1
|
Wang H, Huang G. Extraction, purification, structural modification, activities and application of polysaccharides from different parts of mulberry. Food Funct 2024; 15:3939-3958. [PMID: 38536669 DOI: 10.1039/d3fo05747j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
The mulberry plant is a member of the Moraceae family and belongs to the Morus genus. Its entire body is a treasure, with mulberries, mulberry leaves, and mulberry branches all suitable for medicinal use. The main active ingredient in mulberries is mulberry polysaccharide. Studies have shown that polysaccharides from different parts of mulberry exhibit antioxidant, antidiabetic, antibacterial, anti-inflammatory, and blood pressure-lowering properties. There are more studies on the biological activities, extraction methods, and structural characterization of polysaccharides from different parts of mulberry. However, the structural characterization of mulberry polysaccharides is mostly confined to the types and proportions of monosaccharides and the molecular weights of polysaccharides, and there are fewer systematic studies on polysaccharides from different parts of mulberry. In order to better understand the bioactive structure of mulberry polysaccharides, this article discusses the recent research progress in the extraction, separation, purification, bioactivity, structural modification, and application of polysaccharides from different parts of mulberry (mulberry leaves, mulberry fruits, and mulberry branches). It also delves into the pharmacological mechanisms of action of mulberry polysaccharides to provide a theoretical basis for further research on mulberry polysaccharides with a view to their deeper application in the fields of feed and nutraceuticals.
Collapse
Affiliation(s)
- Huilin Wang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| | - Gangliang Huang
- Key Laboratory of Carbohydrate Science and Engineering, Chongqing Key Laboratory of Inorganic Functional Materials, Chongqing Normal University, Chongqing 401331, China.
| |
Collapse
|
2
|
Application of Plant Polysaccharide Nanoparticles as Polymeric Carrier Materials for the Construction of Medicine Carriers. J CLUST SCI 2022. [DOI: 10.1007/s10876-022-02393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
3
|
Zhai LM, Zhao Y, Xiao RL, Zhang SQ, Tian BH, Li XX, Zhang R, Ma RS, Liang HX. Nuclear-targeted carbon quantum dot mediated CRISPR/Cas9 delivery for fluorescence visualization and efficient editing. NANOSCALE 2022; 14:14645-14660. [PMID: 36165075 DOI: 10.1039/d2nr04281a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Nuclear targeted delivery has great potential in improving the efficiency of non-viral carrier mediated genome editing. However, direct and efficient delivery of CRISPR/Cas9 plasmid into the nucleus remains a challenge. In this study, a nuclear targeted gene delivery platform based on fluorescent carbon quantum dots (CQDs) was developed. Polyethylenimine (PEI) and polyethylene glycol (PEG) synergistically passivated the surface of CQDs, providing an excitation-independent green-emitting fluorescent CQDs-PEI-PEG conjugate (CQDs-PP) with an ultra-small size and positive surface charge. Here we show that CQDs-PP could bind CRISPR/Cas9 plasmid to form a nano-complex by electrostatic attraction, which can bypass lysosomes and enter the nucleus by passive diffusion, and thereby improve the transfection efficiency. Also, CQDs-PP could deliver CRISPR/Cas9 plasmid into HeLa cells, resulting in the insertion/deletion mutation of the target EFHD1 gene. More importantly, CQDs-PP exhibited a considerably higher gene editing efficiency as well as comparable or lower cytotoxicity relative to Lipo2000 and PEI-passivated CQDs-PEI (CQDs-P). Thus, the nuclear-targeted CQDs-PP is expected to constitute an efficient CRISPR/Cas9 delivery carrier in vitro with imaging-trackable ability.
Collapse
Affiliation(s)
- Li-Min Zhai
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
- School of Life Science, South China Normal University, Guangzhou 510631, China
| | - Yan Zhao
- College of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Rui-Lin Xiao
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Shi-Quan Zhang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Bao-Hua Tian
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Xin-Xin Li
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Rong Zhang
- Shanxi Eye Hospital Affiliated to Shanxi Medical University, Taiyuan, 030002, China
| | - Ri-Sheng Ma
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
| | - Hai-Xia Liang
- College of Biomedical Engineering, Taiyuan University of Technology, Jinzhong, 030600, China.
- School of Ecology, Taiyuan University of Technology, Taiyuan, 030024, China
| |
Collapse
|
4
|
Hasanzadeh A, Radmanesh F, Hosseini ES, Hashemzadeh I, Kiani J, Naseri M, Nourizadeh H, Fatahi Y, Azar BKY, Marani BG, Beyzavi A, Mahabadi VP, Karimi M. Synthesis and characterization of vitamin D 3-functionalized carbon dots for CRISPR/Cas9 delivery. Nanomedicine (Lond) 2021; 16:1673-1690. [PMID: 34291668 DOI: 10.2217/nnm-2021-0038] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Aim: To develop a novel nanovector for the delivery of genetic fragments and CRISPR/Cas9 systems in particular. Materials & methods: Vitamin D3-functionalized carbon dots (D/CDs) fabricated using one-step microwave-aided methods were characterized by different microscopic and spectroscopic techniques. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and flow cytometry were employed to determine the cell viability and transfection efficiency. Results: D/CDs transfected CRISPR plasmid in various cell lines with high efficiency while maintaining their remarkable efficacy at high serum concentration and low plasmid doses. They also showed great potential for the green fluorescent protein disruption by delivering two different types of CRISPR/Cas9 systems. Conclusion: Given their high efficiency and safety, D/CDs provide a versatile gene-delivery vector for clinical applications.
