1
|
Oorloff M, Hruby A, Averbukh M, Alcala A, Dutta N, Minor C, Castro Torres T, Moaddeli D, Vega M, Kim J, Bong A, Coakley AJ, Hicks D, Wang J, Wang T, Hoang S, Tharp KM, Garcia G, Higuchi-Sanabria R. Growth on stiffer substrates impacts animal health and longevity in C. elegans. PLoS One 2024; 19:e0302673. [PMID: 39264947 PMCID: PMC11392421 DOI: 10.1371/journal.pone.0302673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/09/2024] [Indexed: 09/14/2024] Open
Abstract
Mechanical stress is a measure of internal resistance exhibited by a body or material when external forces, such as compression, tension, bending, etc. are applied. The study of mechanical stress on health and aging is a continuously growing field, as major changes to the extracellular matrix and cell-to-cell adhesions can result in dramatic changes to tissue stiffness during aging and diseased conditions. For example, during normal aging, many tissues including the ovaries, skin, blood vessels, and heart exhibit increased stiffness, which can result in a significant reduction in function of that organ. As such, numerous model systems have recently emerged to study the impact of mechanical and physical stress on cell and tissue health, including cell-culture conditions with matrigels and other surfaces that alter substrate stiffness and ex vivo tissue models that can apply stress directly to organs like muscle or tendons. Here, we sought to develop a novel method in an in vivo model organism setting to study the impact of altering substrate stiffness on aging by changing the stiffness of solid agar medium used for growth of C. elegans. We found that greater substrate stiffness had limited effects on cellular health, gene expression, organismal health, stress resilience, and longevity. Overall, our study reveals that altering substrate stiffness of growth medium for C. elegans has only mild impact on animal health and longevity; however, these impacts were not nominal and open up important considerations for C. elegans biologists in standardizing agar medium choice for experimental assays.
Collapse
Affiliation(s)
- Maria Oorloff
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Adam Hruby
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Maxim Averbukh
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Athena Alcala
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Naibedya Dutta
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Cray Minor
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Toni Castro Torres
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Darius Moaddeli
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Matthew Vega
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Juri Kim
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Andrew Bong
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Aeowynn J. Coakley
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Daniel Hicks
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Jing Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Tiffany Wang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Sally Hoang
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Kevin M. Tharp
- Cancer Metabolism and Microenvironment Program, Sanford Burnham Prebys, La Jolla, CA, United States of America
| | - Gilberto Garcia
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| | - Ryo Higuchi-Sanabria
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, CA, United States of America
| |
Collapse
|
2
|
Singam A, Bhattacharya C, Park S. Aging-related changes in the mechanical properties of single cells. Heliyon 2024; 10:e32974. [PMID: 38994100 PMCID: PMC11238009 DOI: 10.1016/j.heliyon.2024.e32974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 07/13/2024] Open
Abstract
Mechanical properties, along with biochemical and molecular properties, play crucial roles in governing cellular function and homeostasis. Cellular mechanics are influenced by various factors, including physiological and pathological states, making them potential biomarkers for diseases and aging. While several methods such as AFM, particle-tracking microrheology, optical tweezers/stretching, magnetic tweezers/twisting cytometry, microfluidics, and micropipette aspiration have been widely utilized to measure the mechanical properties of single cells, our understanding of how aging affects these properties remains limited. To fill this knowledge gap, we provide a brief overview of the commonly used methods to measure single-cell mechanical properties. We then delve into the effects of aging on the mechanical properties of different cell types. Finally, we discuss the importance of studying cellular viscous and viscoelastic properties as well as aging induced by different stressors to gain a deeper understanding of the aging process and aging-related diseases.
Collapse
Affiliation(s)
- Amarnath Singam
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Chandrabali Bhattacharya
- Department of Biochemistry, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| | - Seungman Park
- Department of Mechanical Engineering, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
- Interdisciplinary Biomedical Engineering Program, University of Nevada, Las Vegas, Las Vegas, NV, 89154, USA
| |
Collapse
|
3
|
Chapman M, Rajagopal V, Stewart A, Collins DJ. Critical review of single-cell mechanotyping approaches for biomedical applications. LAB ON A CHIP 2024; 24:3036-3063. [PMID: 38804123 DOI: 10.1039/d3lc00978e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Accurate mechanical measurements of cells has the potential to improve diagnostics, therapeutics and advance understanding of disease mechanisms, where high-resolution mechanical information can be measured by deforming individual cells. Here we evaluate recently developed techniques for measuring cell-scale stiffness properties; while many such techniques have been developed, much of the work examining single-cell stiffness is impacted by difficulties in standardization and comparability, giving rise to large variations in reported mechanical moduli. We highlight the role of underlying mechanical theories driving this variability, and note opportunities to develop novel mechanotyping devices and theoretical models that facilitate convenient and accurate mechanical characterisation. Moreover, many high-throughput approaches are confounded by factors including cell size, surface friction, natural population heterogeneity and convolution of elastic and viscous contributions to cell deformability. We nevertheless identify key approaches based on deformability cytometry as a promising direction for further development, where both high-throughput and accurate single-cell resolutions can be realized.
Collapse
Affiliation(s)
- Max Chapman
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Vijay Rajagopal
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
| | - Alastair Stewart
- ARC Centre for Personalised Therapeutics Technologies, The University of Melbourne, Parkville, VIC, Australia
- Department of Biochemistry and Pharmacology, The University of Melbourne, Parkville, VIC, Australia
| | - David J Collins
- Department of Biomedical Engineering, University of Melbourne, Melbourne, Victoria, Australia.
- Graeme Clarke Institute University of Melbourne Parkville, Victoria 3052, Australia
| |
Collapse
|
4
|
Radman BA, Alhameed AMM, Shu G, Yin G, Wang M. Cellular elasticity in cancer: a review of altered biomechanical features. J Mater Chem B 2024; 12:5299-5324. [PMID: 38742281 DOI: 10.1039/d4tb00328d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
A large number of studies have shown that changes in biomechanical characteristics are an important indicator of tumor transformation in normal cells. Elastic deformation is one of the more studied biomechanical features of tumor cells, which plays an important role in tumourigenesis and development. Altered cell elasticity often brings many indications. This manuscript reviews the effects of altered cellular elasticity on cell characteristics, including adhesion viscosity, migration, proliferation, and differentiation elasticity and stiffness. Also, the physical factors that may affect cell elasticity, such as temperature, cell height, cell-viscosity, and aging, are summarized. Then, the effects of cell-matrix, cytoskeleton, in vitro culture medium, and cell-substrate with different three-dimensional structures on cell elasticity during cell tumorigenesis are outlined. Importantly, we summarize the current signaling pathways that may affect cellular elasticity, as well as tests for cellular elastic deformation. Finally, we summarize current hybrid materials: polymer-polymer, protein-protein, and protein-polymer hybrids, also, nano-delivery strategies that target cellular resilience and cases that are at least in clinical phase 1 trials. Overall, the behavior of cancer cell elasticity is modulated by biological, chemical, and physical changes, which in turn have the potential to alter cellular elasticity, and this may be an encouraging prediction for the future discovery of cancer therapies.
Collapse
Affiliation(s)
- Bakeel A Radman
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
- Department of Biology, College of Science and Education, Albaydha University, Yemen
| | | | - Guang Shu
- Department of Histology and Embryology, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
- China-Africa Research Center of Infectious Diseases, School of Basic Medical Sciences, Central South University, Changsha, 410013, China
| | - Gang Yin
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| | - Maonan Wang
- Department of Pathology, Xiangya Hospital, School of Basic Medical Sciences, Central South University, Changsha, China.
| |
Collapse
|
5
|
Jonischkies K, del Angel M, Demiray YE, Loaiza Zambrano A, Stork O. The NDR family of kinases: essential regulators of aging. Front Mol Neurosci 2024; 17:1371086. [PMID: 38803357 PMCID: PMC11129689 DOI: 10.3389/fnmol.2024.1371086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 04/22/2024] [Indexed: 05/29/2024] Open
Abstract
Aging is defined as a progressive decline of cognitive and physiological functions over lifetime. Since the definition of the nine hallmarks of aging in 2013 by López-Otin, numerous studies have attempted to identify the main regulators and contributors in the aging process. One interesting group of proteins whose participation has been implicated in several aging hallmarks are the nuclear DBF2-related (NDR) family of serine-threonine AGC kinases. They are one of the core components of the Hippo signaling pathway and include NDR1, NDR2, LATS1 and LATS2 in mammals, along with its highly conserved metazoan orthologs; Trc in Drosophila melanogaster, SAX-1 in Caenorhabditis elegans, CBK1, DBF20 in Saccharomyces cerevisiae and orb6 in Saccharomyces pombe. These kinases have been independently linked to the regulation of widely diverse cellular processes disrupted during aging such as the cell cycle progression, transcription, intercellular communication, nutrient homeostasis, autophagy, apoptosis, and stem cell differentiation. However, a comprehensive overview of the state-of-the-art knowledge regarding the post-translational modifications of and by NDR kinases in aging has not been conducted. In this review, we summarize the current understanding of the NDR family of kinases, focusing on their relevance to various aging hallmarks, and emphasize the growing body of evidence that suggests NDR kinases are essential regulators of aging across species.
