCID: PMC4533008 DOI: 10.1038/srep12890] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Accepted: 07/14/2015] [Indexed: 11/09/2022] Open
Abstract
Silver nanostructures have been considered as promising substrates for surface-enhanced Raman scattering (SERS) with extremely high sensitivity. The applications, however, are hindered by the facts that their morphology can be easily destroyed due to the low melting points (~100 °C) and their surfaces are readily oxidized/sulfured in air, thus losing the SERS activity. It was found that wrapping Ag nanorods with an ultrathin (~1.5 nm) but dense and amorphous Al2O3 layer by low-temperature atomic layer deposition (ALD) could make the nanorods robust in morphology up to 400 °C, and passivate completely their surfaces to stabilize the SERS activity in air, without decreasing much the SERS sensitivity. This simple strategy holds great potentials to generate highly robust and stable SERS substrates for real applications.
Collapse
Affiliation(s)
- Lingwei Ma
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Yu Huang
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Mengjing Hou
- State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| | - Zheng Xie
- 1] State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China [2] High-Tech Institute of Xi'an, Shannxi 710025, P.R. China
| | - Zhengjun Zhang
- Key Laboratory of Advanced Materials (MOE), School of Materials Science and Engineering, Tsinghua University, Beijing 100084, P.R. China
| |
Collapse
|
41
|
Hong G, Diao S, Antaris AL, Dai H. Carbon Nanomaterials for Biological Imaging and Nanomedicinal Therapy. Chem Rev 2015; 115:10816-906. [PMID: 25997028 DOI: 10.1021/acs.chemrev.5b00008] [Citation(s) in RCA: 826] [Impact Index Per Article: 91.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Guosong Hong
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Shuo Diao
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Alexander L Antaris
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| | - Hongjie Dai
- Department of Chemistry, Stanford University , Stanford, California 94305, United States
| |
Collapse
|
42
|
Lin MC, Gong M, Lu B, Wu Y, Wang DY, Guan M, Angell M, Chen C, Yang J, Hwang BJ, Dai H. An ultrafast rechargeable aluminium-ion battery. Nature 2015; 520:325-8. [DOI: 10.1038/nature14340] [Citation(s) in RCA: 1595] [Impact Index Per Article: 177.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 02/06/2015] [Indexed: 02/03/2023]
|
43
|
Recyclable three-dimensional Ag nanoparticle-decorated TiO2 nanorod arrays for surface-enhanced Raman scattering. Biosens Bioelectron 2014; 64:434-41. [PMID: 25282397 DOI: 10.1016/j.bios.2014.09.053] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2014] [Revised: 09/06/2014] [Accepted: 09/22/2014] [Indexed: 11/22/2022]
Abstract
Multifunctional Ag nanoparticle-decorated TiO2 nanorod arrays were prepared by two simple processes. TiO2 nanorod arrays were first fabricated by the hydrothermal route and then Ag nanoparticles were decorated on the nanorods by the chemical reduction impregnation method. Three-dimensional Ag/TiO2 arrays were used as an active substrate for surface-enhanced Raman scattering (SERS). The results show that the detection limit for rhodamine 6G (R6G) was as low as 10(-7)M and the Raman enhancement factor was as large as 10(5). After calibrating the Raman peak intensities of R6G, it could be quantitatively detected. More importantly, the photocatalytic activity of TiO2 provides a self-cleaning capability to the SERS substrate, which can be recycled and used to degrade many Ag surface adsorbates such as R6G, methyl orange, Congo red, and methylene blue after exposure to visible light. The absorbed small molecules can all be rapidly and completely removed from the SERS substrate, which has been successfully reused four times without a decrease in accuracy or sensitivity. Our results reveal that the unique recyclable property not only paves a new way to solve the single-use problem of traditional SERS substrates but also provides more SERS platforms for multiple detections of other organic molecular species.