Collapse
Affiliation(s)
- Akbar Hasanzadeh
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Fatemeh Radmanesh
- Uro-Oncology Research Center, Tehran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Cell Engineering, Cell Science Research Center, Royan Institute for Stem Cell Biology & Technology, ACECR, Tehran, 1665659911, Iran
| | - Elaheh Sadat Hosseini
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Iman Hashemzadeh
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Jafar Kiani
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Marzieh Naseri
- Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Helena Nourizadeh
- Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Yousef Fatahi
- Nanotechnology Research Centre, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.,Department of Pharmaceutical Nanotechnology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.,Universal Scientific Education & Research Network (USERN), Tehran, 1417755331, Iran
| | - Behjat Kheiri Yeghaneh Azar
- Department of Molecular Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Student Research Committee, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Behnaz Golnari Marani
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran
| | - Ali Beyzavi
- Department of Mechanical Engineering, Boston University, Boston, MA 02215, USA
| | - Vahid Pirhajati Mahabadi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Neuroscience research center, Iran University of medical sciences, Tehran, 1449614535, Iran
| | - Mahdi Karimi
- Cellular & Molecular Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Advanced Nanobiotechnology & Nanomedicine Research Group (ANNRG), Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Oncopathology Research Center, Iran University of Medical Sciences, Tehran, 1449614535, Iran.,Research Center for Science & Technology in Medicine, Tehran University of Medical Sciences, Tehran, 1417613151, Iran.,Applied Biotechnology Research Centre, Tehran Medical Science, Islamic Azad University, Tehran, 1916893813, Iran
| |
Collapse
|
5
|
Yang L, Xue S, Du M, Lian F. Highly Efficient MicroRNA Delivery Using Functionalized Carbon Dots for Enhanced Conversion of Fibroblasts to Cardiomyocytes. Int J Nanomedicine 2021; 16:3741-3754. [PMID: 34113099 PMCID: PMC8186278 DOI: 10.2147/ijn.s304873] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 05/01/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction The reprogramming of induced cardiomyocytes (iCMs) is of particular significance in regenerative medicine; however, it remains a great challenge to fabricate an efficient and safe gene delivery system to induce reprogramming of iCMs for therapeutic applications in heart injury. Here, we report branched polyethyleneimine (BP) coated nitrogen-enriched carbon dots (BP-NCDs) as highly efficient nanocarriers loaded with microRNAs-combo (BP-NCDs/MC) for cardiac reprogramming. Methods The BP-NCDs nanocarriers were prepared and characterized by several analytical techniques. Results The BP-NCDs nanocarriers showed good microRNAs-combo binding affinity, negligible cytotoxicity, and long-term microRNAs expression. Importantly, BP-NCDs/MC nanocomplexes led to the efficient direct reprogramming of fibroblasts into iCMs without genomic integration and resulting in effective recovery of cardiac function after myocardial infarction (MI). Conclusion This study offers a novel strategy to provide safe and effective microRNAs-delivery nanoplatforms based on carbon dots for promising cardiac regeneration and disease therapy.
Collapse
Affiliation(s)
- Lei Yang
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Song Xue
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Mingjun Du
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| | - Feng Lian
- Department of Cardiovascular Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, People's Republic of China
| |
Collapse
|
6
|
Reddy R, Jiang Q, Aramwit P, Reddy N. Litter to Leaf: The Unexplored Potential of Silk Byproducts. Trends Biotechnol 2020; 39:706-718. [PMID: 33279278 DOI: 10.1016/j.tibtech.2020.11.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 10/29/2020] [Accepted: 11/03/2020] [Indexed: 12/12/2022]
Abstract
Silk has remained the most preferred protein fiber since its discovery in 3000 BC. However, the cost, availability, and resources required to rear the silkworms and process silk are imposing considerable constraints on the future of silk. It is often unrealized that apart from the fibers, production and processing of silk are a source for a diverse range of sustainable, biodegradable, and biocompatible polymers. Hence, delineating itself from being the primary source of protein fibers for millenniums, the silk industry worldwide is transitioning into a biobased industry and as a source for pharmaceuticals, biomaterials, cosmetics, food, and energy. Toward this, byproducts (BPs) and co-products (CPs) that are inevitably generated are now being considered to be of immense economic value and could be up to 10 times more valuable than the silk fibers. Here, we elucidate the properties and potential applications of silk BPs and CPs to present the true potential of silkworms and to promote the establishment of silkworm-based bioeconomy and biorefineries.