Collapse
Affiliation(s)
- Kevin Jonischkies
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Miguel del Angel
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Yunus Emre Demiray
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Allison Loaiza Zambrano
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
| | - Oliver Stork
- Department of Genetics and Molecular Neurobiology, Institute of Biology, Otto-von-Guericke University Magdeburg, Magdeburg, Germany
- Center for Behavioral Brain Science, Magdeburg, Germany
- Center for Intervention and Research on Adaptive and Maladaptive Brain Circuits Underlying Mental Health (C-I-R-C), Jena-Magdeburg-Halle, Germany
- German Center for Mental Health (DZPG), Jena-Magdeburg-Halle, Germany
| |
Collapse
|
6
|
Morgan GR, Carlyle BC. Interrogation of the human cortical peptidome uncovers cell-type specific signatures of cognitive resilience against Alzheimer's disease. Sci Rep 2024; 14:7161. [PMID: 38531951 DOI: 10.1038/s41598-024-57104-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/14/2024] [Indexed: 03/28/2024] Open
Abstract
Alzheimer's disease (AD) is characterised by age-related cognitive decline. Brain accumulation of amyloid-β plaques and tau tangles is required for a neuropathological AD diagnosis, yet up to one-third of AD-pathology positive community-dwelling elderly adults experience no symptoms of cognitive decline during life. Conversely, some exhibit chronic cognitive impairment in absence of measurable neuropathology, prompting interest into cognitive resilience-retained cognition despite significant neuropathology-and cognitive frailty-impaired cognition despite low neuropathology. Synapse loss is widespread within the AD-dementia, but not AD-resilient, brain. Recent evidence points towards critical roles for synaptic proteins, such as neurosecretory VGF, in cognitive resilience. However, VGF and related proteins often signal as peptide derivatives. Here, nontryptic peptidomic mass spectrometry was performed on 102 post-mortem cortical samples from individuals across cognitive and neuropathological spectra. Neuropeptide signalling proteoforms derived from VGF, somatostatin (SST) and protachykinin-1 (TAC1) showed higher abundance in AD-resilient than AD-dementia brain, whereas signalling proteoforms of cholecystokinin (CCK) and chromogranin (CHG) A/B and multiple cytoskeletal molecules were enriched in frail vs control brain. Integrating our data with publicly available single nuclear RNA sequencing (snRNA-seq) showed enrichment of cognition-related genes in defined cell-types with established links to cognitive resilience, including SST interneurons and excitatory intratelencephalic cells.
Collapse
Affiliation(s)
- G R Morgan
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK
| | - B C Carlyle
- Department of Physiology, Anatomy & Genetics, University of Oxford, Oxford, OX1 3QU, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, OX1 3QU, UK.
| |
Collapse
|
7
|
Walther BK, Sears AP, Mojiri A, Avazmohammadi R, Gu J, Chumakova OV, Pandian NKR, Dominic A, Martiel JL, Yazdani SK, Cooke JP, Ohayon J, Pettigrew RI. Disrupted Stiffness Ratio Alters Nuclear Mechanosensing. MATTER 2023; 6:3608-3630. [PMID: 37937235 PMCID: PMC10627551 DOI: 10.1016/j.matt.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2023]
Abstract
The ability of endothelial cells to sense and respond to dynamic changes in blood flow is critical for vascular homeostasis and cardiovascular health. The mechanical and geometric properties of the nuclear and cytoplasmic compartments affect mechanotransduction. We hypothesized that alterations to these parameters have resulting mechanosensory consequences. Using atomic force microscopy and mathematical modeling, we assessed how the nuclear and cytoplasmic compartment stiffnesses modulate shear stress transfer to the nucleus within aging endothelial cells. Our computational studies revealed that the critical parameter controlling shear transfer is not the individual mechanics of these compartments, but the stiffness ratio between them. Replicatively aged cells had a reduced stiffness ratio, attenuating shear transfer, while the ratio was not altered in a genetic model of accelerated aging. We provide a theoretical framework suggesting that dysregulation of the shear stress response can be uniquely imparted by relative mechanical changes in subcellular compartments.
Collapse
Affiliation(s)
- Brandon K. Walther
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Adam P. Sears
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| | - Anahita Mojiri
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Reza Avazmohammadi
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Texas A&M University, Department of Mechanical Engineering, College Station, TX 77843, USA
| | - Jianhua Gu
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | - Olga V. Chumakova
- University of Texas Health Science Center, Department of Integrative Biology and Pharmacology, Houston, TX 77030, USA
| | | | - Abishai Dominic
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
| | | | - Saami K. Yazdani
- Wake Forest University, Department of Engineering, Winston-Salem, NC 27101, USA
| | - John P. Cooke
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
| | - Jacques Ohayon
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- University Grenoble Alpes, CNRS, TIMC UMR 5525, 38000 Grenoble, France
- Savoie Mont-Blanc University, Polytech Annecy-Chambéry, 73376 Le Bourget du Lac, France
| | - Roderic I. Pettigrew
- Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, TX 77030, USA
- Texas A&M University, Department of Biomedical Engineering, College Station, TX 77843, USA
- Houston Methodist Hospital, Houston, TX 77030, USA
| |
Collapse
|
8
|
Golubev DA, Zemskaya NV, Gorbunova AA, Kukuman DV, Moskalev A, Shaposhnikov MV. Studying the Geroprotective Properties of YAP/TAZ Signaling Inhibitors on Drosophila melanogaster Model. Int J Mol Sci 2023; 24:ijms24066006. [PMID: 36983079 PMCID: PMC10058302 DOI: 10.3390/ijms24066006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/28/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) are the main downstream effectors of the evolutionarily conserved Hippo signaling pathway. YAP/TAZ are implicated in the transcriptional regulation of target genes that are involved in a wide range of key biological processes affecting tissue homeostasis and play dual roles in the aging process, depending on the cellular and tissue context. The aim of the present study was to investigate whether pharmacological inhibitors of Yap/Taz increase the lifespan of Drosophila melanogaster. Real-time qRT-PCR was performed to measure the changes in the expression of Yki (Yorkie, the Drosophila homolog of YAP/TAZ) target genes. We have revealed a lifespan-increasing effect of YAP/TAZ inhibitors that was mostly associated with decreased expression levels of the wg and E2f1 genes. However, further analysis is required to understand the link between the YAP/TAZ pathway and aging.