Collapse
|
44
|
Liu S, Jiang C, Yang B, Zhang Z, Han M. Controlled depositing of silver nanoparticles on flexible film and its application in ultrasensitive detection. RSC Adv 2014. [DOI: 10.1039/c4ra05735j] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
45
|
Miele E, Malerba M, Dipalo M, Rondanina E, Toma A, De Angelis F. Controlling wetting and self-assembly dynamics by tailored hydrophobic and oleophobic surfaces. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:4179-83. [PMID: 24711259 DOI: 10.1002/adma.201400310] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Revised: 02/18/2014] [Indexed: 05/27/2023]
Abstract
Tailored hydrophobic and oleophobic surfaces are exploited for controlling the wetting behaviour and evaporation process of solution dropped on them. This enables molecules and nano-objects that are dissolved in water or organic solvents to be delivered and arranged in a well-defined 2D layout.
Collapse
Affiliation(s)
- Ermanno Miele
- Istituto Italiano di Tecnologia (IIT), Via Morego 30, 16163, Genova, Italy
| | | | | | | | | | | |
Collapse
|
46
|
Kim SJ, Park J, Jeong Y, Go H, Lee K, Hong S, Seong MJ. Metal-particle-induced enhancement of the photoluminescence from biomolecule-functionalized carbon nanotubes. NANOSCALE RESEARCH LETTERS 2014; 9:85. [PMID: 24548588 PMCID: PMC3931836 DOI: 10.1186/1556-276x-9-85] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 02/07/2014] [Indexed: 06/03/2023]
Abstract
The effect of metal particles on the photoluminescence (PL) and the Raman spectra of functionalized SWCNTs in aqueous solutions was systematically investigated by studying three different metal particles (gold, cobalt, and nickel) on three different SWCNT suspensions (DNA-, RNA-, and sodium deoxycholate salt (DOC)-functionalized SWCNTs). Substantial enhancement of the PL intensities was observed, while the Raman spectra remained unchanged, after gold, cobalt, or nickel particles were introduced into RNA-SWCNT aqueous suspensions. Almost the same results were obtained after the same metal particles were added to DNA-SWCNT aqueous suspensions. However, both the PL and the Raman spectra did not exhibit any change at all after the same metal particles were introduced into DOC-SWCNT aqueous suspensions. The unusual PL enhancements observed in this work cannot be accounted for by the three well-known mechanisms in the literature: surface-enhanced Raman scattering effect, Förster resonance energy transfer in a rebundling of isolated SWCNTs, and pH changes of the aqueous solutions.
Collapse
Affiliation(s)
- Se-Jin Kim
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - June Park
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Yuhyun Jeong
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Hayoung Go
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Kangseok Lee
- Department of Life Science, Chung-Ang University, Seoul 156-756, Republic of Korea
| | - Seunghun Hong
- Department of Physics and Astronomy, Seoul National University, Seoul 156-757, Republic of Korea
| | - Maeng-Je Seong
- Department of Physics, Chung-Ang University, Seoul 156-756, Republic of Korea
| |
Collapse
|
47
|
Zhang B, Yang J, Zou Y, Gong M, Chen H, Hong G, Antaris AL, Li X, Liu CL, Chen C, Dai H. Plasmonic micro-beads for fluorescence enhanced, multiplexed protein detection with flow cytometry. Chem Sci 2014. [DOI: 10.1039/c4sc01206b] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The fluorescence enhancement of small molecule fluorophores was achieved on micro-beads through gold nano-island coating, enabling the detection of low-abundant protein biomarkers.
