1
|
Jakob DS, Schwartz JJ, Pavlidis G, Grutter KE, Centrone A. Understanding AFM-IR Signal Dependence on Sample Thickness and Laser Excitation: Experimental and Theoretical Insights. Anal Chem 2024; 96:16195-16202. [PMID: 39365177 DOI: 10.1021/acs.analchem.4c02834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Photothermal induced resonance (PTIR), also known as atomic force microscopy-infrared (AFM-IR), enables nanoscale IR absorption spectroscopy by transducing the local photothermal expansion and contraction of a sample with the tip of an atomic force microscope. PTIR spectra enable material identification at the nanoscale and can measure sample composition at depths >1 μm. However, implementation of quantitative, multivariate, nanoscale IR analysis requires an improved understanding of PTIR signal transduction and of the intensity dependence on sample characteristics and measurement parameters. Here, PTIR spectra measured on three-dimensional printed conical structures up to 2.5 μm tall elucidate the signal dependence on sample thickness for different IR laser repetition rates and pulse lengths. Additionally, we develop a model linking sample thermal expansion dynamics to cantilever excitation amplitudes that includes samples that do not fully thermalize between consecutive pulses. Remarkable qualitative agreement between experiments and theory demonstrates a monotonic increase in the PTIR signal intensity with thickness, with decreasing sensitivities at higher repetition rates, while signal intensity is nearly unaffected by laser pulse length. Although we observe slight deviations from linearity over the entire 2.5 μm thickness range, the signal's approximate linearity for bands of sample thicknesses up to ≈500 nm suggests that samples with comparably low topographic variations are most amenable to quantitative analysis. Importantly, we measure absorptive undistorted profiles in PTIR spectra for strongly absorbing modes, up to ≈1650 nm, and >2500 nm for other modes. These insights are foundational toward quantitative nanoscale PTIR analyses and material identification, furthering their impact across many applications.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Jeffrey J Schwartz
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Karen E Grutter
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States
- Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
2
|
Kambar N, Go YK, Snyder C, Do MN, Leal C. Structural characterization of lateral phase separation in polymer-lipid hybrid membranes. Methods Enzymol 2024; 700:235-273. [PMID: 38971602 DOI: 10.1016/bs.mie.2024.04.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Hierarchic self-assembly is the main mechanism used to create diverse structures using soft materials. This is a case for both synthetic materials and biomolecular systems, as exemplified by the non-covalent organization of lipids into membranes. In nature, lipids often assemble into single bilayers, but other nanostructures are encountered, such as bilayer stacks and tubular and vesicular aggregates. Synthetic block copolymers can be engineered to recapitulate many of the structures, forms, and functions of lipid systems. When block copolymers are amphiphilic, they can be inserted or co-assembled into hybrid membranes that exhibit synergistic structural, permeability, and mechanical properties. One example is the emergence of lateral phase separation akin to the raft formation in biomembranes. When higher-order structures, such as hybrid membranes, are formed, this lateral phase separation can be correlated across membranes in the stack. This chapter outlines a set of important methods, such as X-ray Scattering, Atomic Force Microscopy, and Cryo-Electron Microscopy, that are relevant to characterizing and evaluating lateral and correlated phase separation in hybrid membranes at the nano and mesoscales. Understanding the phase behavior of polymer-lipid hybrid materials could lead to innovative advancements in biomimetic membrane separation systems.
Collapse
Affiliation(s)
- Nurila Kambar
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Yoo Kyung Go
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Corey Snyder
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Minh N Do
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States
| | - Cecília Leal
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, United States.
| |
Collapse
|
3
|
Schultz JF, Krylyuk S, Schwartz JJ, Davydov AV, Centrone A. Isotopic effects on in-plane hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2024; 13:10.1515/nanoph-2023-0717. [PMID: 38846933 PMCID: PMC11155493 DOI: 10.1515/nanoph-2023-0717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2024]
Abstract
Hyperbolic phonon polaritons (HPhPs), hybrids of light and lattice vibrations in polar dielectric crystals, empower nanophotonic applications by enabling the confinement and manipulation of light at the nanoscale. Molybdenum trioxide (α-MoO3) is a naturally hyperbolic material, meaning that its dielectric function deterministically controls the directional propagation of in-plane HPhPs within its reststrahlen bands. Strategies such as substrate engineering, nano- and heterostructuring, and isotopic enrichment are being developed to alter the intrinsic die ectric functions of natural hyperbolic materials and to control the confinement and propagation of HPhPs. Since isotopic disorder can limit phonon-based processes such as HPhPs, here we synthesize isotopically enriched 92MoO3 (92Mo: 99.93 %) and 100MoO3 (100Mo: 99.01 %) crystals to tune the properties and dispersion of HPhPs with respect to natural α-MoO3, which is composed of seven stable Mo isotopes. Real-space, near-field maps measured with the photothermal induced resonance (PTIR) technique enable comparisons of inplane HPhPs in α-MoO3 and isotopically enriched analogues within a reststrahlen band (≈820 cm-1 to ≈ 972 cm-1). Results show that isotopic enrichment (e.g., 92MoO3 and 100MoO3) alters the dielectric function, shifting the HPhP dispersion (HPhP angular wavenumber × thickness vs IR frequency) by ≈-7% and ≈ +9 %, respectively, and changes the HPhP group velocities by ≈ ±12 %, while the lifetimes (≈ 3 ps) in 92MoO3 were found to be slightly improved (≈ 20 %). The latter improvement is attributed to a decrease in isotopic disorder. Altogether, isotopic enrichment was found to offer fine control over the properties that determine the anisotropic in-plane propagation of HPhPs in α-MoO3, which is essential to its implementation in nanophotonic applications.
Collapse
Affiliation(s)
- Jeremy F. Schultz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, USA; and Department of Electrical and Computer Engineering, University of Maryland, College Park, Maryland 20742, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
4
|
Tang M, Han Y, Jia D, Yang Q, Cheng JX. Far-field super-resolution chemical microscopy. LIGHT, SCIENCE & APPLICATIONS 2023; 12:137. [PMID: 37277396 PMCID: PMC10240140 DOI: 10.1038/s41377-023-01182-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 05/08/2023] [Accepted: 05/10/2023] [Indexed: 06/07/2023]
Abstract
Far-field chemical microscopy providing molecular electronic or vibrational fingerprint information opens a new window for the study of three-dimensional biological, material, and chemical systems. Chemical microscopy provides a nondestructive way of chemical identification without exterior labels. However, the diffraction limit of optics hindered it from discovering more details under the resolution limit. Recent development of super-resolution techniques gives enlightenment to open this door behind far-field chemical microscopy. Here, we review recent advances that have pushed the boundary of far-field chemical microscopy in terms of spatial resolution. We further highlight applications in biomedical research, material characterization, environmental study, cultural heritage conservation, and integrated chip inspection.