Collapse
Affiliation(s)
- Roopa Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560082, Karnataka, India
| | - Qiuran Jiang
- Key Laboratory of Textile Science & Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai 201620, China; College of Textiles, Donghua University, Shanghai 201620, China
| | - Pornanong Aramwit
- Department of Pharmacy Practice, Faculty of Pharmaceutical Sciences and Center of Excellence in Bioactive Resources for Innovative Clinical Applications, Chulalongkorn University, Bangkok, Thailand 10330; The Academy of Science, The Royal Society of Thailand, Dusit, Bangkok, Thailand 10330
| | - Narendra Reddy
- Center for Incubation, Innovation, Research and Consultancy, Jyothy Institute of Technology, Thataguni Post, Bengaluru 560082, Karnataka, India.
| |
Collapse
|
7
|
Chadar DA, Chudasama NA, Vadodariya N, Meena R, Prasad K, Siddhanta AK. Protein‐Mimicking Functions of Nano‐Size Monoamido Amino Acids Derived from Polysaccharides of Marine Origin. MACROMOL CHEM PHYS 2019. [DOI: 10.1002/macp.201900201] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dattatray A. Chadar
- Biotechnology and Phycology DivisionCSIR–Central Salt & Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 Gujarat India
| | - Nishith A. Chudasama
- Biotechnology and Phycology DivisionCSIR–Central Salt & Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 Gujarat India
| | - Nilesh Vadodariya
- Academy of Scientific & Innovative ResearchAnusandhan Bhavan 2 Rafi Marg New Delhi 110001 India
- Natural Products and Green Chemistry DivisionCSIR–Central Salt & Marine Chemicals Research Institute G. B Marg Bhavnagar 364002 Gujarat India
| | - Ramavatar Meena
- Academy of Scientific & Innovative ResearchAnusandhan Bhavan 2 Rafi Marg New Delhi 110001 India
- Natural Products and Green Chemistry DivisionCSIR–Central Salt & Marine Chemicals Research Institute G. B Marg Bhavnagar 364002 Gujarat India
| | - Kamalesh Prasad
- Academy of Scientific & Innovative ResearchAnusandhan Bhavan 2 Rafi Marg New Delhi 110001 India
- Natural Products and Green Chemistry DivisionCSIR–Central Salt & Marine Chemicals Research Institute G. B Marg Bhavnagar 364002 Gujarat India
| | - Arup K. Siddhanta
- Biotechnology and Phycology DivisionCSIR–Central Salt & Marine Chemicals Research Institute G. B. Marg Bhavnagar 364002 Gujarat India
- Academy of Scientific & Innovative ResearchAnusandhan Bhavan 2 Rafi Marg New Delhi 110001 India
| |
Collapse
|
8
|
Deng W, Yang X, Zhu Y, Yu J, Xu X. Structural characterization and hypolipidemic activities of purified stigma maydis polysaccharides. Food Sci Nutr 2019; 7:2674-2683. [PMID: 31428354 PMCID: PMC6694425 DOI: 10.1002/fsn3.1123] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/15/2019] [Accepted: 04/22/2019] [Indexed: 12/18/2022] Open
Abstract
This study aimed to investigate structural features and antihyperlipidemic effects of the stigma maydis polysaccharide, termed SMP-1. This polysaccharide was composed of D-mannose, L-rhamnose, D-glucose, D-galactose, L-arabinose, D-xylose, and D-galacturonic acid, with a molar ratio of 1.00:0.21:1.41:1.44:0.70:0.44:0.56. The SMP-1 was mainly bonded by (1 → 6) and (1 → 3) linkages, with various monosaccharides being evenly distributed in the main and side chains. Moreover, SMP-1 had neither triple-helical structure nor molecular aggregation. Importantly, the SMP-1 could effectively bind the bile acids in vitro and significantly lower the total cholesterol, triglyceride, low-density lipoprotein cholesterol levels, and moderately increase the high-density lipoprotein cholesterol level in poloxamer 407-induced hyperlipidemic mice. Moreover, pretreatment with SMP-1 (≥300 mg/kg) could remarkably reduce fat accumulation and restore hepatocyte morphology in the liver of hyperlipidemic mice. Altogether, these findings indicated that SMP-1 could be developed as a safe and effective food supplement for preventing and treating hyperlipidemic disorders.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue EngineeringJiangsu UniversityZhenjiangChina
| | - Xia Yang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue EngineeringJiangsu UniversityZhenjiangChina
| | - Yuan Zhu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue EngineeringJiangsu UniversityZhenjiangChina
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue EngineeringJiangsu UniversityZhenjiangChina
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue EngineeringJiangsu UniversityZhenjiangChina
| |
Collapse
|
9
|
One-Step Formation of Chondrocytes through Direct Reprogramming via Polysaccharide-Based Gene Delivery. ADVANCES IN POLYMER TECHNOLOGY 2019. [DOI: 10.1155/2019/7632873] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
An innovative strategy for the generation of chondrocytes was thoroughly studied in this paper. Polyetherimide-modified polysaccharides of Porphyra yezoensis (pmPPY) served as a nonviral gene vector and delivered Sox9 plasmid to directly reprogram mouse embryonic fibroblasts into chondrocytes. The gene transfer efficiency was evaluated through ELISA, RT-PCR, and Western blot. The induced chondrocytes were identified through toluidine blue, Safranin O, and the immunostaining. The expression level of collagen II was finally evaluated through western blot. The pSox9/pmPPY nanoparticles (1:50) showed lower cytotoxicity as well as greater gene transfection efficiency than Lipofectamine 2000 and polyetherimide (PEI) (p<0.05). The results of toluidine blue, Safranin O, and the immunostaining of collagen II further showed that the normal MEFs were successfully reprogrammed into chondrocytes. These findings indicate that pmPPY could be a promising gene vector for the generation of chondrocytes via single-gene delivery strategy, which might provide abundant chondrocytes for cartilage repair.