Collapse
Affiliation(s)
- Denis A Golubev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Nadezhda V Zemskaya
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Anastasia A Gorbunova
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Daria V Kukuman
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Alexey Moskalev
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| | - Mikhail V Shaposhnikov
- Laboratory of Geroprotective and Radioprotective Technologies, Institute of Biology, Komi Science Center, Ural Branch, Russian Academy of Sciences, 167982 Syktyvkar, Russia
| |
Collapse
|
9
|
Makarova N, Kalaparthi V, Seluanov A, Gorbunova V, Dokukin ME, Sokolov I. Correlation of cell mechanics with the resistance to malignant transformation in naked mole rat fibroblasts. NANOSCALE 2022; 14:14594-14602. [PMID: 36155714 PMCID: PMC9731726 DOI: 10.1039/d2nr01633h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Naked mole rats (NMRs) demonstrate exceptional longevity and resistance to cancer. Using a biochemical approach, it was previously shown that the treatment of mouse fibroblast cells with RasV12 oncogene and SV40 Large T antigen (viral oncoprotein) led to malignant transformations of cells. In contrast, NMR fibroblasts were resistant to malignant transformations upon this treatment. Here we demonstrate that atomic force microscopy (AFM) can provide information which is in agreement with the above finding, and further, adds unique information about the physical properties of cells that is impossible to obtain by other existing techniques. AFM indentation data were collected from individual cells and subsequently processed through the brush model to obtain information about the mechanics of the cell body (absolute values of the effective Young's moduli). Furthermore, information about the physical properties of the pericellular layer surrounding the cells was obtained. We found a statistically significant decrease in the rigidity of mouse cells after the treatment, whereas there was no significant change found in the rigidity of NMR cells upon the treatment. We also found that the treatment caused a substantial increase in a long part of the pericellular layer in NMR cells only (the long brush was defined as having a size of >10 microns). The mouse cells and smaller brush did not show statistically significant changes upon treatment. The observed change in cell mechanics is in agreement with the frequently observed decrease in cell rigidity during progression towards cancer. The change in the pericellular layer due to the malignant transformation of fibroblast cells has practically not been studied, though it was shown that the removal of part of the pericellular layer of NMR fibroblasts made the cells susceptible to malignant transformation. Although it is plausible to speculate that the observed increase in the long part of the brush layer of NMR cells might help cells to resist malignant transformations, the significance of the observed change in the pericellular layer is yet to be understood. As of now, we can conclude that changes in cell mechanics might be used as an indication of the resistance of NMR cells to malignant transformations.
Collapse
Affiliation(s)
- Nadezda Makarova
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
| | | | - Andrei Seluanov
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Vera Gorbunova
- Departments of Biology and Medicine, University of Rochester, Rochester, NY, 14627, USA
| | - Maxim E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
- NanoScience Solutions, Inc., Arlington, VA 22203, USA
- Sarov Physics and Technology Institute, MEPhI, Sarov, Russian Federation
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA 02155, USA.
- Department of Biomedical Engineering, Tufts University, Medford, MA 02155, USA
- Department of Physics, Tufts University, Medford, MA 02155, USA
| |
Collapse
|
10
|
Kim YJ, Cho MJ, Yu WD, Kim MJ, Kim SY, Lee JH. Links of Cytoskeletal Integrity with Disease and Aging. Cells 2022; 11:cells11182896. [PMID: 36139471 DOI: 10.3390/cells11182896] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/16/2022] Open
Abstract
Aging is a complex feature and involves loss of multiple functions and nonreversible phenotypes. However, several studies suggest it is possible to protect against aging and promote rejuvenation. Aging is associated with many factors, such as telomere shortening, DNA damage, mitochondrial dysfunction, and loss of homeostasis. The integrity of the cytoskeleton is associated with several cellular functions, such as migration, proliferation, degeneration, and mitochondrial bioenergy production, and chronic disorders, including neuronal degeneration and premature aging. Cytoskeletal integrity is closely related with several functional activities of cells, such as aging, proliferation, degeneration, and mitochondrial bioenergy production. Therefore, regulation of cytoskeletal integrity may be useful to elicit antiaging effects and to treat degenerative diseases, such as dementia. The actin cytoskeleton is dynamic because its assembly and disassembly change depending on the cellular status. Aged cells exhibit loss of cytoskeletal stability and decline in functional activities linked to longevity. Several studies reported that improvement of cytoskeletal stability can recover functional activities. In particular, microtubule stabilizers can be used to treat dementia. Furthermore, studies of the quality of aged oocytes and embryos revealed a relationship between cytoskeletal integrity and mitochondrial activity. This review summarizes the links of cytoskeletal properties with aging and degenerative diseases and how cytoskeletal integrity can be modulated to elicit antiaging and therapeutic effects.
Collapse
Affiliation(s)
- Yu Jin Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Min Jeong Cho
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Won Dong Yu
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| | - Myung Joo Kim
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
| | - Sally Yunsun Kim
- National Heart and Lung Institute, Imperial College London, London SW7 2AZ, UK
| | - Jae Ho Lee
- CHA Fertility Center Seoul Station, Jung-gu, Seoul 04637, Korea
- Department of Biomedical Sciences, College of Life Science, CHA University, Pochen 11160, Korea
| |
Collapse
|
11
|
Suki B, Bates JH, Bartolák-Suki E. Remodeling of the Aged and Emphysematous Lungs: Roles of Microenvironmental Cues. Compr Physiol 2022; 12:3559-3574. [PMID: 35766835 PMCID: PMC11470990 DOI: 10.1002/cphy.c210033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Aging is a slow process that affects all organs, and the lung is no exception. At the alveolar level, aging increases the airspace size with thicker and stiffer septal walls and straighter and thickened collagen and elastic fibers. This creates a microenvironment that interferes with the ability of cells in the parenchyma to maintain normal homeostasis and respond to injury. These changes also make the lung more susceptible to disease such as emphysema. Emphysema is characterized by slow but progressive remodeling of the deep alveolar regions that leads to airspace enlargement and increased but disorganized elastin and collagen deposition. This remodeling has been attributed to ongoing inflammation that involves inflammatory cells and the cytokines they produce. Cellular senescence, another consequence of aging, weakens the ability of cells to properly respond to injury, something that also occurs in emphysema. These factors conspire to make alveolar walls more prone to mechanical failure, which can set emphysema in motion by driving inflammation through immune stimulation by protein fragments. Both aging and emphysema are influenced by microenvironmental conditions such as local inflammation, chemical makeup, tissue stiffness, and mechanical stresses. Although aging and emphysema are not equivalent, they have the potential to influence each other in synergistic ways; aging sets up the conditions for emphysema to develop, while emphysema may accelerate cellular senescence and thus aging itself. This article focuses on the similarities and differences between the remodeled microenvironment of the aging and emphysematous lung, with special emphasis on the alveolar septal wall. © 2022 American Physiological Society. Compr Physiol 12:3559-3574, 2022.
Collapse
Affiliation(s)
- Béla Suki
- Department of Biomedical Engineering, Boston University, Boston, Massachusetts
| | - Jason H.T. Bates
- Depatment of Medicine, University of Vermont Larner College of Medicine, Burlington, Vermont
| | | |
Collapse
|
12
|
Sun W, Gao X, Lei H, Wang W, Cao Y. Biophysical Approaches for Applying and Measuring Biological Forces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105254. [PMID: 34923777 PMCID: PMC8844594 DOI: 10.1002/advs.202105254] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 05/13/2023]
Abstract
Over the past decades, increasing evidence has indicated that mechanical loads can regulate the morphogenesis, proliferation, migration, and apoptosis of living cells. Investigations of how cells sense mechanical stimuli or the mechanotransduction mechanism is an active field of biomaterials and biophysics. Gaining a further understanding of mechanical regulation and depicting the mechanotransduction network inside cells require advanced experimental techniques and new theories. In this review, the fundamental principles of various experimental approaches that have been developed to characterize various types and magnitudes of forces experienced at the cellular and subcellular levels are summarized. The broad applications of these techniques are introduced with an emphasis on the difficulties in implementing these techniques in special biological systems. The advantages and disadvantages of each technique are discussed, which can guide readers to choose the most suitable technique for their questions. A perspective on future directions in this field is also provided. It is anticipated that technical advancement can be a driving force for the development of mechanobiology.
