1
|
Zhang L, Shi H, Tan X, Jiang Z, Wang P, Qin J. Ten-Gram-Scale Mechanochemical Synthesis of Ternary Lanthanum Coordination Polymers for Antibacterial and Antitumor Activities. Front Chem 2022; 10:898324. [PMID: 35774860 PMCID: PMC9237552 DOI: 10.3389/fchem.2022.898324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/25/2022] [Indexed: 11/25/2022] Open
Abstract
As rare-earth coordination polymers (CPs) have appreciable antimicrobial properties, ternary lanthanum CPs have been widely synthesized and investigated in recent years. Here, we report convenient, solvent-free reactions between the lanthanum salt and two ligands at mild temperatures that form ternary lanthanum nanoscale CPs with 10-gram-scale. The structural features and morphologies were characterized using a scanning electron microscope (SEM), Fourier transform infrared spectrometer (FT-IR), ultraviolet-visible (UV–Vis), X-ray diffractometer (XRD), X-ray Photoelectron Spectroscopy (XPS), Brunauer–Emmett–Teller (BET), elemental analysis, inductively coupled plasma mass spectrometry (ICP-MS), electrospray ionization mass spectrometry (ESI-MS), nuclear magnetic resonance (NMR), dynamic light scattering (DLS) and analyzer, and thermogravimetric and differential thermal analyzer (TG-DTA). Furthermore, the in vitro antibacterial activities of these ternary hybrids were studied using the zone of inhibition (ZOI) method, minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and transmission electron microscope (TEM) and were found to have excellent antibacterial properties. The in vitro antitumor activities were performed in determining the absorbance values by CCK-8 (Cell Counting Kit-8) assay. This facile synthetic method would potentially enable the mass production of ternary lanthanum CPs at room temperature, which can be promising candidates as antibacterial compounds and antitumor agents.
Collapse
Affiliation(s)
- Liying Zhang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Haoran Shi
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
| | - Xiao Tan
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhenqi Jiang
- Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, China
- *Correspondence: Zhenqi Jiang, ; Ping Wang, ; Jieling Qin,
| | - Ping Wang
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhenqi Jiang, ; Ping Wang, ; Jieling Qin,
| | - Jieling Qin
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Tongji University Cancer Center, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Zhenqi Jiang, ; Ping Wang, ; Jieling Qin,
| |
Collapse
|
2
|
Zhukov M, Hasan MS, Nesterov P, Sabbouh M, Burdulenko O, Skorb EV, Nosonovsky M. Topological Data Analysis of Nanoscale Roughness in Brass Samples. ACS APPLIED MATERIALS & INTERFACES 2022; 14:2351-2359. [PMID: 34955026 DOI: 10.1021/acsami.1c20694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Rough surfaces possess complex topographies, which cannot be characterized by a single parameter. The selection of appropriate roughness parameters depends on a particular application. Large datasets representing surface topography possess orderliness, which can be expressed in terms of topological features in high-dimensional dataspaces reflecting properties such as anisotropy and the number of lay directions. The features are scale-dependent because both sampling length and resolution affect them. We study nanoscale surface roughness using 3 × 3, 4 × 4, and 5 × 5 pixel patches obtained from atomic force microscopy (AFM) images of brass (Cu Zn alloy) samples roughened by a sonochemical treatment. We calculate roughness parameters, correlation length, extremum point distribution, persistence diagrams, and barcodes. These parameters of interest are discussed and compared.