Collapse
|
10
|
Jiang H, Xu Y, Sun C, Adu-Frimpong M, Yu J, Deng W, Xu X. Physicochemical properties and antidiabetic effects of a polysaccharide obtained from Polygonatum odoratum. Int J Food Sci Technol 2018. [DOI: 10.1111/ijfs.13896] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Huiyan Jiang
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| | - Yao Xu
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| | - Congyong Sun
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| | - Michael Adu-Frimpong
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| | - Jiangnan Yu
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| | - Wenwen Deng
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| | - Ximing Xu
- Department of Pharmaceutics; School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering; Jiangsu University; Zhenjiang 212001 China
| |
Collapse
|
11
|
He X, Fang J, Ruan Y, Wang X, Sun Y, Wu N, Zhao Z, Chang Y, Ning N, Guo H, Huang L. Structures, bioactivities and future prospective of polysaccharides from Morus alba (white mulberry): A review. Food Chem 2018; 245:899-910. [DOI: 10.1016/j.foodchem.2017.11.084] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 10/16/2017] [Accepted: 11/22/2017] [Indexed: 12/11/2022]
|
12
|
Yu Q, Chen J, Deng W, Cao X, Adu-Frimpong M, Yu J, Xu X. Neural differentiation of fibroblasts induced by intracellular co-delivery of Ascl1, Brn2 and FoxA1 via a non-viral vector of cationic polysaccharide. Biomed Mater 2017; 13:015022. [DOI: 10.1088/1748-605x/aa8962] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
13
|
Chen J, Wang Q, Zhou J, Deng W, Yu Q, Cao X, Wang J, Shao F, Li Y, Ma P, Spector M, Yu J, Xu X. Porphyra polysaccharide-derived carbon dots for non-viral co-delivery of different gene combinations and neuronal differentiation of ectodermal mesenchymal stem cells. NANOSCALE 2017; 9:10820-10831. [PMID: 28726952 DOI: 10.1039/c7nr03327c] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, multifunctional fluorescent carbon dots (CDs) were synthesized using a one-pot hydrothermal carbonization reaction, with the naturally-occurring porphyra polysaccharide (PPS) serving as a single carbon source for the first time and ethylenediamine (Ed) acting as the surface passivation agent. The resulting CDs enjoyed a high quantum yield (56.3%), excitation-dependent fluorescence, small size (<10 nm), spherical shape, uniform distribution, positive surface charge, low cytotoxicity and excellent ability to condense macromolecular plasmid DNA. The synthesized CDs were employed for neuronal induction from ectodermal mesenchymal stem cells for the first time via highly efficient non-viral gene delivery. The optimal combination of factors (Ascl1 and Brn2) was selected from seven different combinations out of Ascl1, Brn2 and Sox2 according to the expression of neuronal markers (Tuj1, Map2 and Tau). The results of qRT-PCR demonstrated that the CDs possessed a significantly higher transfection efficiency than the commercially available transfection reagents PEI (25 kDa) and Lipofectamine2000. Moreover, the CDs/pDNA nanoparticles exhibited more efficient neuronal differentiation of the EMSCs than the AT-RA-containing induction medium. Furthermore, the CDs/pDNA nanoparticles could enter cells via both caveolae- and clathrin-mediated endocytosis. Taken together, the natural polysaccharide PPS-derived CDs enriched the current application of CDs by employing the CDs as a novel non-viral gene carrier for neuronal differentiation of adult stem cells, which held great promise in tissue engineering and bioimaging.