Collapse
Affiliation(s)
- Mingwei Tang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Yubing Han
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Danchen Jia
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA
| | - Qing Yang
- State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310027, China
- Intelligent Perception Research Institute, Zhejiang Lab, Hangzhou, 311100, China
| | - Ji-Xin Cheng
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, Photonics Center, Boston University, Boston, MA, 02459, USA.
| |
Collapse
|
5
|
Ghosh B, Agarwal K. Viewing life without labels under optical microscopes. Commun Biol 2023; 6:559. [PMID: 37231084 PMCID: PMC10212946 DOI: 10.1038/s42003-023-04934-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 05/12/2023] [Indexed: 05/27/2023] Open
Abstract
Optical microscopes today have pushed the limits of speed, quality, and observable space in biological specimens revolutionizing how we view life today. Further, specific labeling of samples for imaging has provided insight into how life functions. This enabled label-based microscopy to percolate and integrate into mainstream life science research. However, the use of labelfree microscopy has been mostly limited, resulting in testing for bio-application but not bio-integration. To enable bio-integration, such microscopes need to be evaluated for their timeliness to answer biological questions uniquely and establish a long-term growth prospect. The article presents key label-free optical microscopes and discusses their integrative potential in life science research for the unperturbed analysis of biological samples.
Collapse
|
6
|
Prine N, Cao Z, Zhang S, Li T, Do C, Hong K, Cardinal C, Thornell TL, Morgan SE, Gu X. Enabling quantitative analysis of complex polymer blends by infrared nanospectroscopy and isotopic deuteration. NANOSCALE 2023; 15:7365-7373. [PMID: 37038929 DOI: 10.1039/d3nr00886j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Atomic-force microscopy coupled with infrared spectroscopy (AFM-IR) deciphers surface morphology of thin-film polymer blends and composites by simultaneously mapping physical topography and chemical composition. However, acquiring quantitative phase and composition information from multi-component blends can be challenging using AFM-IR due to the possible overlapping infrared absorption bands between different species. Isotope labeling one of the blend components introduces a new type of bond (carbon-deuterium vibration) that can be targeted using AFM-IR and responds at wavelengths sufficiently shifted toward unoccupied regions (around 2200 cm-1). In this project, AFM-IR was used to probe the surface morphology and chemical composition of three polymer blends containing deuterated polystyrene; each blend is expected to exhibit various degrees of miscibility. AFM-IR results successfully demonstrated that deuterium labeling prevents infrared spectral overlap and enables the visualization of blend phases that could not normally be distinguished by other scanning probe techniques. The nanoscale domain composition was resolved by fast infrared spectrum analysis. Overall, we presented isotope labeling as a robust approach for circumventing obstacles preventing the quantitative analysis of multiphase systems by AFM-IR.
Collapse
Affiliation(s)
- Nathaniel Prine
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Zhiqiang Cao
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Song Zhang
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Tianyu Li
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Materials Science and Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Changwoo Do
- Neutron Scattering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Kunlun Hong
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
- Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Camille Cardinal
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Travis L Thornell
- U.S. Army Engineer Research and Development Center, Vicksburg, Mississippi 39180, USA
| | - Sarah E Morgan
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| | - Xiaodan Gu
- School of Polymer Science and Engineering, The University of Southern Mississippi, Hattiesburg, Mississippi 39406, USA.
| |
Collapse
|
7
|
Wang M, Perez-Morelo DJ, Ramer G, Pavlidis G, Schwartz JJ, Yu L, Ilic R, Centrone A, Aksyuk VA. Beating thermal noise in a dynamic signal measurement by a nanofabricated cavity optomechanical sensor. SCIENCE ADVANCES 2023; 9:eadf7595. [PMID: 36921059 PMCID: PMC10017032 DOI: 10.1126/sciadv.adf7595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Thermal fluctuations often impose both fundamental and practical measurement limits on high-performance sensors, motivating the development of techniques that bypass the limitations imposed by thermal noise outside cryogenic environments. Here, we theoretically propose and experimentally demonstrate a measurement method that reduces the effective transducer temperature and improves the measurement precision of a dynamic impulse response signal. Thermal noise-limited, integrated cavity optomechanical atomic force microscopy probes are used in a photothermal-induced resonance measurement to demonstrate an effective temperature reduction by a factor of ≈25, i.e., from room temperature down as low as ≈12 K, without cryogens. The method improves the experimental measurement precision and throughput by >2×, approaching the theoretical limit of ≈3.5× improvement for our experimental conditions. The general applicability of this method to dynamic measurements leveraging thermal noise-limited harmonic transducers will have a broad impact across a variety of measurement platforms and scientific fields.
Collapse
Affiliation(s)
- Mingkang Wang
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Diego J. Perez-Morelo
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Georg Ramer
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Jeffrey J. Schwartz
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Liya Yu
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Robert Ilic
- Center for Nanoscale Science and Technology, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Vladimir A. Aksyuk
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| |
Collapse
|
8
|
Zhong Z, Peng L, Su J, Luo Z, Han CC, Huang X, Su Z. Distribution of an antioxidant in polypropylene/ethylene-octene copolymer blends studied by atomic force microscopy-infrared. SOFT MATTER 2022; 18:8605-8612. [PMID: 36330999 DOI: 10.1039/d2sm00765g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this work, the microscopic distribution of antioxidant 1010 (AT1010) in blends of isotactic polypropylene (iPP) with an ethylene-octene copolymer (POE) was investigated in situ using the atomic force microscopy-infrared (AFM-IR) technique. Pellets of an iPP/POE blend containing AT1010 at a mass ratio of 79.5 : 20 : 0.5 were extruded at different screw speeds, and were then injection-molded into plates. The domain size of the POE disperse phase in the pellets was about 1 μm, regardless of the screw speed, and remained unchanged in the injection molding. AFM-IR analyses revealed that AT1010 preferred to stay in the POE disperse phase rather than in the iPP matrix, with a concentration ratio of ∼1.2 in the extruded pellets independent of the screw speed, which was further increased to ∼1.5 in the molded plates. The preferred concentration of AT1010 in the POE was in line with its higher solubility in rubber than in iPP, and the enhanced partition of AT1010 in the molded plates was attributed to a longer processing time in the molten state than that for the extruded pellets, which was verified by AFM-IR analyses of pellets extruded with different residence times.