Collapse
Affiliation(s)
- Mikhail Zhukov
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Md Syam Hasan
- Mechanical Engineering, University of Wisconsin─Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| | - Pavel Nesterov
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Mirna Sabbouh
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Olga Burdulenko
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Ekaterina V Skorb
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
| | - Michael Nosonovsky
- Infochemistry Scientific Centre, ITMO University, 9 Lomonosova Street, 191002 St. Petersburg, Russia
- Mechanical Engineering, University of Wisconsin─Milwaukee, 3200 North Cramer Street, Milwaukee, Wisconsin 53211, United States
| |
Collapse
|
3
|
Procópio L. The oil spill and the use of chemical surfactant reduce microbial corrosion on API 5L steel buried in saline soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:26975-26989. [PMID: 33496949 DOI: 10.1007/s11356-021-12544-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Accepted: 01/14/2021] [Indexed: 06/12/2023]
Abstract
In order to evaluate the biocorrosion of API 5L metal buried in saline soils, three different conditions in microcosms were evaluated. The control microcosm contained only saline soil, the second had the addition of petroleum, and the third contained the addition of both petroleum and surfactant. The corrosion rate of the metals was measured by loss of mass after 30 days, and the microbial communities were delineated using 16S rRNA gene sequencing techniques. The species were dominated by halophiles in all samples analyzed. Among the bacteria, the predominant group was Proteobacteria, with emphasis on the Alphaproteobacteria and Gammaproteobacteria. Betaproteobacteria and Deltaproteobacteria members were also identified in a smaller number in all conditions. Firmicutes were especially abundant in the control system, although it was persistently present in other conditions evaluated. Bacteroidetes and Actinobacteria were also present in a considerable number of OTUs in the three microcosms. Halobacteria were predominant among archaea and were present in all conditions. The analysis pointed to a conclusion that in the control microcosm, the corrosion rate was higher, while the microcosm containing only oil had the lowest corrosion rate. These results suggest that, under these conditions, the entry of other carbon sources favors the presence of petroleum degraders, rather than samples involved in the corrosion of metals.
Collapse
Affiliation(s)
- Luciano Procópio
- Industrial Microbiology and Bioremediation Department, Universidade Federal do Rio de Janeiro (UFRJ), Caxias, Rio de Janeiro, Brazil.
| |
Collapse
|
4
|
Surdo S, Duocastella M, Diaspro A. Nanopatterning with Photonic Nanojets: Review and Perspectives in Biomedical Research. MICROMACHINES 2021; 12:256. [PMID: 33802351 PMCID: PMC8000863 DOI: 10.3390/mi12030256] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 02/26/2021] [Accepted: 02/26/2021] [Indexed: 12/21/2022]
Abstract
Nanostructured surfaces and devices offer astounding possibilities for biomedical research, including cellular and molecular biology, diagnostics, and therapeutics. However, the wide implementation of these systems is currently limited by the lack of cost-effective and easy-to-use nanopatterning tools. A promising solution is to use optical methods based on photonic nanojets, namely, needle-like beams featuring a nanometric width. In this review, we survey the physics, engineering strategies, and recent implementations of photonic nanojets for high-throughput generation of arbitrary nanopatterns, along with applications in optics, electronics, mechanics, and biosensing. An outlook of the potential impact of nanopatterning technologies based on photonic nanojets in several relevant biomedical areas is also provided.
Collapse
Affiliation(s)
- Salvatore Surdo
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
| | - Martí Duocastella
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Applied Physics, University of Barcelona, C/Martí i Franquès 1, 08028 Barcelona, Spain
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano di Tecnologia, Via Enrico Melen 83, Building B, 16152 Genoa, Italy
- Department of Physics, University of Genoa, Via Dodecaneso 33, 16146 Genova, Italy
| |
Collapse
|
5
|
Nanoparticles in Polyelectrolyte Multilayer Layer-by-Layer (LbL) Films and Capsules—Key Enabling Components of Hybrid Coatings. COATINGS 2020. [DOI: 10.3390/coatings10111131] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Originally regarded as auxiliary additives, nanoparticles have become important constituents of polyelectrolyte multilayers. They represent the key components to enhance mechanical properties, enable activation by laser light or ultrasound, construct anisotropic and multicompartment structures, and facilitate the development of novel sensors and movable particles. Here, we discuss an increasingly important role of inorganic nanoparticles in the layer-by-layer assembly—effectively leading to the construction of the so-called hybrid coatings. The principles of assembly are discussed together with the properties of nanoparticles and layer-by-layer polymeric assembly essential in building hybrid coatings. Applications and emerging trends in development of such novel materials are also identified.