Collapse
Affiliation(s)
- Wenxu Sun
- School of SciencesNantong UniversityNantong226019P. R. China
| | - Xiang Gao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Hai Lei
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| | - Wei Wang
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
| | - Yi Cao
- Key Laboratory of Intelligent Optical Sensing and IntegrationNational Laboratory of Solid State Microstructureand Department of PhysicsCollaborative Innovation Center of Advanced MicrostructuresNanjing UniversityNanjing210023P. R. China
- Institute of Brain ScienceNanjing UniversityNanjing210023P. R. China
- MOE Key Laboratory of High Performance Polymer Materials and TechnologyDepartment of Polymer Science & EngineeringCollege of Chemistry & Chemical EngineeringNanjing UniversityNanjing210023P. R. China
- Chemistry and Biomedicine Innovation CenterNanjing UniversityNanjing210023P. R. China
| |
Collapse
|
13
|
Ferrari S, Pesce M. Stiffness and Aging in Cardiovascular Diseases: The Dangerous Relationship between Force and Senescence. Int J Mol Sci 2021; 22:3404. [PMID: 33810253 PMCID: PMC8037660 DOI: 10.3390/ijms22073404] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 02/07/2023] Open
Abstract
Biological aging is a process associated with a gradual decline in tissues' homeostasis based on the progressive inability of the cells to self-renew. Cellular senescence is one of the hallmarks of the aging process, characterized by an irreversible cell cycle arrest due to reactive oxygen species (ROS) production, telomeres shortening, chronic inflammatory activation, and chromatin modifications. In this review, we will describe the effects of senescence on tissue structure, extracellular matrix (ECM) organization, and nucleus architecture, and see how these changes affect (are affected by) mechano-transduction. In our view, this is essential for a deeper understanding of the progressive pathological evolution of the cardiovascular system and its relationship with the detrimental effects of risk factors, known to act at an epigenetic level.
Collapse
Affiliation(s)
- Silvia Ferrari
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico(IRCCS), 20138 Milan, Italy;
- PhD Program in Translational Medicine, Department of Molecular Medicine, Università degli studi di Pavia, 27100 Pavia, Italy
| | - Maurizio Pesce
- Unità di Ingegneria Tissutale Cardiovascolare, Centro cardiologico Monzino, Istituto di Ricovero e Cura a Carattere Scientifico(IRCCS), 20138 Milan, Italy;
| |
Collapse
|
14
|
Boot RC, Koenderink GH, Boukany PE. Spheroid mechanics and implications for cell invasion. ADVANCES IN PHYSICS: X 2021. [DOI: 10.1080/23746149.2021.1978316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- Ruben C. Boot
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| | - Gijsje H. Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, Delft, The Netherlands
| | - Pouyan E. Boukany
- Department of Chemical Engineering, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
15
|
Jo J, Abdi Nansa S, Kim DH. Molecular Regulators of Cellular Mechanoadaptation at Cell-Material Interfaces. Front Bioeng Biotechnol 2020; 8:608569. [PMID: 33364232 PMCID: PMC7753015 DOI: 10.3389/fbioe.2020.608569] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 11/18/2020] [Indexed: 12/19/2022] Open
Abstract
Diverse essential cellular behaviors are determined by extracellular physical cues that are detected by highly orchestrated subcellular interactions with the extracellular microenvironment. To maintain the reciprocity of cellular responses and mechanical properties of the extracellular matrix, cells utilize a variety of signaling pathways that transduce biophysical stimuli to biochemical reactions. Recent advances in the micromanipulation of individual cells have shown that cellular responses to distinct physical and chemical features of the material are fundamental determinants of cellular mechanosensation and mechanotransduction. In the process of outside-in signal transduction, transmembrane protein integrins facilitate the formation of focal adhesion protein clusters that are connected to the cytoskeletal architecture and anchor the cell to the substrate. The linkers of nucleoskeleton and cytoskeleton molecular complexes, collectively termed LINC, are critical signal transducers that relay biophysical signals between the extranuclear cytoplasmic region and intranuclear nucleoplasmic region. Mechanical signals that involve cytoskeletal remodeling ultimately propagate into the nuclear envelope comprising the nuclear lamina in assistance with various nuclear membrane proteins, where nuclear mechanics play a key role in the subsequent alteration of gene expression and epigenetic modification. These intracellular mechanical signaling cues adjust cellular behaviors directly associated with mechanohomeostasis. Diverse strategies to modulate cell-material interfaces, including alteration of surface rigidity, confinement of cell adhesive region, and changes in surface topology, have been proposed to identify cellular signal transduction at the cellular and subcellular levels. In this review, we will discuss how a diversity of alterations in the physical properties of materials induce distinct cellular responses such as adhesion, migration, proliferation, differentiation, and chromosomal organization. Furthermore, the pathological relevance of misregulated cellular mechanosensation and mechanotransduction in the progression of devastating human diseases, including cardiovascular diseases, cancer, and aging, will be extensively reviewed. Understanding cellular responses to various extracellular forces is expected to provide new insights into how cellular mechanoadaptation is modulated by manipulating the mechanics of extracellular matrix and the application of these materials in clinical aspects.
Collapse
Affiliation(s)
| | | | - Dong-Hwee Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, South Korea
| |
Collapse
|
16
|
Bajpai A, Li R, Chen W. The cellular mechanobiology of aging: from biology to mechanics. Ann N Y Acad Sci 2020; 1491:3-24. [PMID: 33231326 DOI: 10.1111/nyas.14529] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Revised: 10/10/2020] [Accepted: 10/21/2020] [Indexed: 12/14/2022]
Abstract
Aging is a chronic, complicated process that leads to degenerative physical and biological changes in living organisms. Aging is associated with permanent, gradual physiological cellular decay that affects all aspects of cellular mechanobiological features, including cellular cytoskeleton structures, mechanosensitive signaling pathways, and forces in the cell, as well as the cell's ability to sense and adapt to extracellular biomechanical signals in the tissue environment through mechanotransduction. These mechanobiological changes in cells are directly or indirectly responsible for dysfunctions and diseases in various organ systems, including the cardiovascular, musculoskeletal, skin, and immune systems. This review critically examines the role of aging in the progressive decline of the mechanobiology occurring in cells, and establishes mechanistic frameworks to understand the mechanobiological effects of aging on disease progression and to develop new strategies for halting and reversing the aging process. Our review also highlights the recent development of novel bioengineering approaches for studying the key mechanobiological mechanisms in aging.
Collapse
Affiliation(s)
- Apratim Bajpai
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Rui Li
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York
| | - Weiqiang Chen
- Department of Mechanical and Aerospace Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Department of Biomedical Engineering, Tandon School of Engineering, New York University, Brooklyn, New York.,Laura and Isaac Perlmutter Cancer Center, NYU Langone Health, New York, New York
| |
Collapse
|
17
|
Mok S, Al Habyan S, Ledoux C, Lee W, MacDonald KN, McCaffrey L, Moraes C. Mapping cellular-scale internal mechanics in 3D tissues with thermally responsive hydrogel probes. Nat Commun 2020; 11:4757. [PMID: 32958771 PMCID: PMC7505969 DOI: 10.1038/s41467-020-18469-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 08/25/2020] [Indexed: 02/07/2023] Open
Abstract
Local tissue mechanics play a critical role in cell function, but measuring these properties at cellular length scales in living 3D tissues can present considerable challenges. Here we present thermoresponsive, smart material microgels that can be dispersed or injected into tissues and optically assayed to measure residual tissue elasticity after creep over several weeks. We first develop and characterize the sensors, and demonstrate that internal mechanical profiles of live multicellular spheroids can be mapped at high resolutions to reveal broad ranges of rigidity within the tissues, which vary with subtle differences in spheroid aggregation method. We then show that small sites of unexpectedly high rigidity develop in invasive breast cancer spheroids, and in an in vivo mouse model of breast cancer progression. These focal sites of increased intratumoral rigidity suggest new possibilities for how early mechanical cues that drive cancer cells towards invasion might arise within the evolving tumor microenvironment.
Collapse
Affiliation(s)
- Stephanie Mok
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Sara Al Habyan
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 160 Pine Ave W, Montreal, QC, H3A 1A3, Canada
| | - Charles Ledoux
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Wontae Lee
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Katherine N MacDonald
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada
| | - Luke McCaffrey
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 160 Pine Ave W, Montreal, QC, H3A 1A3, Canada
| | - Christopher Moraes
- Department of Chemical Engineering, McGill University, 3610 University Street, Montreal, QC, H3A 0C5, Canada.
- Rosalind and Morris Goodman Cancer Research Centre, McGill University, 160 Pine Ave W, Montreal, QC, H3A 1A3, Canada.