Collapse
Affiliation(s)
- Zhenxing Zhong
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD, Guangzhou 510663, P. R. China.
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| | - Li Peng
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD, Guangzhou 510663, P. R. China.
| | - Juanxia Su
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD, Guangzhou 510663, P. R. China.
| | - Zhongfu Luo
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD, Guangzhou 510663, P. R. China.
| | - Charles C Han
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD, Guangzhou 510663, P. R. China.
| | - Xianbo Huang
- National-certified Enterprise Technology Center, Kingfa Science and Technology Co., LTD, Guangzhou 510663, P. R. China.
| | - Zhaohui Su
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.
| |
Collapse
|
9
|
Jakob DS, Centrone A. Visible to Mid-IR Spectromicroscopy with Top-Down Illumination and Nanoscale (≈10 nm) Resolution. Anal Chem 2022; 94:15564-15569. [PMID: 36321942 PMCID: PMC9798386 DOI: 10.1021/acs.analchem.2c03685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Photothermal induced resonance (PTIR), an atomic force microscopy (AFM) analogue of IR spectroscopy also known as AFM-IR, is capable of nanoscale lateral resolution and finds broad applications in biology and materials science. Here, the spectral range of a top-illumination PTIR setup operating in contact-mode is expanded for the first time to the visible and near-IR spectral ranges. The result is a tool that yields absorption spectra and maps of electronic and vibrational features with spatial resolution down to ≈10 nm. In addition to the improved resolution, the setup enables light-polarization-dependent PTIR experiments in the visible and near-IR ranges for the first time. While previous PTIR implementations in the visible used total internal reflection illumination requiring challenging sample preparations on an optically transparent prism, the top illumination used here greatly simplifies sample preparation and will foster a broad application of this method.
Collapse
Affiliation(s)
- Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
10
|
Schwartz JJ, Pavlidis G, Centrone A. Understanding Cantilever Transduction Efficiency and Spatial Resolution in Nanoscale Infrared Microscopy. Anal Chem 2022; 94:13126-13135. [PMID: 36099442 DOI: 10.1021/acs.analchem.2c02612] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Photothermal induced resonance (PTIR), also known as AFM-IR, enables nanoscale infrared (IR) imaging and spectroscopy by using the tip of an atomic force microscope to transduce the local photothermal expansion and contraction of a sample. The signal transduction efficiency and spatial resolution of PTIR depend on a multitude of sample, cantilever, and illumination source parameters in ways that are not yet well understood. Here, we elucidate and separate the effects of laser pulse length, pulse shape, sample thermalization time (τ), interfacial thermal conductance, and cantilever detection frequency by devising analytical and numerical models that link a sample's photothermal excitations to the cantilever dynamics over a broad bandwidth (10 MHz). The models indicate that shorter laser pulses excite probe oscillations over broader bandwidths and should be preferred for measuring samples with shorter thermalization times. Furthermore, we show that the spatial resolution critically depends on the interfacial thermal conductance between dissimilar materials and improves monotonically, but not linearly, with increasing cantilever detection frequencies. The resolution can be enhanced for samples that do not fully thermalize between pulses (i.e., laser repetition rates ≳ 1/3τ) as the probed depth becomes smaller than the film thickness. We believe that the insights presented here will accelerate the adoption and impact of PTIR analyses across a wide range of applications by informing experimental designs and measurement strategies as well as by guiding future technical advances.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, Maryland 20740, United States.,Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Georges Pavlidis
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States.,Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
11
|
Bohlmann Kunz M, Podorova Y, Armstrong ZT, Zanni MT. Time-Domain Photothermal AFM Spectroscopy via Femtosecond Pulse Shaping. Anal Chem 2022; 94:12374-12382. [PMID: 36040762 DOI: 10.1021/acs.analchem.2c01920] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A time-domain version of photothermal microscopy using an atomic force microscope (AFM) is reported, which we call Fourier transform photothermal (FTPT) spectroscopy, where the delay between two laser pulses is varied and the Fourier transform is computed. An acousto-optic modulator-based pulse shaper sets the delay and phases of the pulses shot-to-shot at 100 kHz, enabling background subtraction and data collection in the rotating frame. The pulse shaper is also used to flatten the pulse spectrum, thereby eliminating the need for normalization by the laser spectrum. We demonstrate the method on 6,13-bis(triisopropylsilylethynyl)pentacene (TIPS-Pn) microcrystals and Mn-phthalocyanine islands, confirming subdiffraction spatial resolution, and providing new spectroscopic insights likely linked to structural defects in the crystals.
Collapse
Affiliation(s)
- Miriam Bohlmann Kunz
- , Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Yulia Podorova
- , Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Zachary T Armstrong
- , Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| | - Martin T Zanni
- , Department of Chemistry, University of Wisconsin-Madison, 1101 University Ave., Madison, Wisconsin 53706, United States
| |
Collapse
|
12
|
Cosas Fernandes JP, Federico CE, Basterra-Beroiz B, Weydert M, Quintana R. Revealing phase-specific properties of elastomeric blends and their molecular structure at the nanoscale by AFM. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.125229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
13
|
Wang M, Ramer G, Perez-Morelo DJ, Pavlidis G, Schwartz JJ, Yu L, Ilic R, Aksyuk VA, Centrone A. High Throughput Nanoimaging of Thermal Conductivity and Interfacial Thermal Conductance. NANO LETTERS 2022; 22:4325-4332. [PMID: 35579622 DOI: 10.1021/acs.nanolett.2c00337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Thermal properties of materials are often determined by measuring thermalization processes; however, such measurements at the nanoscale are challenging because they require high sensitivity concurrently with high temporal and spatial resolutions. Here, we develop an optomechanical cantilever probe and customize an atomic force microscope with low detection noise ≈1 fm/Hz1/2 over a wide (>100 MHz) bandwidth that measures thermalization dynamics with ≈10 ns temporal resolution, ≈35 nm spatial resolution, and high sensitivity. This setup enables fast nanoimaging of thermal conductivity (η) and interfacial thermal conductance (G) with measurement throughputs ≈6000× faster than conventional macroscale-resolution time-domain thermoreflectance acquiring the full sample thermalization. As a proof-of-principle demonstration, 100 × 100 pixel maps of η and G of a polymer particle are obtained in 200 s with a small relative uncertainty (<10%). This work paves the way to study fast thermal dynamics in materials and devices at the nanoscale.