Collapse
|
6
|
Ulasevich SA, Koshel EI, Kassirov IS, Brezhneva N, Shkodenko L, Skorb EV. Oscillating of physicochemical and biological properties of metal particles on their sonochemical treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 109:110458. [PMID: 32228946 DOI: 10.1016/j.msec.2019.110458] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 11/11/2019] [Accepted: 11/17/2019] [Indexed: 10/25/2022]
Abstract
Different metal particles are increasingly used to target bacteria as an alternative to antibiotics. Despite numerous data about treating bacterial infections, the utilization of metal particles in antibacterial coatings for implantable devices and medicinal materials promoting wound healing. The antibacterial mechanisms of nanoscale and microscale particles are poorly understood, but the currently accepted mechanisms include oxidative stress induction, metal ion release, and non-oxidative mechanisms. Thus, investigation of the antibacterial mechanisms of nanostructured metal particles is very important for the development of more effective antimicrobial materials. However, it is very difficult to develop a proper model for revealing the antibacterial mechanisms due to difficulty to choose a method that allows obtaining materials of various properties under approximately the same conditions. In this paper, we propose a green and feasible technique to create critical conditions for modification of zinc particles at highly non-equilibrium states. We demonstrate that the sonication process can be useful for fabrication the materials with oscillating physical, chemical and antibacterial properties. We believe this method besides medical applications can be also used in natural science basic research as an experimental tool for modelling the physical and chemical processes. After the sonication, the zinc particles exhibit a different surface morphology and amount of leached Zn2+ ions compared to initial ones. It has been revealed that oscillations of the Zn2+ ions concentration lead to oscillation the antibacterial properties. Thus, the properties of the materials can be easily altered by adjusting the ultrasound energy dissipated via varying the sonication.
Collapse
Affiliation(s)
| | - Elena I Koshel
- ITMO University, Lomonosova st. 9, St. Petersburg 191002, Russia
| | - Ilya S Kassirov
- Saint-Petersburg Pasteur Institute, Mira st.14, St. Petersburg, 197101, Russia
| | | | - Liubov Shkodenko
- ITMO University, Lomonosova st. 9, St. Petersburg 191002, Russia
| | | |
Collapse
|
7
|
Ryzhkov NV, Andreeva DV, Skorb EV. Coupling pH-Regulated Multilayers with Inorganic Surfaces for Bionic Devices and Infochemistry. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:8543-8556. [PMID: 31018639 DOI: 10.1021/acs.langmuir.9b00633] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
This article summarizes more than 10 years of cooperation with Prof. Helmuth Möhwald. Here we describe how the research moved from light-regulated feedback sustainable systems and control biodevices to the current focus on infochemistry in aqueous solution. An important advanced characteristic of such materials and devices is the pH concentration gradient in aqueous solution. A major part of the article focuses on the use of localized illumination for proton generation as a reliable, minimal-reagent-consuming, stable light-promoted proton pump. The in situ scanning vibration electrode technique (SVET) and scanning ion-selective electrode technique (SIET) are efficient for the spatiotemporal evolution of ions on the surface. pH-sensitive polyelectrolyte (PEs) multilayers with different PE architectures are composed with a feedback loop for bionic devices. We show here that pH-regulated PE multilayers can change their properties-film thickness and stiffness, permeability, hydrophilicity, and/or fluorescence-in response to light or electrochemical or biological processes instead of classical acid/base titration.
Collapse
Affiliation(s)
| | - Daria V Andreeva
- Centre for Advanced 2D Materials and Graphene Research Centre , National University of Singapore , 117546 Singapore
| | | |
Collapse
|
8
|
Kuvyrkov E, Brezhneva N, Ulasevich SA, Skorb EV. Sonochemical nanostructuring of titanium for regulation of human mesenchymal stem cells behavior for implant development. ULTRASONICS SONOCHEMISTRY 2019; 52:437-445. [PMID: 30594519 DOI: 10.1016/j.ultsonch.2018.12.024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Revised: 12/09/2018] [Accepted: 12/13/2018] [Indexed: 05/21/2023]
Abstract
The influence of surface nanotopography of sonochemically generated mesoporous titania coatings (TMS) on the adhesion, proliferation, and osteogenic differentiation of human mesenchymal stem cells (hMSCs) have been investigated in vitro for the first time. It has been revealed that adhesion and proliferation of hMSCs is higher on disordered TMS surfaces compared to smooth polished titania surface after five days of incubation. Surprisingly, the sonochemically generated disordered nanotopography induces the differentiation of hMSCs into osteogenic direction in the absence of osteogenic medium in 14 days of incubation. Thus sonochemical nanostructuring of titanium based implants stimulates the regenerative process of bone tissue.