- Department of Biomedical Engineering, McGill University, 3775 University Street, Montreal, QC, H3A 2B4, Canada.
| |
Collapse
|
18
|
Essmann CL, Martinez-Martinez D, Pryor R, Leung KY, Krishnan KB, Lui PP, Greene NDE, Brown AEX, Pawar VM, Srinivasan MA, Cabreiro F. Mechanical properties measured by atomic force microscopy define health biomarkers in ageing C. elegans. Nat Commun 2020; 11:1043. [PMID: 32098962 PMCID: PMC7042263 DOI: 10.1038/s41467-020-14785-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Accepted: 01/31/2020] [Indexed: 12/16/2022] Open
Abstract
Genetic and environmental factors are key drivers regulating organismal lifespan but how these impact healthspan is less well understood. Techniques capturing biomechanical properties of tissues on a nano-scale level are providing new insights into disease mechanisms. Here, we apply Atomic Force Microscopy (AFM) to quantitatively measure the change in biomechanical properties associated with ageing Caenorhabditis elegans in addition to capturing high-resolution topographical images of cuticle senescence. We show that distinct dietary restriction regimes and genetic pathways that increase lifespan lead to radically different healthspan outcomes. Hence, our data support the view that prolonged lifespan does not always coincide with extended healthspan. Importantly, we identify the insulin signalling pathway in C. elegans and interventions altering bacterial physiology as increasing both lifespan and healthspan. Overall, AFM provides a highly sensitive technique to measure organismal biomechanical fitness and delivers an approach to screen for health-improving conditions, an essential step towards healthy ageing.
Collapse
Affiliation(s)
- Clara L Essmann
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK.
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK.
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| | - Daniel Martinez-Martinez
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Rosina Pryor
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Kit-Yi Leung
- UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - Kalaivani Bala Krishnan
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
| | - Prudence Pokway Lui
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK
| | - Nicholas D E Greene
- UCL Great Ormond Street Institute of Child Health, University College London, London, WC1N 1EH, UK
| | - André E X Brown
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Vijay M Pawar
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK
| | - Mandayam A Srinivasan
- Department of Computer Science, University College London, Engineering Building, Malet Place, London, WC1E 7JG, UK
- Department of Mechanical Engineering and Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Filipe Cabreiro
- Institute of Structural and Molecular Biology, University College London and Birkbeck, London, WC1E 6BT, UK.
- MRC London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
19
|
Visser MJ, Pretorius E. Atomic Force Microscopy: The Characterisation of Amyloid Protein Structure in Pathology. Curr Top Med Chem 2020; 19:2958-2973. [DOI: 10.2174/1568026619666191121143240] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 09/24/2019] [Accepted: 09/27/2019] [Indexed: 12/28/2022]
Abstract
:
Proteins are versatile macromolecules that perform a variety of functions and participate in
virtually all cellular processes. The functionality of a protein greatly depends on its structure and alterations
may result in the development of diseases. Most well-known of these are protein misfolding disorders,
which include Alzheimer’s and Parkinson’s diseases as well as type 2 diabetes mellitus, where
soluble proteins transition into insoluble amyloid fibrils. Atomic Force Microscopy (AFM) is capable of
providing a topographical map of the protein and/or its aggregates, as well as probing the nanomechanical
properties of a sample. Moreover, AFM requires relatively simple sample preparation, which presents
the possibility of combining this technique with other research modalities, such as confocal laser
scanning microscopy, Raman spectroscopy and stimulated emission depletion microscopy. In this review,
the basic principles of AFM are discussed, followed by a brief overview of how it has been applied
in biological research. Finally, we focus specifically on its use as a characterisation method to
study protein structure at the nanoscale in pathophysiological conditions, considering both molecules
implicated in disease pathogenesis and the plasma protein fibrinogen. In conclusion, AFM is a userfriendly
tool that supplies multi-parametric data, rendering it a most valuable technique.
Collapse
Affiliation(s)
- Maria J.E. Visser
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| | - Etheresia Pretorius
- Department of Physiological Sciences, Faculty of Science, Stellenbosch University, Stellenbosch, Private Bag X1 Matieland, 7602, South Africa
| |
Collapse
|
20
|
Harris MJ, Wirtz D, Wu PH. Dissecting cellular mechanics: Implications for aging, cancer, and immunity. Semin Cell Dev Biol 2018; 93:16-25. [PMID: 30359779 DOI: 10.1016/j.semcdb.2018.10.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 01/13/2023]
Abstract
Cells are dynamic structures that must respond to complex physical and chemical signals from their surrounding environment. The cytoskeleton is a key mediator of a cell's response to the signals of both the extracellular matrix and other cells present in the local microenvironment and allows it to tune its own mechanical properties in response to these cues. A growing body of evidence suggests that altered cellular viscoelasticity is a strong indicator of disease state; including cancer, laminopathy (genetic disorders of the nuclear lamina), infection, and aging. Here, we review recent work on the characterization of cell mechanics in disease and discuss the implications of altered viscoelasticity in regulation of immune responses. Finally, we provide an overview of techniques for measuring the mechanical properties of cells deeply embedded within tissues.
Collapse
Affiliation(s)
- Michael J Harris
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA
| | - Denis Wirtz
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA; Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA.
| | - Pei-Hsun Wu
- Johns Hopkins Physical Sciences - Oncology Center, The Johns Hopkins University, Baltimore, MD 21218, USA; Department of Chemical and Biomolecular Engineering, The Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
21
|
Sales A, Picart C, Kemkemer R. Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography. Exp Cell Res 2018; 374:1-11. [PMID: 30342990 DOI: 10.1016/j.yexcr.2018.10.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Accepted: 10/15/2018] [Indexed: 01/07/2023]
Abstract
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age-dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Collapse
Affiliation(s)
- Adrià Sales
- Max Planck Institute for Intelligent Systems, Department of New Materials and Biosystems, Heisenbergstrasse 3, 70569 Stuttgart, Germany.
| | - Catherine Picart
- Centre National de la Recherche Scientifique UMR 5628, Laboratoire des Matériaux et du Génie Physique, Institute of Technology, 38016 Grenoble, France
| | - Ralf Kemkemer
- Max Planck Institute for Medical Research, Department of Cellular Biophysics, Heidelberg, Germany; Reutlingen University, 72762 Reutlingen, Germany.
| |
Collapse
|
22
|
Sokolov I, Dokukin ME. AFM Indentation Analysis of Cells to Study Cell Mechanics and Pericellular Coat. Methods Mol Biol 2018; 1814:449-468. [PMID: 29956249 DOI: 10.1007/978-1-4939-8591-3_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Atomic force microscopy (AFM) indentation analysis of cells is a unique method of measuring stiffness of the cell body and physical properties of its pericellular coat. These cell parameters correlate with cells of abnormality and diseases. Viable biological cells can be studied with this method directly in a culture dish with no special preparation. Here we describe a step-by-step method to analyze the AFM force-indentation curves to derive cell mechanics (the modulus of elasticity of the cell body) and the parameters of the pericellular coat (density and the thickness of the coat layer). Technical details, potential difficulties, and points of special attention are described.
Collapse
Affiliation(s)
- Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA.
- Department of Biomedical Engineering, Tufts University, Medford, MA, USA.
- Department of Physics, Tufts University, Medford, MA, USA.
| | - Maxim E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| |
Collapse
|
23
|
Nanoscale compositional mapping of cells, tissues, and polymers with ringing mode of atomic force microscopy. Sci Rep 2017; 7:11828. [PMID: 28928471 PMCID: PMC5605548 DOI: 10.1038/s41598-017-12032-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Accepted: 09/01/2017] [Indexed: 12/20/2022] Open
Abstract
Recently developed sub-resonance tapping modes (such as Digital Pulse, Peak Force Tapping, HybriD, etc.) of atomic force microscopy (AFM) allow imaging of compositional contrast of (bio)materials and biological cells down to the nanoscale. Here we report on a powerful extension of those modes, “ringing” mode, which more than doubles the number of non-trivial physical channels that can be collected with a regular sub-resonance tapping. It can simultaneously record five new additional compositional parameters related to adhesive and viscoelastic properties of the sample surface: the restored (averaged) adhesion, adhesion height, pull-off neck height, detachment distance, and detachment energy losses. Ringing mode can be up to 20 times faster and showing fewer artifacts compared to the existing sub-resonance tapping modes. Ringing mode is based on an analysis of ringing signal of the AFM cantilever after detaching the AFM probe from the sample surface (this signal is currently treated as noise, and typically filtered out in the existing modes). We demonstrate that this new mode allows recording robust and unique information on fixed human epithelial cells, corneocyte skin flakes, and polymers used for bioimplants.