Collapse
Affiliation(s)
- Mingkang Wang
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Georg Ramer
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute of Chemical Technologies and Analytics, TU Wien, Getreidemarkt 9, 1060 Vienna, Austria
| | - Diego J Perez-Morelo
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Georges Pavlidis
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
- Department of Mechanical Engineering, University of Connecticut, Storrs, Connecticut 06269, United States
| | - Jeffrey J Schwartz
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Liya Yu
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Robert Ilic
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Vladimir A Aksyuk
- Microsystems and Nanotechnology Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| | - Andrea Centrone
- Nanoscale Devices Characterization Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
14
|
Schwartz JJ, Jakob DS, Centrone A. A guide to nanoscale IR spectroscopy: resonance enhanced transduction in contact and tapping mode AFM-IR. Chem Soc Rev 2022; 51:5248-5267. [PMID: 35616225 DOI: 10.1039/d2cs00095d] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared (IR) spectroscopy is a broadly applicable, composition sensitive analytical technique. By leveraging the high spatial resolution of atomic force microscopy (AFM), the photothermal effect, and wavelength-tunable lasers, AFM-IR enables IR spectroscopy and imaging with nanoscale (< 10 nm) resolution. The transduction of a sample's photothermal expansion by an AFM probe tip ensures the proportionality between the AFM-IR signal and the sample absorption coefficient, producing images and spectra that are comparable to far-field IR databases and easily interpreted. This convergence of characteristics has spurred robust research efforts to extend AFM-IR capabilities and, in parallel, has enabled AFM-IR to impact numerous fields. In this tutorial review, we present the latest technical breakthroughs in AFM-IR spectroscopy and imaging and discuss its working principles, distinctive characteristics, and best practices for different AFM-IR measurement paradigms. Central to this review, appealing to both expert practitioners and novices alike, is the meticulous understanding of AFM-IR signal transduction, which is essential to take full advantage of AFM-IR capabilities. Here, we critically compile key information and discuss instructive experiments detailing AFM-IR signal transduction and provide guidelines linking experimental parameters to the measurement sensitivity, lateral resolution, and probed depth. Additionally, we provide in-depth tutorials on the most employed AFM-IR variants (resonance-enhanced and tapping mode AFM-IR), discussing technical details and representative applications. Finally, we briefly review recently developed AFM-IR modalities (peak force tapping IR and surface sensitivity mode) and provide insights on the next exciting opportunities and prospects for this fast-growing and evolving field.
Collapse
Affiliation(s)
- Jeffrey J Schwartz
- Laboratory for Physical Sciences, College Park, MD 20740, USA.,Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| | - Devon S Jakob
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA. .,Institute for Soft Matter Synthesis and Metrology, Georgetown University, 3700 O St., NW Washington D.C., 20057, USA
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, MD, 20899, USA.
| |
Collapse
|
15
|
Lin YT, He H, Kaya H, Liu H, Ngo D, Smith NJ, Banerjee J, Borhan A, Kim SH. Photothermal Atomic Force Microscopy Coupled with Infrared Spectroscopy (AFM-IR) Analysis of High Extinction Coefficient Materials: A Case Study with Silica and Silicate Glasses. Anal Chem 2022; 94:5231-5239. [PMID: 35312271 DOI: 10.1021/acs.analchem.1c04398] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Photothermal atomic force microscopy coupled with infrared spectroscopy (AFM-IR) brings significant value as a spatially resolved surface analysis technique for disordered oxide materials such as glasses, but additional development and fundamental understanding of governing principles is needed to interpret AFM-IR spectra, since the existing theory described for organic materials does not work for materials with high extinction coefficients for infrared (IR) absorption. This paper describes theoretical calculation of a transient temperature profile inside the IR-absorbing material considering IR refraction at the interface as well as IR adsorption and heat transfer inside the sample. This calculation explains the differences in peak positions and amplitudes of AFM-IR spectra from those of specular reflectance and extinction coefficient spectra. It also addresses the information depth of the AFM-IR characterization of bulk materials. AFM-IR applied to silica and silicate glass surfaces has demonstrated novel capability of characterizing subsurface structural changes and surface heterogeneity due to mechanical stresses from physical contacts, as well as chemical alterations manifested in surface layers through aqueous corrosion.
Collapse
Affiliation(s)
- Yen-Ting Lin
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongtu He
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education, Southwest University of Science and Technology, Mianyang, Sichuan 621010, China
| | - Huseyin Kaya
- Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Hongshen Liu
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Dien Ngo
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Nicholas J Smith
- Science & Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Joy Banerjee
- Science & Technology Division, Corning Incorporated, Corning, New York 14831, United States
| | - Ali Borhan
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Seong H Kim
- Department of Chemical Engineering and Materials Research Institute, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.,Department of Materials Science and Engineering, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
16
|
Xiao Y, Bao Y, Liu Y, Xu J, Zhang A, Zhu C, Cui S. Regulating the Crystallization Morphology of Poly(vinylidene fluoride‐chlorotrifluoroethylene) Ultrathin Film by Changing Temperature and Substrate. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202100469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yaoxin Xiao
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang 621900 China
- Key Laboratory of Advanced Technologies of Materials Southwest Jiaotong University Chengdu 610031 China
| | - Yu Bao
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang 621900 China
| | - Yu Liu
- Key Laboratory of Advanced Technologies of Materials Southwest Jiaotong University Chengdu 610031 China
| | - Jinjiang Xu
- Key Laboratory of Advanced Technologies of Materials Southwest Jiaotong University Chengdu 610031 China
| | - Aimin Zhang
- Key Laboratory for Liquid‐Solid Structural Evolution and Processing of Materials (Ministry of Education) Shandong University Jinan 250061 China
| | - Chunhua Zhu
- Key Laboratory of Advanced Technologies of Materials Southwest Jiaotong University Chengdu 610031 China
| | - Shuxun Cui
- Institute of Chemical Materials China Academy of Engineering Physics Mianyang 621900 China
| |
Collapse
|
17
|
Ma X, Pavlidis G, Dillon E, Beltran V, Schwartz JJ, Thoury M, Borondics F, Sandt C, Kjoller K, Berrie BH, Centrone A. Micro to Nano: Multiscale IR Analyses Reveal Zinc Soap Heterogeneity in a 19th-Century Painting by Corot. Anal Chem 2022; 94:3103-3110. [PMID: 35138807 DOI: 10.1021/acs.analchem.1c04182] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (μ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively. The distribution of chemical phases in thin sections from the top layer of a 19th-century painting is investigated at multiple scales (μ-FTIR ≈ 102 μm3, O-PTIR ≈ 10-1 μm3, PTIR ≈ 10-5 μm3). The paint samples analyzed here are found to be mixtures of pigments (cobalt green, lead white), cured oil, and a rich array of intermixed, small (often ≪ 0.1 μm3) zinc soap domains. We identify Zn stearate and Zn oleate crystalline soaps with characteristic narrow IR peaks (≈1530-1558 cm-1) and a heterogeneous, disordered, water-permeable, tetrahedral zinc soap phase, with a characteristic broad peak centered at ≈1596 cm-1. We show that the high signal-to-noise ratio and spatial resolution afforded by O-PTIR are ideal for identifying phase-separated (or locally concentrated) species with low average concentration, while PTIR provides an unprecedented nanoscale view of distributions and associations of species in paint. This newly accessible nanocompositional information will advance our knowledge of chemical processes in oil paint and will stimulate new art conservation practices.