Collapse
Affiliation(s)
- Evgeny Kuvyrkov
- Republican Scientific and Practical Center of Transfusiology and Medical Biotechnologies, Minsk 220053, Belarus
| | | | | | | |
Collapse
|
9
|
Boinovich LB, Modin EB, Sayfutdinova AR, Emelyanenko KA, Vasiliev AL, Emelyanenko AM. Combination of Functional Nanoengineering and Nanosecond Laser Texturing for Design of Superhydrophobic Aluminum Alloy with Exceptional Mechanical and Chemical Properties. ACS NANO 2017; 11:10113-10123. [PMID: 28873295 DOI: 10.1021/acsnano.7b04634] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Industrial application of metallic materials is hindered by several shortcomings, such as proneness to corrosion, erosion under abrasive loads, damage due to poor cold resistance, or weak resistance to thermal shock stresses, etc. In this study, using the aluminum-magnesium alloy as an example of widely spread metallic materials, we show that a combination of functional nanoengineering and nanosecond laser texturing with the appropriate treatment regimes can be successfully used to transform a metal into a superhydrophobic material with exceptional mechanical and chemical properties. It is demonstrated that laser chemical processing of the surface may be simultaneously used to impart multimodal roughness and to modify the composition and physicochemical properties of a thick surface layer of the substrate itself. Such integration of topographical and physicochemical modification leads to specific surface nanostructures such as nanocavities filled with hydrophobic agent and hard oxynitride nanoinclusions. The combination of superhydrophobic state, nano- and micro features of the hierarchical surface, and the appropriate composition of the surface textured layer allowed us to provide the surface with the outstanding level of resistance of superhydrophobic coatings to external chemical and mechanical impacts. In particular, experimental data presented in this study indicate high resistance of the fabricated coatings to pitting corrosion, superheated water vapor, sand abrasive wear, and rapid temperature cycling from liquid nitrogen to room temperatures, without notable degradation of superhydrophobic performance.
Collapse
Affiliation(s)
- Ludmila B Boinovich
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry , Leninsky prospect 31 bldg. 4, 119071 Moscow, Russia
| | - Evgeny B Modin
- National Research Centre "Kurchatov Institute" , Pl. Akad. Kurchatova 1, 123182 Moscow, Russia
- Far Eastern Federal University , 8 Suhanova St., 690090 Vladivostok, Russia
| | - Adeliya R Sayfutdinova
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry , Leninsky prospect 31 bldg. 4, 119071 Moscow, Russia
| | - Kirill A Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry , Leninsky prospect 31 bldg. 4, 119071 Moscow, Russia
| | - Alexander L Vasiliev
- National Research Centre "Kurchatov Institute" , Pl. Akad. Kurchatova 1, 123182 Moscow, Russia
- Shubnikov Institute of Crystallography, Federal Scientific Research Centre "Crystallography and Photonics", Russian Academy of Sciences , 119991 Moscow, Russia
| | - Alexandre M Emelyanenko
- A. N. Frumkin Institute of Physical Chemistry and Electrochemistry , Leninsky prospect 31 bldg. 4, 119071 Moscow, Russia
| |
Collapse
|
10
|
Snyder PJ, Kirste R, Collazo R, Ivanisevic A. Persistent Photoconductivity, Nanoscale Topography, and Chemical Functionalization Can Collectively Influence the Behavior of PC12 Cells on Wide Bandgap Semiconductor Surfaces. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13:1700481. [PMID: 28464526 DOI: 10.1002/smll.201700481] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 03/15/2017] [Indexed: 06/07/2023]
Abstract
Wide bandgap semiconductors such as gallium nitride (GaN) exhibit persistent photoconductivity properties. The incorporation of this asset into the fabrication of a unique biointerface is presented. Templates with lithographically defined regions with controlled roughness are generated during the semiconductor growth process. Template surface functional groups are varied using a benchtop surface functionalization procedure. The conductivity of the template is altered by exposure to UV light and the behavior of PC12 cells is mapped under different substrate conductivity. The pattern size and roughness are combined with surface chemistry to change the adhesion of PC12 cells when the GaN is made more conductive after UV light exposure. Furthermore, during neurite outgrowth, surface chemistry and initial conductivity difference are used to facilitate the extension to smoother areas on the GaN surface. These results can be utilized for unique bioelectronics interfaces to probe and control cellular behavior.