Collapse
|
24
|
Guz NV, Patel SJ, Dokukin ME, Clarkson B, Sokolov I. AFM study shows prominent physical changes in elasticity and pericellular layer in human acute leukemic cells due to inadequate cell-cell communication. NANOTECHNOLOGY 2016; 27:494005. [PMID: 27834315 PMCID: PMC5221648 DOI: 10.1088/0957-4484/27/49/494005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Biomechanical properties of single cells in vitro or ex vivo and their pericellular interfaces have recently attracted a lot of attention as a potential biophysical (and possibly prognostic) marker of various diseases and cell abnormalities. At the same time, the influence of the cell environment on the biomechanical properties of cells is not well studied. Here we use atomic force microscopy to demonstrate that cell-cell communication can have a profound effect on both cell elasticity and its pericellular coat. A human pre-B p190BCR/ABL acute lymphoblastic leukemia cell line (ALL3) was used in this study. Assuming that cell-cell communication is inversely proportional to the distance between cells, we study ALL3 cells in vitro growing at different cell densities. ALL3 cells demonstrate a clear density dependent behavior. These cells grow very well if started at a relatively high cell density (HD, >2 × 105 cells ml-1) and are poised to grow at low cell density (LD, <1 × 104 cells ml-1). Here we observe ∼6× increase in the elastic (Young's) modulus of the cell body and ∼3.6× decrease in the pericellular brush length of LD cells compared to HD ALL3 cells. The difference observed in the elastic modulus is much larger than typically reported for pathologically transformed cells. Thus, cell-cell communication must be taken into account when studying biomechanics of cells, in particular, correlating cell phenotype and its biophysical properties.
Collapse
Affiliation(s)
- Nataliia V Guz
- Department of Chemistry, Clarkson University, 8 Clarkson Avenue, Potsdam, NY 13699-5820, USA
| | | | | | | | | |
Collapse
|
25
|
Quan FS, Kim KS. Medical applications of the intrinsic mechanical properties of single cells. Acta Biochim Biophys Sin (Shanghai) 2016; 48:865-871. [PMID: 27542404 DOI: 10.1093/abbs/gmw081] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 06/21/2016] [Indexed: 11/13/2022] Open
Abstract
The mechanical properties of single cells have been recently identified as the basis of an emerging approach in medical applications because they are closely related to the biological processes of cells and, ultimately, human health conditions. In this article, we provide a brief review of the intrinsic mechanical properties of single cells related to cancer and aging. The mechanical properties can be used as biomarkers for early cancer diagnosis because cancer cells have a lower Young's modulus, indicating higher elasticity or softness than their counterpart normal cells. The metastatic potential of cancer cells is inversely correlated with their elastic properties. Aging induces stiffness through an increased amount of cytoskeletal fiber. Changes in the mechanical properties also show potential for drug screening. Although there are several challenges to be met before clinical applications can be made, such mechanical properties of single cells may provide new approaches to human diseases.
Collapse
Affiliation(s)
- Fu-Shi Quan
- Department of Medical Zoology, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| | - Kyung Sook Kim
- Department of Biomedical Engineering, College of Medicine, Kyung Hee University, Seoul 130-710, Republic of Korea
| |
Collapse
|
26
|
Apte K, Stick R, Radmacher M. Mechanics in human fibroblasts and progeria: Lamin A mutation E145K results in stiffening of nuclei. J Mol Recognit 2016; 30. [PMID: 27677907 DOI: 10.1002/jmr.2580] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2016] [Revised: 08/18/2016] [Accepted: 08/19/2016] [Indexed: 12/12/2022]
Abstract
The lamina is a filamentous meshwork beneath the inner nuclear membrane that confers mechanical stability to nuclei. The E145K mutation in lamin A causes Hutchinson-Gilford progeria syndrome (HGPS). It affects lamin filament assembly and induces profound changes in the nuclear architecture. Expression of wild-type and E145K lamin A in Xenopus oocytes followed by atomic force microscopy (AFM) probing of isolated oocyte nuclei has shown significant changes in the mechanical properties of the lamina. Nuclei of oocytes expressing E145K lamin A are stiffer than those expressing wild-type lamin A. Here we present mechanical measurements by AFM on dermal fibroblasts obtained from a 4-year-old progeria patient bearing the E145K lamin A mutation and compared it to fibroblasts obtained from 2 healthy donors of 10 and 61 years of age, respectively. The abnormal shape of nuclei expressing E145K lamin A was analyzed by fluorescence microscopy. Lamina thickness was measured using electron micrographs. Fluorescence microscopy showed alterations in the actin network of progeria cells. AFM probing of whole dermal fibroblasts did not demonstrate significant differences in the elastic moduli of nuclear and cytoplasmic cell regions. In contrast, AFM measurements of isolated nuclei showed that nuclei of progeria and old person's cells are significantly stiffer than those of the young person, indicating that the process of aging, be it natural or abnormal, increases nuclear stiffness. Our results corroborate AFM data obtained using Xenopus oocyte nuclei and prove that the presence of E145K lamin A abnormally increases nuclear stiffness.
Collapse
Affiliation(s)
- Ketaki Apte
- Department for Cell Biology, University of Bremen, 28359, Bremen, Germany
| | - Reimer Stick
- Department for Cell Biology, University of Bremen, 28359, Bremen, Germany
| | | |
Collapse
|
27
|
Guz NV, Patel SJ, Dokukin ME, Clarkson B, Sokolov I. Biophysical differences between chronic myelogenous leukemic quiescent and proliferating stem/progenitor cells. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:2429-2437. [PMID: 27431055 DOI: 10.1016/j.nano.2016.06.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2016] [Revised: 06/26/2016] [Accepted: 06/29/2016] [Indexed: 11/18/2022]
Abstract
The treatment of chronic myeloid leukemia (CML), a clonal myeloproliferative disorder has improved recently, but most patients have not yet been cured. Some patients develop resistance to the available tyrosine kinase treatments. Persistence of residual quiescent CML stem cells (LSCs) that later resume proliferation is another common cause of recurrence or relapse of CML. Eradication of quiescent LSCs is a promising approach to prevent recurrence of CML. Here we report on new biophysical differences between quiescent and proliferating CD34+ LSCs, and speculate how this information could be of use to eradicate quiescent LSCs. Using AFM measurements on cells collected from four untreated CML patients, substantial differences are observed between quiescent and proliferating cells in the elastic modulus, pericellular brush length and its grafting density at the single cell level. The higher pericellular brush densities of quiescent LSCs are common for all samples. The significance of these observations is discussed.
Collapse
Affiliation(s)
- Nataliia V Guz
- Department of Chemistry, Clarkson University, Potsdam, NY, USA
| | - Sapan J Patel
- Department of Chemistry, Clarkson University, Potsdam, NY, USA; Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Molecular Pharmacology and Chemistry Program, New York, NY
| | - Maxim E Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA
| | - Bayard Clarkson
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, Molecular Pharmacology and Chemistry Program, New York, NY.
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, MA, USA; Department of Biomedical Engineering, Tufts University, Medford, MA, USA; Department of Physics and Astronomy, Tufts University, Medford, MA, USA.
| |
Collapse
|
28
|
LeBlon CE, Casey ME, Fodor CR, Zhang T, Zhang X, Jedlicka SS. Correlation between in vitro expansion-related cell stiffening and differentiation potential of human mesenchymal stem cells. Differentiation 2015; 90:1-15. [PMID: 26381795 DOI: 10.1016/j.diff.2015.08.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/10/2015] [Accepted: 08/20/2015] [Indexed: 12/28/2022]
Abstract
Human mesenchymal stem cells (hMSCs) are an attractive cell source for tissue regeneration, given their self-renewal and multilineage potential. However, they are present in only small percentages in human bone marrow, and are generally propagated in vitro prior to downstream use. Previous work has shown that hMSC propagation can lead to alterations in cell behavior and differentiation potency, yet optimization of differentiation based on starting cell elastic modulus is an area still under investigation. To further advance the knowledge in this field, hMSCs were cultured and routinely passaged on tissue-culture polystyrene to investigate the correlation between cell stiffening and differentiation potency during in vitro aging. Local cell elastic modulus was measured at every passage using atomic force microscopy indentation. At each passage, cells were induced to differentiate down myogenic and osteogenic paths. Cells induced to differentiate, as well as undifferentiated cells were assessed for gene and protein expression using quantitative polymerase chain reaction and immunofluorescent staining, respectively, for osteogenic and myogenic markers. Myogenic and osteogenic cell potential are highly reliant on the elastic modulus of the starting cell population (of undifferentiated cells), and this potential appears to peak when the innate cell elastic modulus is close to that of differentiated tissue. However, the latent expression of the same markers in undifferentiated cells also appears to undergo a correlative relationship with cell elastic modulus, indicating some endogenous effects of cell elastic modulus and gene/protein expression. Overall, this study correlates age-related changes with regards to innate cell stiffening and gene/protein expression in commercial hMSCs, providing some guidance as to maintenance and future use of hMSCs in future tissue engineering applications.