Collapse
Affiliation(s)
- Xiao Ma
- Institute for the Conservation of Cultural Heritage, Shanghai University, No. 333 Nanchen Road, Shanghai 200444, China
| | - Georges Pavlidis
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| | - Eoghan Dillon
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Victoria Beltran
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Jeffrey J Schwartz
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States.,Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, United States
| | - Mathieu Thoury
- IPANEMA, CNRS, Ministère de la Culture et de la Communication Université de Versailles Saint-Quentin-en-Yvelines, USR 3461, Université Paris-Saclay, 91128 Gif-sur-Yvette, France
| | - Ferenc Borondics
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Christophe Sandt
- Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin BP 48, 91192 Gif-sur-Yvette Cedex, France
| | - Kevin Kjoller
- Photothermal Spectroscopy Corporation, 325 Chapala Street, Santa Barbara, California 93101, United States
| | - Barbara H Berrie
- Scientific Research Department, National Gallery of Art, 2000B South Club Drive, Landover, Maryland 20785, United States
| | - Andrea Centrone
- Nanoscale Device Characterization Division, Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Drive, Gaithersburg, Maryland 20899, United States
| |
Collapse
|
18
|
Ural MS, Dartois E, Mathurin J, Desmaële D, Collery P, Dazzi A, Deniset-Besseau A, Gref R. Quantification of drug loading in polymeric nanoparticles using AFM-IR technique: a novel method to map and evaluate drug distribution in drug nanocarriers. Analyst 2022; 147:5564-5578. [DOI: 10.1039/d2an01079h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Atomic force microscopy-infrared spectroscopy allows individual nanoparticle mapping and determination of their drug loading.
Collapse
Affiliation(s)
- M. Seray Ural
- Institut de Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Saclay, 91405, Orsay, France
| | - Emmanuel Dartois
- Institut de Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Saclay, 91405, Orsay, France
| | - Jérémie Mathurin
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Didier Desmaële
- Institut Galien (IGPS), CNRS UMR 8612, Université Paris-Sud, Université Paris-Saclay, 91405, Orsay, France
| | - Philippe Collery
- Society for the Coordination of Therapeutic Research, 20220, Algajola, France
| | - Alexandre Dazzi
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Ariane Deniset-Besseau
- Institut de Chimie Physique (ICP), CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Ruxandra Gref
- Institut de Sciences Moléculaires d'Orsay (ISMO), CNRS UMR 8214, Université Paris-Saclay, 91405, Orsay, France
| |
Collapse
|
19
|
Raussens V, Waeytens J. Characterization of Bacterial Amyloids by Nano-infrared Spectroscopy. Methods Mol Biol 2022; 2538:117-129. [PMID: 35951297 DOI: 10.1007/978-1-0716-2529-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Atomic force microscopy has been used for decades to study the topography of proteins during aggregation but with a lack of information on the secondary structure. On the contrary, infrared spectroscopy was able to study structural changes during the aggregation, but this analysis is complicated due to the presence of different species in mixtures and the poor spatial (~μm) resolution of the FTIR microscopy. Recently, Professor Alexandre Dazzi combined those techniques in the so-called AFM-IR. This method allows acquiring IR spectra at the nanometric scale and becomes a new standard method for the characterization of amyloid fibrils and, more generally, for the aggregation of proteins.
Collapse
Affiliation(s)
- Vincent Raussens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium
| | - Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgium.
- Institut de Chimie Physique, CNRS UMR8000, Université Paris-Sud, Université Paris-Saclay, Orsay, France.
| |
Collapse
|
20
|
Lux L, Phal Y, Hsieh PH, Bhargava R. On the Limit of Detection in Infrared Spectroscopic Imaging. APPLIED SPECTROSCOPY 2022; 76:105-117. [PMID: 34643135 PMCID: PMC10539114 DOI: 10.1177/00037028211050961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Infrared (IR) spectroscopic imaging instruments' performance can be characterized and optimized by an analysis of their limit of detection (LOD). Here we report a systematic analysis of the LOD for Fourier transform IR (FT-IR) and discrete frequency IR (DFIR) imaging spectrometers. In addition to traditional measurements of sample and blank data, we propose a decision theory perspective to pose the determination of LOD as a binary classification problem under different assumptions of noise uniformity and correlation. We also examine three spectral analysis approaches, namely, absorbance at a single frequency, average of absorbance over selected frequencies and total spectral distance - to suit instruments that acquire discrete or contiguous spectral bandwidths. The analysis is validated by refining the fabrication of a bovine serum albumin protein microarray to provide eight uniform spots from ∼2.8 nL of solution for each concentration over a wide range (0.05-10 mg/mL). Using scanning parameters that are typical for each instrument, we estimate a LOD of 0.16 mg/mL and 0.12 mg/mL for widefield and line scanning FT-IR imaging systems, respectively, using the spectral distance approach, and 0.22 mg/mL and 0.15 mg/mL using an optimal set of discrete frequencies. As expected, averaging and the use of post-processing techniques such as minimum noise fraction transformation results in LODs as low as ∼0.075 mg/mL that correspond to a spotted protein mass of ∼112 fg/pixel. We emphasize that these measurements were conducted at typical imaging parameters for each instrument and can be improved using the usual trading rules of IR spectroscopy. This systematic analysis and methodology for determining the LOD can allow for quantitative measures of confidence in imaging an analyte's concentration and a basis for further improving IR imaging technology.