Collapse
Affiliation(s)
- Patrick J Snyder
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
| | - Ronny Kirste
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
- Adroit Materials, 2054 Kildaire Farm Rd., Suite 205, Cary, NC, 27518, USA
| | - Ramon Collazo
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
| | - Albena Ivanisevic
- Department of Materials Science and Engineering, North Carolina State University, 911 Partners Way, Raleigh, NC, 27606, USA
| |
Collapse
|
11
|
Zhukova Y, Ulasevich SA, Dunlop JWC, Fratzl P, Möhwald H, Skorb EV. Ultrasound-driven titanium modification with formation of titania based nanofoam surfaces. ULTRASONICS SONOCHEMISTRY 2017; 36:146-154. [PMID: 28069194 DOI: 10.1016/j.ultsonch.2016.11.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 10/11/2016] [Accepted: 11/08/2016] [Indexed: 05/21/2023]
Abstract
Titanium has been widely used as biomaterial for various medical applications because of its mechanical strength and inertness. This on the other hand makes it difficult to structure it. Nanostructuring can improve its performance for advanced applications such as implantation and lab-on-chip systems. In this study we show that a titania nanofoam on titanium can be formed under high intensity ultrasound (HIUS) treatment in alkaline solution. The physicochemical properties and morphology of the titania nanofoam are investigated in order to find optimal preparation conditions for producing surfaces with high wettability for cell culture studies and drug delivery applications. AFM and contact angle measurements reveal, that surface roughness and wettability of the surfaces depend nonmonotonously on ultrasound intensity and duration of treatment, indicating a competition between HIUS induced roughening and smoothening mechanisms. We finally demonstrate that superhydrophilic bio-and cytocompatible surfaces can be fabricated with short time ultrasonic treatment.
Collapse
Affiliation(s)
- Yulia Zhukova
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
| | - Sviatlana A Ulasevich
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - John W C Dunlop
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Peter Fratzl
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| | - Ekaterina V Skorb
- Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany
| |
Collapse
|
12
|
Zhukova Y, Skorb EV. Cell Guidance on Nanostructured Metal Based Surfaces. Adv Healthc Mater 2017; 6. [PMID: 28196304 DOI: 10.1002/adhm.201600914] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2016] [Revised: 11/21/2016] [Indexed: 11/07/2022]
Abstract
Metal surface nanostructuring to guide cell behavior is an attractive strategy to improve parts of medical implants, lab-on-a-chip, soft robotics, self-assembled microdevices, and bionic devices. Here, we discus important parameters, relevant trends, and specific examples of metal surface nanostructuring to guide cell behavior on metal-based hybrid surfaces. Surface nanostructuring allows precise control of cell morphology, adhesion, internal organization, and function. Pre-organized metal nanostructuring and dynamic stimuli-responsive surfaces are used to study various cell behaviors. For cells dynamics control, the oscillating stimuli-responsive layer-by-layer (LbL) polyelectrolyte assemblies are discussed to control drug delivery, coating thickness, and stiffness. LbL films can be switched "on demand" to change their thickness, stiffness, and permeability in the dynamic real-time processes. Potential applications of metal-based hybrids in biotechnology and selected examples are discussed.
Collapse
Affiliation(s)
- Yulia Zhukova
- Biomaterials Department; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 Potsdam 14424 Germany
| | - Ekaterina V. Skorb
- Biomaterials Department; Max Planck Institute of Colloids and Interfaces; Am Mühlenberg 1 Potsdam 14424 Germany
- Laboratory of Solution Chemistry of Advanced Materials and Technologies (SCAMT); ITMO University; St. Petersburg 197101 Russian Federation
| |
Collapse
|
13
|
Liang Y, Wang M, Wang C, Feng J, Li J, Wang L, Fu J. Facile Synthesis of Smart Nanocontainers as Key Components for Construction of Self-Healing Coating with Superhydrophobic Surfaces. NANOSCALE RESEARCH LETTERS 2016; 11:231. [PMID: 27121439 PMCID: PMC4848275 DOI: 10.1186/s11671-016-1444-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 04/19/2016] [Indexed: 06/05/2023]
Abstract
SiO2-imidazoline nanocomposites (SiO2-IMI) owning high loading capacity of corrosion inhibitor, 1-hexadecyl-3-methylimidazolium bromide (HMID), and a special acid/alkali dual-stimuli-accelerated release property have been synthesized via a one-step modified Stöber method. SiO2-IMI were uniformly distributed into the hydrophobic SiO2 sol to construct "host"-"guest" feedback active coating with a superhydrophobic surface (SiO2-IMI@SHSC) on aluminium alloy, AA2024, by dip-coating technique. SiO2-IMI as "guest" components have good compatibility with "host" sol-gel coating, and more importantly, once localized corrosion occurs on the surface of AA2024, SiO2-IMI can simultaneously respond to the increase in environmental pH around corrosive micro-cathodic regions and decrease in pH near micro-anodic regions, promptly releasing HMID to form a compact molecular film on the damaged surface, inhibiting corrosion spread and executing a self-healing function. The scanning vibrating electrode technique (SVET) was applied to illustrate the suppression process of cathodic/anodic corrosion activities. Furthermore, benefiting from the superhydrophobic surface, SiO2-IMI@SHSC remained its protective ability after immersion in 0.5 M NaCl solution for 35 days, which is far superior to the conventional sol-gel coating with the same coating thickness. The facile fabrication method of SiO2-IMI simplifies the construction procedure of SiO2-IMI@SHSC, which have great potential to replace non-environmental chromate conversion coatings for practical use.