Collapse
Affiliation(s)
- Courtney E LeBlon
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States
| | - Meghan E Casey
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Caitlin R Fodor
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Tony Zhang
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Xiaohui Zhang
- Mechanical Engineering & Mechanics, Packard Laboratory, Lehigh University, 19 Memorial Drive, Bethlehem, PA 18015, United States; Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States
| | - Sabrina S Jedlicka
- Bioengineering Program, Lehigh University, 111 Research Drive, Iacocca Hall, Bethlehem, PA 18015, United States; Materials Science and Engineering, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States; Center for Advanced Materials & Nanotechnology, Whitaker Laboratory, Lehigh University, 5 East Packer Ave., Bethlehem, PA 18015, United States.
| |
Collapse
|
29
|
High-resolution high-speed dynamic mechanical spectroscopy of cells and other soft materials with the help of atomic force microscopy. Sci Rep 2015. [PMID: 26218346 PMCID: PMC4649865 DOI: 10.1038/srep12630] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Dynamic mechanical spectroscopy (DMS), which allows measuring frequency-dependent viscoelastic properties, is important to study soft materials, tissues, biomaterials, polymers. However, the existing DMS techniques (nanoindentation) have limited resolution when used on soft materials, preventing them from being used to study mechanics at the nanoscale. The nanoindenters are not capable of measuring cells, nanointerfaces of composite materials. Here we present a highly accurate DMS modality, which is a combination of three different methods: quantitative nanoindentation (nanoDMA), gentle force and fast response of atomic force microscopy (AFM), and Fourier transform (FT) spectroscopy. This new spectroscopy (which we suggest to call FT-nanoDMA) is fast and sensitive enough to allow DMS imaging of nanointerfaces, single cells, while attaining about 100x improvements on polymers in both spatial (to 10–70 nm) and temporal resolution (to 0.7s/pixel) compared to the current art. Multiple frequencies are measured simultaneously. The use of 10 frequencies are demonstrated here (up to 300 Hz which is a rather relevant range for biological materials and polymers, in both ambient conditions and liquid). The method is quantitatively verified on known polymers and demonstrated on cells and polymers blends. Analysis shows that FT-nanoDMA is highly quantitative. The FT-nanoDMA spectroscopy can easily be implemented in the existing AFMs.
Collapse
|
30
|
Greiner AM, Biela SA, Chen H, Spatz JP, Kemkemer R. Temporal responses of human endothelial and smooth muscle cells exposed to uniaxial cyclic tensile strain. Exp Biol Med (Maywood) 2015; 240:1298-309. [PMID: 25687334 DOI: 10.1177/1535370215570191] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 12/05/2014] [Indexed: 01/23/2023] Open
Abstract
The physiology of vascular cells depends on stimulating mechanical forces caused by pulsatile flow. Thus, mechano-transduction processes and responses of primary human endothelial cells (ECs) and smooth muscle cells (SMCs) have been studied to reveal cell-type specific differences which may contribute to vascular tissue integrity. Here, we investigate the dynamic reorientation response of ECs and SMCs cultured on elastic membranes over a range of stretch frequencies from 0.01 to 1 Hz. ECs and SMCs show different cell shape adaptation responses (reorientation) dependent on the frequency. ECs reveal a specific threshold frequency (0.01 Hz) below which no responses is detectable while the threshold frequency for SMCs could not be determined and is speculated to be above 1 Hz. Interestingly, the reorganization of the actin cytoskeleton and focal adhesions system, as well as changes in the focal adhesion area, can be observed for both cell types and is dependent on the frequency. RhoA and Rac1 activities are increased for ECs but not for SMCs upon application of a uniaxial cyclic tensile strain. Analysis of membrane protrusions revealed that the spatial protrusion activity of ECs and SMCs is independent of the application of a uniaxial cyclic tensile strain of 1 Hz while the total number of protrusions is increased for ECs only. Our study indicates differences in the reorientation response and the reaction times of the two cell types in dependence of the stretching frequency, with matching data for actin cytoskeleton, focal adhesion realignment, RhoA/Rac1 activities, and membrane protrusion activity. These are promising results which may allow cell-type specific activation of vascular cells by frequency-selective mechanical stretching. This specific activation of different vascular cell types might be helpful in improving strategies in regenerative medicine.
Collapse
Affiliation(s)
- Alexandra M Greiner
- Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Sarah A Biela
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany
| | - Hao Chen
- Department of Cell- and Neurobiology, Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Joachim P Spatz
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany Department of Biophysical Chemistry, University of Heidelberg, 69120 Heidelberg, Germany
| | - Ralf Kemkemer
- Department of New Materials and Biosystems, Max Planck Institute for Intelligent Systems, 70569 Stuttgart, Germany Department of Applied Chemistry, Reutlingen University, 72762 Reutlingen, Germany
| |
Collapse
|
31
|
Scheiwe AC, Frank SC, Autenrieth TJ, Bastmeyer M, Wegener M. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds. Biomaterials 2015; 44:186-94. [PMID: 25617137 DOI: 10.1016/j.biomaterials.2014.12.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 12/11/2014] [Accepted: 12/16/2014] [Indexed: 01/21/2023]
Abstract
In vivo, cells are exposed to mechanical forces in many different ways. These forces can strongly influence cell functions or may even lead to diseases. Through their sensing machinery, cells are able to perceive the physical information of the extracellular matrix and translate it into biochemical signals resulting in cellular responses. Here, by virtue of two-component polymer scaffolds made via direct laser writing, we precisely control the cell matrix adhesions regarding their spatial arrangement and size. This leads to highly controlled and uniform cell morphologies, thereby allowing for averaging over the results obtained from several different individual cells, enabling quantitative analysis. We transiently deform these elastic structures by a micromanipulator, which exerts controlled stretching forces on primary fibroblasts grown in these scaffolds on a subcellular level. We find stretch-induced remodeling of both actin cytoskeleton and cell matrix adhesions. The responses to static and periodic stretching are significantly different. The amount of paxillin and phosphorylated focal adhesion kinase increases in cell matrix adhesions at the manipulated pillar after static stretching whereas it decreases after periodic stretching.
Collapse
Affiliation(s)
- Andrea C Scheiwe
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Stephanie C Frank
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Tatjana J Autenrieth
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany
| | - Martin Bastmeyer
- Institute of Functional Interfaces (IFG), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany; Zoological Institute, Department of Cell and Neurobiology, Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
| | - Martin Wegener
- Institute of Applied Physics (APH), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany; DFG-Center for Functional Nanostructures (CFN), and Institute of Nanotechnology (INT), Karlsruhe Institute of Technology (KIT), 76128 Karlsruhe, Germany.
| |
Collapse
|
32
|
Abstract
Aging is a complex, multifaceted process that induces a myriad of physiological changes over an extended period of time. Aging is accompanied by major biochemical and biomechanical changes at macroscopic and microscopic length scales that affect not only tissues and organs but also cells and subcellular organelles. These changes include transcriptional and epigenetic modifications; changes in energy production within mitochondria; and alterations in the overall mechanics of cells, their nuclei, and their surrounding extracellular matrix. In addition, aging influences the ability of cells to sense changes in extracellular-matrix compliance (mechanosensation) and to transduce these changes into biochemical signals (mechanotransduction). Moreover, following a complex positive-feedback loop, aging is accompanied by changes in the composition and structure of the extracellular matrix, resulting in changes in the mechanics of connective tissues in older individuals. Consequently, these progressive dysfunctions facilitate many human pathologies and deficits that are associated with aging, including cardiovascular, musculoskeletal, and neurodegenerative disorders and diseases. Here, we critically review recent work highlighting some of the primary biophysical changes occurring in cells and tissues that accompany the aging process.