Collapse
Affiliation(s)
- Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang 212001, P.R. China.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Nguyen HX, O’Rear EA. Modified dextran, heparin-based triggered release microspheres for cardiovascular delivery of therapeutic drugs using protamine as a stimulus. J Microencapsul 2017; 34:299-307. [DOI: 10.1080/02652048.2017.1323036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Hoai X. Nguyen
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science and Technology, Norman, OK, USA
| | - Edgar A. O’Rear
- School of Chemical, Biological and Materials Engineering, University of Oklahoma, Norman, OK, USA
- Institute for Biomedical Engineering, Science and Technology, Norman, OK, USA
| |
Collapse
|
15
|
Raisin S, Belamie E, Morille M. Non-viral gene activated matrices for mesenchymal stem cells based tissue engineering of bone and cartilage. Biomaterials 2016; 104:223-37. [DOI: 10.1016/j.biomaterials.2016.07.017] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 07/14/2016] [Accepted: 07/16/2016] [Indexed: 12/22/2022]
|
16
|
Cationic carbon quantum dots derived from alginate for gene delivery: One-step synthesis and cellular uptake. Acta Biomater 2016; 42:209-219. [PMID: 27321673 DOI: 10.1016/j.actbio.2016.06.021] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2016] [Revised: 05/27/2016] [Accepted: 06/15/2016] [Indexed: 11/20/2022]
Abstract
UNLABELLED Carbon quantum dots (CQDs), unlike semiconductor quantum dots, possess fine biocompatibility, excellent upconversion properties, high photostability and low toxicity. Here, we report multifunctional CQDs which were developed using alginate, 3% hydrogen peroxide and double distilled water through a facile, eco-friendly and inexpensive one-step hydrothermal carbonization route. In this reaction, the alginate served as both the carbon source and the cationization agent. The resulting CQDs exhibited strong and stable fluorescence with water-dispersible and positively-charged properties which could serve as an excellent DNA condensation. As non-viral gene vector being used for the first time, the CQDs showed considerably high transfection efficiency (comparable to Lipofectamine2000 and significantly higher than PEI, p<0.05) and negligible toxicity. The photoluminescence properties of CQDs also permitted easy tracking of the cellular-uptake. The findings showed that both caveolae- and clathrin-mediated endocytosis pathways were involved in the internalization process of CQDs/pDNA complexes. Taken together, the alginate-derived photoluminescent CQDs hold great potential in biomedical applications due to their dual role as efficient non-viral gene vectors and bioimaging probes. STATEMENT OF SIGNIFICANCE This manuscript describes a facile and simple one-step hydrothermal carbonization route for preparing optically tunable photoluminescent carbon quantum dots (CQDs) from a novel raw material, alginate. These CQDs enjoy low cytotoxicity, positive zeta potential, excellent ability to condense macromolecular DNA, and most importantly, notably high transfection efficiency. The interesting finding is that the negatively-charged alginate can convert into positively charged CQDs without adding any cationic reagents. The significance of this study is that the cationic carbon quantum dots play dual roles as both non-viral gene vectors and bioimaging probes at the same time, which are most desirable in many fields of applications such as gene therapy, drug delivery, and bioimaging.
Collapse
|
17
|
Deng W, Cao X, Wang Q, Wang Y, Chen J, Yu Q, Zhang Z, Zhou J, Xu W, Du P, Chen J, Gao X, Yu J, Xu X. Prolonged Three-Dimensional Co-Delivery of Yamanaka Factors for Cell Reprogramming. ACS APPLIED MATERIALS & INTERFACES 2016; 8:19916-19927. [PMID: 27428246 DOI: 10.1021/acsami.6b05825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Reprogramming somatic cells into a pluripotent state has been widely investigated in two-dimensional (2D) systems but not described in the more biologically faithful three-dimensional (3D) scaffolds. Here, we devise a 3D porous tissue engineering scaffold that could achieve successful and efficient induction of pluripotency. To construct this 3D scaffold, nonviral hybrid nanoparticles were fabricated beforehand by employing calcium phosphate and cationized Pleurotus eryngii polysaccharide to codeliver plasmids OCT4, SOX2, KLF4 ,and C-MYC (pOSKM). These hybrid nanoparticles were then loaded into a 3D porous collagen scaffold to obtain the so-called pOSKM-activated 3D scaffold. This 3D scaffold could reprogram human umbilical cord mesenchymal stem cells (HUMSCs) into a pluripotent state, generating 3D cell spheres which showed positive expression of pluripotency markers in the 3D scaffolds and tightly packed colonies when transferred to 2D feeder layers. Besides sharing similar morphology, epigenetic modification, and expression of pluripotency genes with the embryonic stem cells, the 3D system-generated colonies could also be expanded on feeder layers for more than 20 passages, indicating the successful establishment of stable induced pluripotent stem cell (iPSC) lines. Our findings represent a first employment of porous 3D scaffolds to achieve successful reprogramming via a one-time transfection, offering a safe, simple, and effective alternative strategy for iPSC generation.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Qiang Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Zhijian Zhang
- Center for Drug/Gene Delivery and Tissue Engineering and School of Medicine, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Wenqian Xu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Pan Du
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Jiaxin Chen
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, P.R. China
| |
Collapse
|
18
|
Yu Y, Hu Y, Li X, Liu Y, Li M, Yang J, Sheng W. Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier. Int J Nanomedicine 2016; 11:1013-23. [PMID: 27042056 PMCID: PMC4798211 DOI: 10.2147/ijn.s82023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The development of a novel cationized polymer used as a gene delivery carrier that can conveniently and effectively transfect cells resulting in a stably expressed target gene remains a challenge. Antheraea pernyi silk fibroin (ASF) is a cytocompatible and biodegradable natural polymer, and it possesses Arg-Gly-Asp sequences but a negative charge. In order to render ASF amenable to packaging plasmid DNA (pDNA), spermine was used to modify ASF to synthesize cationized ASF (CASF), which was used as a gene delivery carrier. CASF was characterized using trinitrobenzene sulfonic acid assay, the zeta potential determination, and a Fourier transform infrared analysis, and the results of these characterizations indicated that the -NH2 in spermine effectively reacts with the -COOH in the side chains of ASF. Spermine grafted to the side chains of ASF resulted in the conversion of the negative charge of ASF to a positive charge. CASF packaged pDNA and formed CASF/pDNA complexes, which exhibited spherical morphology with average particle sizes of 215-281 nm and zeta potential of approximately +3.0 mV to +3.2 mV. The results of the MTT assay, confocal laser scanning microscopy, and flow cytometry analysis in a human endothelial cell line revealed that CASF/pDNA complexes exhibited lower cytotoxicity and higher transfection efficiency compared to the pDNA complexes of polyethyleneimine. These results indicate that our synthesized CASF, a cationized polymer, is a potential gene delivery carrier with the advantages of biodegradability and low cytotoxicity.