Collapse
Affiliation(s)
- Yi Liang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - MingDong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Cheng Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - Jing Feng
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - JianSheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - LianJun Wang
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China
| | - JiaJun Fu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resource Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, People's Republic of China.
| |
Collapse
|
14
|
Skorb EV, Möhwald H. Ultrasonic approach for surface nanostructuring. ULTRASONICS SONOCHEMISTRY 2016; 29:589-603. [PMID: 26382299 DOI: 10.1016/j.ultsonch.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 08/24/2015] [Accepted: 09/03/2015] [Indexed: 05/08/2023]
Abstract
The review is about solid surface modifications by cavitation induced in strong ultrasonic fields. The topic is worth to be discussed in a special issue of surface cleaning by cavitation induced processes since it is important question if we always find surface cleaning when surface modifications occur, or vice versa. While these aspects are extremely interesting it is important for applications to follow possible pathways during ultrasonic treatment of the surface: (i) solely cleaning; (ii) cleaning with following surface nanostructuring; and (iii) topic of this particular review, surface modification with controllably changing its characteristics for advanced applications. It is important to know what can happen and which parameters should be taking into account in the case of surface modification when actually the aim is solely cleaning or aim is surface nanostructuring. Nanostructuring should be taking into account since is often accidentally applied in cleaning. Surface hydrophilicity, stability to Red/Ox reactions, adhesion of surface layers to substrate, stiffness and melting temperature are important to predict the ultrasonic influence on a surface and discussed from these points for various materials and intermetallics, silicon, hybrid materials. Important solid surface characteristics which determine resistivity and kinetics of surface response to ultrasonic treatment are discussed. It is also discussed treatment in different solvents and presents in solution of metal ions.
Collapse
Affiliation(s)
- Ekaterina V Skorb
- Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Am Mühlenberg 1, Golm 14424, Germany.
| | - Helmuth Möhwald
- Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Am Mühlenberg 1, Golm 14424, Germany
| |
Collapse
|
15
|
Impact of Soil Composition and Electrochemistry on Corrosion of Rock-cut Slope Nets along Railway Lines in China. Sci Rep 2015; 5:14939. [PMID: 26450811 PMCID: PMC4598838 DOI: 10.1038/srep14939] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/22/2015] [Indexed: 11/08/2022] Open
Abstract
Taking the slope of Suiyu Railway to study, the research separately studied soil resistivity, soil electrochemistry (corrosion potential, oxidization reduction potential, electric potential gradient and pH), soil anions (total soluble salt, Cl−, SO42− and ), and soil nutrition (moisture content, organic matter, total nitrogen, alkali-hydrolysable nitrogen, available phosphorus, and available potassium) at different slope levels, and conducted corrosion grade evaluation on artificial soil according to its single index and comprehensive indexes. Compared with other factors, water has the biggest impact on the corrosion of slope protection net, followed by anion content. Total soluble salt has the moderate impact on the corrosion of slope protection net, and stray current has the moderate impact on the corrosion of mid-slope protection net. Comprehensive evaluation on the corrosive degree of soil samples indicates that the corrosion of upper slope is moderate, and the corrosion of mid-slope and lower slope is strong. Organic matter in soil is remarkably relevant to electric potential gradient. Available nitrogen, available potassium and available phosphorus are remarkably relevant to anions. The distribution of soil nutrient is indirectly relevant to slope type.