Collapse
Affiliation(s)
- Jude M Phillip
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Ivie Aifuwa
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
| | - Jeremy Walston
- Department of Medicine, Division of Geriatric Medicine and Gerontology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21224
| | - Denis Wirtz
- Department of Chemical and Biomolecular Engineering, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Johns Hopkins Physical Sciences-Oncology Center, Institute for Nanobiotechnology, Johns Hopkins University, Baltimore, Maryland, 21218
- Departments of Oncology and Pathology, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| |
Collapse
|
33
|
Hu B, Shi W, Wu YL, Leow WR, Cai P, Li S, Chen X. Orthogonally engineering matrix topography and rigidity to regulate multicellular morphology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2014; 26:5786-5793. [PMID: 25066463 DOI: 10.1002/adma.201402489] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Indexed: 06/03/2023]
Abstract
Programmable polymer substrates, which mimic the variable extracellular matrices in living systems, are used to regulate multicellular morphology, via orthogonally modulating the matrix topography and elasticity. The multicellular morphology is dependent on the competition between cell-matrix adhesion and cell-cell adhesion. Decreasing the cell-matrix adhesion provokes cytoskeleton reorganization, inhibits lamellipodial crawling, and thus enhances the leakiness of multicellular morphology.
Collapse
Affiliation(s)
- Benhui Hu
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | | | | | | | | | | | | |
Collapse
|
34
|
Luo QY, Lin Y, Li Y, Xiong LH, Cui R, Xie ZX, Pang DW. Nanomechanical analysis of yeast cells in CdSe quantum dot biosynthesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2014; 10:699-704. [PMID: 24130060 DOI: 10.1002/smll.201301940] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2013] [Indexed: 05/24/2023]
Abstract
QD biosynthesis affects the mechanical strength of yeast cells. The intracellular synthesis of CdSe QD in yeast cells incubated with Na2 SeO3 and subsequently with CdCl2 increases the glucan content of their cell walls, resulting in their enhanced mechanical strength.
Collapse
Affiliation(s)
- Qing-Ying Luo
- Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences State Key Laboratory of Virology and Wuhan Institute of Biotechnology, Wuhan University, Wuhan, 430072, P. R. China
| | | | | | | | | | | | | |
Collapse
|
35
|
Changes in the stiffness of human mesenchymal stem cells with the progress of cell death as measured by atomic force microscopy. J Biomech 2014; 47:625-30. [DOI: 10.1016/j.jbiomech.2013.12.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 11/25/2013] [Accepted: 12/02/2013] [Indexed: 12/12/2022]
|
36
|
Dokukin M, Guz N, Sokolov I. Quantitative study of the elastic modulus of loosely attached cells in AFM indentation experiments. Biophys J 2013; 104:2123-31. [PMID: 23708352 PMCID: PMC3660635 DOI: 10.1016/j.bpj.2013.04.019] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Revised: 03/31/2013] [Accepted: 04/04/2013] [Indexed: 02/07/2023] Open
Abstract
When measuring the elastic (Young's) modulus of cells using AFM, good attachment of cells to a substrate is paramount. However, many cells cannot be firmly attached to many substrates. A loosely attached cell is more compliant under indenting. It may result in artificially low elastic modulus when analyzed with the elasticity models assuming firm attachment. Here we suggest an AFM-based method/model that can be applied to extract the correct Young's modulus of cells loosely attached to a substrate. The method is verified by using primary breast epithelial cancer cells (MCF-7) at passage 4. At this passage, approximately one-half of cells develop enough adhesion with the substrate to be firmly attached to the substrate. These cells look well spread. The other one-half of cells do not develop sufficient adhesion, and are loosely attached to the substrate. These cells look spherical. When processing the AFM indentation data, a straightforward use of the Hertz model results in a substantial difference of the Young's modulus between these two types of cells. If we use the model presented here, we see no statistical difference between the values of the Young's modulus of both poorly attached (round) and firmly attached (close to flat) cells. In addition, the presented model allows obtaining parameters of the brush surrounding the cells. The cellular brush observed is also statistically identical for both types of cells. The method described here can be applied to study mechanics of many other types of cells loosely attached to substrates, e.g., blood cells, some stem cells, cancerous cells, etc.
Collapse
Affiliation(s)
- Maxim E. Dokukin
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
- Department of Physics, Clarkson University, Potsdam, New York
| | - Nataliia V. Guz
- Department of Physics, Clarkson University, Potsdam, New York
| | - Igor Sokolov
- Department of Mechanical Engineering, Tufts University, Medford, Massachusetts
- Department of Biomedical Engineering, Tufts University, Medford, Massachusetts
- Department of Physics, Clarkson University, Potsdam, New York
- Nanoengineering and Biotechnology Laboratories Center, Clarkson University, Potsdam, New York
| |
Collapse
|
37
|
Chahine NO, Blanchette C, Thomas CB, Lu J, Haudenschild D, Loots GG. Effect of age and cytoskeletal elements on the indentation-dependent mechanical properties of chondrocytes. PLoS One 2013; 8:e61651. [PMID: 23613892 PMCID: PMC3628340 DOI: 10.1371/journal.pone.0061651] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 03/12/2013] [Indexed: 11/18/2022] Open
Abstract
Articular cartilage chondrocytes are responsible for the synthesis, maintenance, and turnover of the extracellular matrix, metabolic processes that contribute to the mechanical properties of these cells. Here, we systematically evaluated the effect of age and cytoskeletal disruptors on the mechanical properties of chondrocytes as a function of deformation. We quantified the indentation-dependent mechanical properties of chondrocytes isolated from neonatal (1-day), adult (5-year) and geriatric (12-year) bovine knees using atomic force microscopy (AFM). We also measured the contribution of the actin and intermediate filaments to the indentation-dependent mechanical properties of chondrocytes. By integrating AFM with confocal fluorescent microscopy, we monitored cytoskeletal and biomechanical deformation in transgenic cells (GFP-vimentin and mCherry-actin) under compression. We found that the elastic modulus of chondrocytes in all age groups decreased with increased indentation (15-2000 nm). The elastic modulus of adult chondrocytes was significantly greater than neonatal cells at indentations greater than 500 nm. Viscoelastic moduli (instantaneous and equilibrium) were comparable in all age groups examined; however, the intrinsic viscosity was lower in geriatric chondrocytes than neonatal. Disrupting the actin or the intermediate filament structures altered the mechanical properties of chondrocytes by decreasing the elastic modulus and viscoelastic properties, resulting in a dramatic loss of indentation-dependent response with treatment. Actin and vimentin cytoskeletal structures were monitored using confocal fluorescent microscopy in transgenic cells treated with disruptors, and both treatments had a profound disruptive effect on the actin filaments. Here we show that disrupting the structure of intermediate filaments indirectly altered the configuration of the actin cytoskeleton. These findings underscore the importance of the cytoskeletal elements in the overall mechanical response of chondrocytes, indicating that intermediate filament integrity is key to the non-linear elastic properties of chondrocytes. This study improves our understanding of the mechanical properties of articular cartilage at the single cell level.
Collapse
Affiliation(s)
- Nadeen O. Chahine
- The Feinstein Institute for Medical Research, Hofstra North Shore LIJ School of Medicine, Manhasset, New York, United States of America
| | - Craig Blanchette
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Cynthia B. Thomas
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
| | - Jeffrey Lu
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Dominik Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California Davis Medical Center, Sacramento, California, United States of America
| | - Gabriela G. Loots
- Lawrence Livermore National Laboratory, Physical and Life Sciences Directorate, Biosciences and Biotechnology Division, Livermore, California, United States of America
- School of Natural Sciences, University of California Merced, Merced, California, United States of America
| |
Collapse
|
38
|
Association between collagen production and mechanical stretching in dermal extracellular matrix: In vivo effect of cross-linked hyaluronic acid filler. A randomised, placebo-controlled study. J Dermatol Sci 2013; 69:187-94. [DOI: 10.1016/j.jdermsci.2012.12.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2012] [Revised: 12/18/2012] [Accepted: 12/26/2012] [Indexed: 01/18/2023]
|