Collapse
Affiliation(s)
- Laurin Lux
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Yamuna Phal
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Pei-Hsuan Hsieh
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Rohit Bhargava
- Beckman Institute for Advanced Science and Technology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Deparment of Mechanical Science and Engineering, Chemical and Biomolecular Engineering, and Chemistry, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| |
Collapse
|
21
|
Cheng J, Zhong Z, Lin Y, Su Z, Zhang C, Zhang X. Miscibility of isotactic poly(1-butene)/isotactic polypropylene blends studied by atomic force Microscopy−Infrared. POLYMER 2022. [DOI: 10.1016/j.polymer.2021.124445] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
22
|
Baharfar M, Mayyas M, Rahbar M, Allioux FM, Tang J, Wang Y, Cao Z, Centurion F, Jalili R, Liu G, Kalantar-Zadeh K. Exploring Interfacial Graphene Oxide Reduction by Liquid Metals: Application in Selective Biosensing. ACS NANO 2021; 15:19661-19671. [PMID: 34783540 DOI: 10.1021/acsnano.1c06973] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Liquid metals (LMs) are electronic liquid with enigmatic interfacial chemistry and physics. These features make them promising materials for driving chemical reactions on their surfaces for designing nanoarchitectonic systems. Herein, we showed the interfacial interaction between eutectic gallium-indium (EGaIn) liquid metal and graphene oxide (GO) for the reduction of both substrate-based and free-standing GO. NanoIR surface mapping indicated the successful removal of carbonyl groups. Based on the gained knowledge, a composite consisting of assembled reduced GO sheets on LM microdroplets (LM-rGO) was developed. The LM enforced Ga3+ coordination within the rGO assembly found to modify the electrochemical interface for selective dopamine sensing by separating the peaks of interfering biologicals. Subsequently, paper-based electrodes were developed and modified with the LM-rGO that presented the compatibility of the assembly with low-cost commercial technologies. The observed interfacial interaction, imparted by LM's interfaces, and electrochemical performance observed for LM-rGO will lead to effective functional materials and electrode modifiers.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mohannad Mayyas
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Mohammad Rahbar
- Graduate School of Biomedical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Francois-Marie Allioux
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Yifang Wang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Zhenbang Cao
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Franco Centurion
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Rouhollah Jalili
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| | - Guozhen Liu
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, P. R. China
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, New South Wales 2052, Australia
| |
Collapse
|
23
|
Pavlidis G, Schwartz JJ, Matson J, Folland T, Liu S, Edgar JH, Caldwell JD, Centrone A. Experimental confirmation of long hyperbolic polariton lifetimes in monoisotopic ( 10B) hexagonal boron nitride at room temperature. APL MATERIALS 2021; 9:10.1063/5.0061941. [PMID: 37720466 PMCID: PMC10502608 DOI: 10.1063/5.0061941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) enable strong confinements, low losses, and intrinsic beam steering capabilities determined by the refractive index anisotropy-providing opportunities from hyperlensing to flat optics and other applications. Here, two scanning-probe techniques, photothermal induced resonance (PTIR) and scattering-type scanning near-field optical microscopy (s-SNOM), are used to map infrared ( 6.4 - 7.4 μ m ) HPhPs in large (up to 120 × 250 μ m 2 near-monoisotopic > 99 % B 10 ) hexagonal boron nitride (hBN) flakes. Wide ( ≈ 40 μ m ) PTIR and s-SNOM scans on such large flakes avoid interference from polaritons launched from different asperities (edges, folds, surface defects, etc.) and together with Fourier analyses 0.05 μ m - 1 resolution) enable precise measurements of HPhP lifetimes (up to ≈ 4.2 p s and propagation lengths (up to ≈ 25 and ≈ 17 μ m for the first- and second-order branches, respectively). With respect to naturally abundant hBN, we report an eightfold improved, record-high (for hBN) propagating figure of merit (i.e., with both high confinement and long lifetime) in ≈ 99 % B 10 hBN, achieving, finally, theoretically predicted values. We show that wide near-field scans critically enable accurate estimates of the polaritons' lifetimes and propagation lengths and that the incidence angle of light, with respect to both the sample plane and the flake edge, needs to be considered to extract correctly the dispersion relation from the near-field polaritons maps. Overall, the measurements and data analyses employed here elucidate details pertaining to polaritons' propagation in isotopically enriched hBN and pave the way for developing high-performance HPhP-based devices.