Collapse
|
16
|
Shekhar A, Nomura KI, Kalia RK, Nakano A, Vashishta P. Nanobubble collapse on a silica surface in water: billion-atom reactive molecular dynamics simulations. PHYSICAL REVIEW LETTERS 2013; 111:184503. [PMID: 24237524 DOI: 10.1103/physrevlett.111.184503] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Indexed: 05/05/2023]
Abstract
Cavitation bubbles occur in fluids subjected to rapid changes in pressure. We use billion-atom reactive molecular dynamics simulations on a 163,840-processor BlueGene/P supercomputer to investigate damage caused by shock-induced collapse of nanobubbles in water near an amorphous silica surface. Collapse of an empty bubble generates a high-speed nanojet, which causes pitting on the silica surface. We find pit radii are close to bubble radii, and experiments also indicate linear scaling between them. The gas-filled bubbles undergo partial collapse and, consequently, the damage on the silica surface is mitigated.
Collapse
Affiliation(s)
- Adarsh Shekhar
- Collaboratory for Advanced Computing and Simulations, Department of Chemical Engineering and Materials Science, Department of Physics and Astronomy, and Department of Computer Science, University of Southern California, Los Angeles, California 90089-0242, USA
| | | | | | | | | |
Collapse
|
17
|
Skorb EV, Möhwald H. 25th anniversary article: Dynamic interfaces for responsive encapsulation systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2013; 25:5029-5043. [PMID: 24000161 DOI: 10.1002/adma.201302142] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Indexed: 06/02/2023]
Abstract
Encapsulation systems are urgently needed both as micrometer and sub-micrometer capsules for active chemicals' delivery, to encapsulate biological objects and capsules immobilized on surfaces for a wide variety of advanced applications. Methods for encapsulation, prolonged storage and controllable release are discussed in this review. Formation of stimuli responsive systems via layer-by-layer (LbL) assembly, as well as via mobile chemical bonding (hydrogen bonds, chemisorptions) and formation of special dynamic stoppers are presented. The most essential advances of the systems presented are multifunctionality and responsiveness to a multitude of stimuli - the possibility of formation of multi-modal systems. Specific examples of advanced applications - drug delivery, diagnostics, tissue engineering, lab-on-chip and organ-on-chip, bio-sensors, membranes, templates for synthesis, optical systems, and antifouling, self-healing materials and coatings - are provided. Finally, we try to outline emerging developments.
Collapse
Affiliation(s)
- Ekaterina V Skorb
- Max Planck Institute of Colloids and Interfaces, Wissenschaftspark Golm, Am Mühlenberg 1, Golm, 14424, Germany; Chemistry Department Belarusian State University, Leningradskaya str. 14, Minsk, 220030, Belarus
| | | |
Collapse
|
18
|
Skorb EV, Baidukova O, Andreeva OA, Cherepanov PV, Andreeva DV. Formation of polypyrrole/metal hybrid interfacial layer with self-regulation functions via ultrasonication. BIOINSPIRED BIOMIMETIC AND NANOBIOMATERIALS 2013. [DOI: 10.1680/bbn.13.00003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
19
|
Skorb EV, Andreeva DV. Layer-by-Layer approaches for formation of smart self-healing materials. Polym Chem 2013. [DOI: 10.1039/c3py00088e] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
20
|
Skorb EV, Andreeva DV, Möhwald H. Generation of a Porous Luminescent Structure Through Ultrasonically Induced Pathways of Silicon Modification. Angew Chem Int Ed Engl 2012; 51:5138-42. [DOI: 10.1002/anie.201105084] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 12/02/2011] [Indexed: 11/10/2022]
|
21
|
Skorb EV, Andreeva DV, Möhwald H. Generation of a Porous Luminescent Structure Through Ultrasonically Induced Pathways of Silicon Modification. Angew Chem Int Ed Engl 2012. [DOI: 10.1002/ange.201105084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
22
|
Skorb EV, Baidukova O, Goyal A, Brotchie A, Andreeva DV, Möhwald H. Sononanoengineered magnesium–polypyrrole hybrid capsules with synergetic trigger release. ACTA ACUST UNITED AC 2012. [DOI: 10.1039/c2jm30768e] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
23
|
Dulle J, Nemeth S, Skorb EV, Andreeva DV. Sononanostructuring of zinc-based materials. RSC Adv 2012. [DOI: 10.1039/c2ra22200k] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|