Collapse
Affiliation(s)
- Yanni Yu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of China
| | - Yongpei Hu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of China
| | - Xiufang Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of China
| | - Yu Liu
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of China
| | - Mingzhong Li
- National Engineering Laboratory for Modern Silk, College of Textile and Clothing Engineering, Soochow University, Suzhou, People’s Republic of China
| | - Jicheng Yang
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, People’s Republic of China
| | - Weihua Sheng
- Cell and Molecular Biology Institute, College of Medicine, Soochow University, Suzhou, People’s Republic of China
| |
Collapse
|
19
|
Deng W, Cao X, Wang Y, Yu Q, Zhang Z, Qu R, Chen J, Shao G, Gao X, Xu X, Yu J. Pleurotus eryngii Polysaccharide Promotes Pluripotent Reprogramming via Facilitating Epigenetic Modification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:1264-1273. [PMID: 26809505 DOI: 10.1021/acs.jafc.5b05661] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Pleurotus eryngii is a medicinal/edible mushroom with great nutritional value and bioactivity. Its polysaccharide has recently been developed into an effective gene vector via cationic modification. In the present study, cationized P. eryngii polysaccharide (CPS), hybridized with calcium phosphate (CP), was used to codeliver plasmids (Oct4, Sox2, Klf4, c-Myc) for generating induced pluripotent stem cells (iPSCs). The results revealed that the hybrid nanoparticles could significantly enhance the process and efficiency of reprogramming (1.6-fold increase) compared with the CP nanoparticles. The hybrid CPS also facilitated epigenetic modification during the reprogramming. Moreover, these hybrid nanoparticles exhibited multiple pathways (both caveolae- and clathrin-mediated endocytosis) in their cellular internalization, which accounted for the improved iPSCs generation. These findings therefore present a novel application of P. eryngii polysaccharide in pluripotent reprogramming via active epigenetic modification.
Collapse
Affiliation(s)
| | | | | | - Qingtong Yu
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | | | | | | | | | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | | | | |
Collapse
|
20
|
Yu Q, Cao J, Chen B, Deng W, Cao X, Chen J, Wang Y, Wang S, Yu J, Xu X, Gao X. Efficient gene delivery to human umbilical cord mesenchymal stem cells by cationized Porphyra yezoensis polysaccharide nanoparticles. Int J Nanomedicine 2015; 10:7097-107. [PMID: 26604758 PMCID: PMC4655959 DOI: 10.2147/ijn.s93122] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
This study centered on an innovative application of Porphyra yezoensis polysaccharide (PPS) with cationic modification as a safe and efficient nonviral gene vector to deliver a plasmid encoding human Wnt3a (pWnt3a) into human umbilical cord mesenchymal stem cells (HUMSCs). After modification with branched low-molecular-weight (1,200 Da) polyethylenimine, the cationized PPS (CPPS) was combined with pWnt3a to form spherical nanoscale particles (CPPS-pWnt3a nanoparticles). Particle size and distribution indicated that the CPPS-pWnt3a nanoparticles at a CPPS:pWnt3a weight ratio of 40:1 might be a potential candidate for DNA plasmid transfection. A cytotoxicity assay demonstrated that the nanoparticles prepared at a CPPS:pWnt3a weight ratio of 40:1 were nontoxic to HUMSCs compared to those of Lipofectamine 2000 and polyethylenimine (25 kDa). These nanoparticles were further transfected to HUMSCs. Western blotting demonstrated that the nanoparticles (CPPS:pWnt3a weight ratio 40:1) had the greatest transfection efficiency in HUMSCs, which was significantly higher than that of Lipofectamine 2000; however, when the CPPS:pWnt3a weight ratio was increased to 80:1, the nanoparticle-treated group showed no obvious improvement in translation efficiency over Lipofectamine 2000. Therefore, CPPS, a novel cationic polysaccharide derived from P. yezoensis, could be developed into a safe, efficient, nonviral gene vector in a gene-delivery system.