Collapse
Affiliation(s)
- Georges Pavlidis
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| | - Jeffrey J. Schwartz
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, Maryland 20742, USA
| | - Joseph Matson
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Thomas Folland
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Song Liu
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - James H. Edgar
- Tim Taylor Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
| | - Josh D. Caldwell
- Mechanical Engineering, Vanderbilt University, Nashville, Tennessee 37235, USA
| | - Andrea Centrone
- Nanoscale Spectroscopy Group, Physical Measurement Laboratory, NIST, Gaithersburg, Maryland 20899, USA
| |
Collapse
|
24
|
Luo H, Zeng Y, Zhao Y, Xiang Y, Li Y, Pan X. Effects of advanced oxidation processes on leachates and properties of microplastics. JOURNAL OF HAZARDOUS MATERIALS 2021; 413:125342. [PMID: 33618270 DOI: 10.1016/j.jhazmat.2021.125342] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/25/2021] [Accepted: 02/03/2021] [Indexed: 05/09/2023]
Abstract
Microplastics (MPs) in natural environments undergo various aging processes. So far, little is known about the effects of chemical oxidation on leachates and properties of MPs. Here, we investigated the removal of pigment red from MPs by ozonation, Fenton, and heat-activated persulfate treatments, and further explored the nanoscale surface properties of treated MPs. Experimental results indicated that advanced oxidation processes effectively degraded pigment red released from MPs and the degradation rate was much faster than the leaching rate of pigments. Dominant reactive oxygen radicals in the ozone, Fenton, and heat-activated persulfate systems were identified as O2•-, HO•, and SO4•-, respectively. Height ranges of untreated, ozone-treated, Fenton-treated, and persulfate-treated MPs were 73 nm, 163 nm, 195 nm, and 206 nm, respectively. Oxidation of the -CH3 and -CH2 bonds occurred on the surface of treated MPs and the persulfate system achieved more serious oxidation degree than the ozone and Fenton systems. Addition of pigment red to the plastic polymer increased the glass transition temperature of MPs, which then showed a decline after advanced oxidation treatments except Fenton. The surface of persulfate-treated MPs was the stiffest, but the stiffness distribution of the ozone-treated and Fenton-treated MPs was more uneven. These research findings provide promising strategies to accelerate the aging process of MPs and contribute to a better understanding of the effects of aging on the environmental behavior of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yifeng Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
25
|
Baden N. Novel Method for High-Spatial-Resolution Chemical Analysis of Buried Polymer-Metal Interface: Atomic Force Microscopy-Infrared (AFM-IR) Spectroscopy with Low-Angle Microtomy. APPLIED SPECTROSCOPY 2021; 75:901-910. [PMID: 33739171 DOI: 10.1177/00037028211007187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
There is a great need for the analysis of the chemical composition, structure, functional groups, and interactions at polymer-metal interfaces in terms of adhesion, corrosion, and insulation. Although atomic force microscopy-based infrared (AFM-IR) spectroscopy can provide chemical analysis with nanoscale spatial resolution, it generally requires to thin a sample to be placed on a substrate that has low absorption of infrared light and high thermal conductivity, which is often difficult for samples that contain hard materials such as metals. This study demonstrates that the combination of AFM-IR with low-angle microtomy (LAM) sample preparation can analyze buried polymer-metal interfaces with higher spatial resolution than that with the conventional sample preparation of a thick vertical cross-section. In the LAM of a polymer layer on a metal substrate, the polymer layer is tapered to be thin in the vicinity of the interface, and thus, sample thinning is not required. An interface between an epoxyacrylate layer and copper wire in a flexible printed circuit cable was measured using this method. A carboxylate interphase layer with a thickness of ∼130 nm was clearly visualized at the interface, and its spectrum was obtained without any signal contamination from the neighboring epoxyacrylate, which was difficult to achieve on a thick vertical cross-section. The combination of AFM-IR with LAM is a simple and useful method for high-spatial-resolution chemical analysis of buried polymer-metal interfaces.
Collapse
Affiliation(s)
- Naoki Baden
- Nihon Thermal Consulting, Co., Ltd., 1-5-11 Nishishinjuku, Sinjuku-ku, Tokyo 160-0023, Japan
| |
Collapse
|
26
|
Otzen DE, Dueholm MS, Najarzadeh Z, Knowles TPJ, Ruggeri FS. In situ Sub-Cellular Identification of Functional Amyloids in Bacteria and Archaea by Infrared Nanospectroscopy. SMALL METHODS 2021; 5:e2001002. [PMID: 34927901 DOI: 10.1002/smtd.202001002] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/16/2021] [Indexed: 06/14/2023]
Abstract
Formation of amyloid structures is originally linked to human disease. However, amyloid materials are found extensively in the animal and bacterial world where they stabilize intra- and extra-cellular environments like biofilms or cell envelopes. To date, functional amyloids have largely been studied using optical microscopy techniques in vivo, or after removal from their biological context for higher-resolution studies in vitro. Furthermore, conventional microscopies only indirectly identify amyloids based on morphology or unspecific amyloid dyes. Here, the high chemical and spatial (≈20 nm) resolution of Infrared Nanospectroscopy (AFM-IR) to investigate functional amyloid from Escherichia coli (curli), Pseudomonas (Fap), and the Archaea Methanosaeta (MspA) in situ is exploited. It is demonstrated that AFM-IR identifies amyloid protein within single intact cells through their cross β-sheet secondary structure, which has a unique spectroscopic signature in the amide I band of protein. Using this approach, nanoscale-resolved chemical images and spectra of purified curli and Methanosaeta cell wall sheaths are provided. The results highlight significant differences in secondary structure between E. coli cells with and without curli. Taken together, these results suggest that AFM-IR is a new and powerful label-free tool for in situ investigations of the biophysical state of functional amyloid and biomolecules in general.
Collapse
Affiliation(s)
- Daniel E Otzen
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Morten S Dueholm
- Department of Chemistry and Bioscience, Aalborg University, Fredrik Bajers Vej 7H, Aalborg, 9220, Denmark
| | - Zahra Najarzadeh
- Interdisciplinary Nanoscience Center (iNANO), Aarhus University, Gustav Wieds Vej 14, Aarhus C, Aarhus, 8000, Denmark
| | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Cavendish Laboratory, University of Cambridge, Cambridge, CB30HE, UK
| | - Francesco Simone Ruggeri
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
- Laboratory of Organic Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
- Laboratory of Physical Chemistry, Wageningen University, Wageningen, WE 6703, the Netherlands
| |
Collapse
|
27
|
Waeytens J, Mathurin J, Deniset-Besseau A, Arluison V, Bousset L, Rezaei H, Raussens V, Dazzi A. Probing amyloid fibril secondary structures by infrared nanospectroscopy: experimental and theoretical considerations. Analyst 2021; 146:132-145. [PMID: 33107501 DOI: 10.1039/d0an01545h] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Amyloid fibrils are composed of aggregated peptides or proteins in a fibrillary structure with a higher β-sheet content than their native structure. Attenuated total reflection Fourier transform infrared spectroscopy only provides bulk analysis of a sample therefore it is impossible to discriminate between different aggregated structures. To overcome this limitation, near-field techniques like AFM-IR have emerged in the last twenty years to allow infrared nanospectroscopy. This technique obtains IR spectra with a spatial resolution of ten nanometres, the size of isolated fibrils. Here, we present essential practical considerations to avoid misinterpretations and artefacts during these analyses. Effects of polarization of the incident IR laser, illumination configuration and coating of the AFM probes are discussed, including the advantages and drawbacks of their use. This approach will improve interpretation of AFM-IR spectra especially for the determination of secondary structures of species not accessible using classical ATR-FTIR.
Collapse
Affiliation(s)
- Jehan Waeytens
- Structure et Fonction des Membranes Biologiques, Université libre de Bruxelles, Bruxelles, Belgique.