Collapse
Affiliation(s)
- Bo Zhang
- Department of Chemistry
- Stanford University
- Stanford, USA
| | - Jiang Yang
- Department of Chemistry
- Stanford University
- Stanford, USA
| | - Yingping Zou
- College of Chemistry and Chemical Engineering
- Central South University
- Changsha 410083, China
| | - Ming Gong
- Department of Chemistry
- Stanford University
- Stanford, USA
| | - Hui Chen
- Department of Chemistry
- Stanford University
- Stanford, USA
| | - Guosong Hong
- Department of Chemistry
- Stanford University
- Stanford, USA
| | | | - Xiaoyang Li
- Department of Chemistry
- Stanford University
- Stanford, USA
| | | | - Changxin Chen
- Department of Chemistry
- Stanford University
- Stanford, USA
| | - Hongjie Dai
- Department of Chemistry
- Stanford University
- Stanford, USA
| |
Collapse
|
48
|
Zhang CX, Su L, Chan YF, Wu ZL, Zhao YM, Xu HJ, Sun XM. Ag@SiO2 core-shell nanoparticles on silicon nanowire arrays as ultrasensitive and ultrastable substrates for surface-enhanced Raman scattering. NANOTECHNOLOGY 2013; 24:335501. [PMID: 23881155 DOI: 10.1088/0957-4484/24/33/335501] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Ag nanoparticles (NPs) coated with silica nanolayers were decorated onto a large-scale and uniform silicon nanowire array (SiNWA) by simple chemical etching and metal reduction processes. The three-dimensional Ag/SiNWAs thus formed are employed as a substrate for surface-enhanced Raman scattering (SERS), and a detection limit for rhodamine 6G as low as 10(-16) M and a Raman enhancement factor as large as 10(14) were obtained. Simulation results show that two kinds of inter-Ag-NP nanogaps in three-dimensional geometry create a huge number of SERS 'hot spots' where electromagnetic fields are substantially amplified, contributing to the higher SERS sensitivity and lower detection limit. The excellent SERS stability of Ag/SiNWAs is attributed to the presence of the SiO2 nanolayer around Ag NPs that prevented the Ag NP surface from being oxidized. The calibration of the Raman peak intensities of rhodamine 6G and thiram allowed their quantitative detection. Our finding is a significant advance in developing SERS substrates for the fast and quantitative detection of trace organic molecules.
Collapse
Affiliation(s)
- Chang Xing Zhang
- State Key Laboratory of Chemical Resource Engineering and School of Science, Beijing University of Chemical Technology, Beijing 100029, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
49
|
An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One 2013; 8:e71043. [PMID: 23923050 PMCID: PMC3726620 DOI: 10.1371/journal.pone.0071043] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Accepted: 06/24/2013] [Indexed: 12/19/2022] Open
Abstract
High-throughput screening for interactions of peptides with a variety of antibody targets could greatly facilitate proteomic analysis for epitope mapping, enzyme profiling, drug discovery and biomarker identification. Peptide microarrays are suited for such undertaking because of their high-throughput capability. However, existing peptide microarrays lack the sensitivity needed for detecting low abundance proteins or low affinity peptide-protein interactions. This work presents a new peptide microarray platform constructed on nanostructured plasmonic gold substrates capable of metal enhanced NIR fluorescence enhancement (NIR-FE) by hundreds of folds for screening peptide-antibody interactions with ultrahigh sensitivity. Further, an integrated histone peptide and whole antigen array is developed on the same plasmonic gold chip for profiling human antibodies in the sera of systemic lupus erythematosus (SLE) patients, revealing that collectively a panel of biomarkers against unmodified and post-translationally modified histone peptides and several whole antigens allow more accurate differentiation of SLE patients from healthy individuals than profiling biomarkers against peptides or whole antigens alone.
Collapse
|
50
|
Schwartzkopf M, Buffet A, Körstgens V, Metwalli E, Schlage K, Benecke G, Perlich J, Rawolle M, Rothkirch A, Heidmann B, Herzog G, Müller-Buschbaum P, Röhlsberger R, Gehrke R, Stribeck N, Roth SV. From atoms to layers: in situ gold cluster growth kinetics during sputter deposition. NANOSCALE 2013; 5:5053-5062. [PMID: 23640164 DOI: 10.1039/c3nr34216f] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The adjustment of size-dependent catalytic, electrical and optical properties of gold cluster assemblies is a very significant issue in modern applied nanotechnology. We present a real-time investigation of the growth kinetics of gold nanostructures from small nuclei to a complete gold layer during magnetron sputter deposition with high time resolution by means of in situ microbeam grazing incidence small-angle X-ray scattering (μGISAXS). We specify the four-stage growth including their thresholds with sub-monolayer resolution and identify phase transitions monitored in Yoneda intensity as a material-specific characteristic. An innovative and flexible geometrical model enables the extraction of morphological real space parameters, such as cluster size and shape, correlation distance, layer porosity and surface coverage, directly from reciprocal space scattering data. This approach enables a large variety of future investigations of the influence of different process parameters on the thin metal film morphology. Furthermore, our study allows for deducing the wetting behavior of gold cluster films on solid substrates and provides a better understanding of the growth kinetics in general, which is essential for optimization of manufacturing parameters, saving energy and resources.
Collapse
|