Collapse
Affiliation(s)
- Qingtong Yu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China ; Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jin Cao
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Baoding Chen
- Department of Medical Ultrasound, Affiliated Hospital of Jiangsu University, Zhenjiang, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Shicheng Wang
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Xiangdong Gao
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Deng W, Cao X, Chen J, Zhang Z, Yu Q, Wang Y, Shao G, Zhou J, Gao X, Yu J, Xu X. MicroRNA Replacing Oncogenic Klf4 and c-Myc for Generating iPS Cells via Cationized Pleurotus eryngii Polysaccharide-based Nanotransfection. ACS APPLIED MATERIALS & INTERFACES 2015; 7:18957-18966. [PMID: 26269400 DOI: 10.1021/acsami.5b06768] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Induced pluripotent stem cells (iPSCs), resulting from the forced expression of cocktails out of transcription factors, such as Oct4, Sox2, Klf4, and c-Myc (OSKM), has shown tremendous potential in regenerative medicine. Although rapid progress has been made recently in the generation of iPSCs, the safety and efficiency remain key issues for further application. In this work, microRNA 302-367 was employed to substitute the oncogenic Klf4 and c-Myc in the OSKM combination as a safer strategy for successful iPSCs generation. The negatively charged plasmid mixture (encoding Oct4, Sox2, miR302-367) and the positively charged cationized Pleurotus eryngii polysaccharide (CPEPS) self-assembled into nanosized particles, named as CPEPS-OS-miR nanoparticles, which were applied to human umbilical cord mesenchymal stem cells for iPSCs generation after characterization of the physicochemical properties. The CPEPS-OS-miR nanoparticles possessed spherical shape, ultrasmall particle size, and positive surface charge. Importantly, the combination of plasmids Oct4, Sox2, and miR302-367 could not only minimize genetic modification but also show a more than 50 times higher reprogramming efficiency (0.044%) than any other single or possible double combinations of these factors (Oct4, Sox2, miR302-367). Altogether, the current study offers a simple, safe, and effective self-assembly approach for generating clinically applicable iPSCs.
Collapse
Affiliation(s)
- Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jingjing Chen
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Zhijian Zhang
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Qingtong Yu
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Yan Wang
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Genbao Shao
- Center for Drug/Gene Delivery and Tissue Engineering, and School of Medical Science and Laboratory Medicine, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Jie Zhou
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Xiangdong Gao
- School of Life Science & Technology, China Pharmaceutical University , Nanjing 210009, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, and Center for Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212001, People's Republic of China
| |
Collapse
|
22
|
Beloor J, Ramakrishna S, Nam K, Seon Choi C, Kim J, Kim SH, Cho HJ, Shin H, Kim H, Kim SW, Lee SK, Kumar P. Effective gene delivery into human stem cells with a cell-targeting Peptide-modified bioreducible polymer. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:2069-2079. [PMID: 25515928 DOI: 10.1002/smll.201402933] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Indexed: 06/04/2023]
Abstract
Stem cells are poorly permissive to non-viral gene transfection reagents. In this study, we explored the possibility of improving gene delivery into human embryonic (hESC) and mesenchymal (hMSC) stem cells by synergizing the activity of a cell-binding ligand with a polymer that releases nucleic acids in a cytoplasm-responsive manner. A 29 amino acid long peptide, RVG, targeting the nicotinic acetylcholine receptor (nAchR) was identified to bind both hMSC and H9-derived hESC. Conjugating RVG to a redox-sensitive biodegradable dendrimer-type arginine-grafted polymer (PAM-ABP) enabled nanoparticle formation with plasmid DNA without altering the environment-sensitive DNA release property and favorable toxicity profile of the parent polymer. Importantly, RVG-PAM-ABP quantitatively enhanced transfection into both hMSC and hESC compared to commercial transfection reagents like Lipofectamine 2000 and Fugene. ∼60% and 50% of hMSC and hESC were respectively transfected, and at increased levels on a per cell basis, without affecting pluripotency marker expression. RVG-PAM-ABP is thus a novel bioreducible, biocompatible, non-toxic, synthetic gene delivery system for nAchR-expressing stem cells. Our data also demonstrates that a cell-binding ligand like RVG can cooperate with a gene delivery system like PAM-ABP to enable transfection of poorly-permissive cells.
Collapse
Affiliation(s)
- Jagadish Beloor
- Department of Internal Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, 06520, USA; Department of Bioengineering and Institute of Nano Science and Technology, Hanyang University, Seoul, 133-791, Korea
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Galactomannan-PEI based non-viral vectors for targeted delivery of plasmid to macrophages and hepatocytes. Eur J Pharm Biopharm 2014; 87:461-71. [DOI: 10.1016/j.ejpb.2014.05.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 11/22/2022]
|
24
|
Wyse RD, Dunbar GL, Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 2014; 15:1719-45. [PMID: 24463293 PMCID: PMC3958818 DOI: 10.3390/ijms15021719] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
Collapse
Affiliation(s)
- Robert D Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
25
|
Yi C, Fu M, Cao X, Tong S, Zheng Q, Firempong CK, Jiang X, Xu X, Yu J. Enhanced oral bioavailability and tissue distribution of a new potential anticancer agent, Flammulina velutipes sterols, through liposomal encapsulation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2013; 61:5961-5971. [PMID: 23721187 DOI: 10.1021/jf3055278] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
This study innovatively investigated the anticancer effect of Flammulina velutipes sterols (FVSs), the in vivo pharmacokinetics, and the tissue distribution of FVS-loaded liposomes. The FVS consisting of mainly 54.8% ergosterol and 27.9% 22,23-dihydroergosterol exhibited evident in vitro antiproliferative activity (liver HepG-2, IC50 = 9.3 μg mL(-1); lung A549, IC50 = 20.4 μg mL(-1)). To improve the poor solubility of FVS, F. velutipes sterol liposome (FVSL) was originally prepared. The encapsulation efficiency of ergosterol was 71.3 ± 0.1% in FVSL, and the encapsulation efficiency of 22,23-dihydroergosterol was 69.0 ± 0.02% in FVSL. In comparison to its two free sterol counterparts, the relative bioavailability of ergosterol and 22,23-dihydroergosterol in FVSL was 162.9 and 244.2%, respectively. After oral administration in Kunming mice, the results of tissue distribution demonstrated that the liposomal FVS was distributed mostly in liver and spleen. The drug was eliminated rapidly within 4 h. These findings support the fact that FVS, a potential nutraceutical and an effective drug for the treatment of liver cancer, could be encapsulated in liposomes for improved solubility and bioavailability.
Collapse
Affiliation(s)
- Chengxue Yi
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University , Zhenjiang 212013, People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Polysaccharide gene transfection agents. Acta Biomater 2012; 8:4224-32. [PMID: 23022542 DOI: 10.1016/j.actbio.2012.09.022] [Citation(s) in RCA: 86] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2012] [Revised: 09/14/2012] [Accepted: 09/18/2012] [Indexed: 01/03/2023]
Abstract
Gene delivery is a promising technique that involves in vitro or in vivo introduction of exogenous genes into cells for experimental and therapeutic purposes. Successful gene delivery depends on the development of effective and safe delivery vectors. Two main delivery systems, viral and non-viral gene carriers, are currently deployed for gene therapy. While most current gene therapy clinical trials are based on viral approaches, non-viral gene medicines have also emerged as potentially safe and effective for the treatment of a wide variety of genetic and acquired diseases. Non-viral technologies consist of plasmid-based expression systems containing a gene associated with the synthetic gene delivery vector. Polysaccharides compile a large family of heterogenic sequences of monomers with various applications and several advantages as gene delivery agents. This chapter, compiles the recent progress in polysaccharide based gene delivery, it also provides an overview and recent developments of polysaccharide employed for in vitro and in vivo delivery of therapeutically important nucleotides, e.g. plasmid DNA and small interfering RNA.
Collapse
|
27
|
Tautzenberger A, Kovtun A, Ignatius A. Nanoparticles and their potential for application in bone. Int J Nanomedicine 2012; 7:4545-57. [PMID: 22923992 PMCID: PMC3423651 DOI: 10.2147/ijn.s34127] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Biomaterials are commonly applied in regenerative therapy and tissue engineering in bone, and have been substantially refined in recent years. Thereby, research approaches focus more and more on nanoparticles, which have great potential for a variety of applications. Generally, nanoparticles interact distinctively with bone cells and tissue, depending on their composition, size, and shape. Therefore, detailed analyses of nanoparticle effects on cellular functions have been performed to select the most suitable candidates for supporting bone regeneration. This review will highlight potential nanoparticle applications in bone, focusing on cell labeling as well as drug and gene delivery. Labeling, eg, of mesenchymal stem cells, which display exceptional regenerative potential, makes monitoring and evaluation of cell therapy approaches possible. By including bioactive molecules in nanoparticles, locally and temporally controlled support of tissue regeneration is feasible, eg, to directly influence osteoblast differentiation or excessive osteoclast behavior. In addition, the delivery of genetic material with nanoparticulate carriers offers the possibility of overcoming certain disadvantages of standard protein delivery approaches, such as aggregation in the bloodstream during systemic therapy. Moreover, nanoparticles are already clinically applied in cancer treatment. Thus, corresponding efforts could lead to new therapeutic strategies to improve bone regeneration or to treat bone disorders.
Collapse
Affiliation(s)
- Andrea Tautzenberger
- Institute of Orthopedic Research and Biomechanics, Centre of Musculoskeletal Research, Ulm University, Ulm, Germany.
| | | | | |
Collapse
|