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Zhang F, Ge W, Wang C, Zheng X, Wang D, Zhang X, Wang X, Xue X, Qing G. Highly Strong and Solvent-Resistant Cellulose Nanocrystal Photonic Films for Optical Coatings. ACS APPLIED MATERIALS & INTERFACES 2021; 13:17118-17128. [PMID: 33793208 DOI: 10.1021/acsami.1c02753] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Cellulose nanocrystals (CNCs) are powerful photonic building blocks for the fabrication of biosourced colored films. A combination of the advantages of self-assembled CNCs and multiple templating agents offers access to the development of novel physicochemical sensors, structural coatings, and optic devices. However, due to the inherent brittleness and water instability of CNC-derived materials, their further applications are widely questionable and restrictive. Here, a soft polymer of poly(vinyl alcohol) (PVA) was introduced into the rigid CNC system to balance molecular interactions, whereafter two hard/soft nanocomposites were fastened through a cross-linking reaction of glutaraldehyde (GA), resulting in a highly flexible, water-stable, and chiral nematic CNC composite film through an evaporation-induced self-assembly technique. For a 1.5 wt % GA-cross-linked 70 wt % CNC loading film, its treatment with harsh hydrophilic exposure (soaking in a strong acid, strong base, and seawater) and various organic solvents show exceptional solvent-resistant abilities. Furthermore, the film can even withstand a weight of 167 g cm-2 without failure, which is a highly stiff and durable character. Importantly, the film remains a highly ordered chiral nematic organization, being able to act as a highly transparent substrate for selective reflection of left-handed circularly polarized light, preparing fully covered and patterned full-color coatings on various substrates. Our work paves the way for applications in low-cost, durable, and photonic cellulosic coatings.
Collapse
Affiliation(s)
- Fusheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Wenna Ge
- School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cunli Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xintong Zheng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Dongdong Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xiancheng Zhang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xue Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Xingya Xue
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangyan Qing
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, P. R. China
| |
Collapse
|
29
|
Luo H, Xiang Y, Tian T, Pan X. An AFM-IR study on surface properties of nano-TiO 2 coated polyethylene (PE) thin film as influenced by photocatalytic aging process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143900. [PMID: 33316515 DOI: 10.1016/j.scitotenv.2020.143900] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 11/18/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Most plastic wastes undergo extensive photo-aging in the environment, and the aged plastics exhibit different surface properties from pristine ones. Here, we investigate the surface properties of a nano-TiO2 coated polyethylene (PE) film as influenced by photocatalytic aging process using an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. Results showed that the height range of the as-prepared samples was about 30 nm, and the equivalent diameter of nano-TiO2 was ~70 nm. The photo-induced oxidation of the CH2 bond occurred on the surface of the PE film. Photo-aging mainly affected the thermal properties of PE film in a local area, especially affecting the components surrounding the nano-TiO2 particle. The glass transition temperature of unaged PE film mainly changed in the range of 93.9-96.5 °C, but after aging the temperature gradually increased with the distance to nano-TiO2 increasing from near to far. The plastic film surrounding the nano-TiO2 particle became stiffer after photo-aging, and the photocatalytic reaction had an effect on the stiffness of the film material. The second characteristic peaks with resonance deviations (i.e., 110, 112, and 115 kHz) were used for Lorentz contact resonance (LCR) measurements. The mechanical properties of PE film after photo-aging were closely related to the distance between nano-TiO2 and film surface. These research findings are conducive for us to understand better the photo-induced aging process of functional plastic film.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Tian Tian
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
30
|
Schwartz JJ, Le ST, Krylyuk S, Richter CA, Davydov AV, Centrone A. Substrate-mediated hyperbolic phonon polaritons in MoO 3. NANOPHOTONICS 2021; 10:10.1515/nanoph-2020-0640. [PMID: 36451975 PMCID: PMC9706547 DOI: 10.1515/nanoph-2020-0640] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Hyperbolic phonon polaritons (HPhPs) are hybrid excitations of light and coherent lattice vibrations that exist in strongly optically anisotropic media, including two-dimensional materials (e.g., MoO3). These polaritons propagate through the material's volume with long lifetimes, enabling novel mid-infrared nanophotonic applications by compressing light to sub-diffractional dimensions. Here, the dispersion relations and HPhP lifetimes (up to ≈12 ps) in single-crystalline α-MoO3 are determined by Fourier analysis of real-space, nanoscale-resolution polariton images obtained with the photothermal induced resonance (PTIR) technique. Measurements of MoO3 crystals deposited on periodic gratings show longer HPhPs propagation lengths and lifetimes (≈2×), and lower optical compressions, in suspended regions compared with regions in direct contact with the substrate. Additionally, PTIR data reveal MoO3 subsurface defects, which have a negligible effect on HPhP propagation, as well as polymeric contaminants localized under parts of the MoO3 crystals, which are derived from sample preparation. This work highlights the ability to engineer substrate-defined nanophotonic structures from layered anisotropic materials.
Collapse
Affiliation(s)
- Jeffrey J. Schwartz
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Institute for Research in Electronics and Applied Physics, University of Maryland, College Park, MD 20742, USA
| | - Son T. Le
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
- Theiss Research, La Jolla, CA 92037, USA
| | - Sergiy Krylyuk
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Curt A. Richter
- Physical Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | - Albert V. Davydov
- Material Measurement Laboratory, National Institute of Standards and Technology, Gaithersburg, MD 20899, USA
| | | |
Collapse
|
31
|
Luo H, Xiang Y, Li Y, Zhao Y, Pan X. Photocatalytic aging process of Nano-TiO 2 coated polypropylene microplastics: Combining atomic force microscopy and infrared spectroscopy (AFM-IR) for nanoscale chemical characterization. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124159. [PMID: 33080556 DOI: 10.1016/j.jhazmat.2020.124159] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/27/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) are considered to have greater environmental hazards than large plastics. Most MPs undergo different degrees of aging and aged MPs exhibit different physicochemical properties from pristine ones. This study successfully prepared a nano-TiO2 coated polypropylene MPs, and explored the nanoscale infrared, thermal, and mechanical properties of MPs before and after photo-aging using a combined AFM-IR technique. Surface height range of MPs was ± 25 nm. The signal intensity of the absorption peak at 1654 cm-1 in terms of vinylidene end groups gradually increased as the irradiation time prolonged. The softening temperature of MPs decreased from 126.7 °C to 108.5 °C as the irradiation time increased from 0 h to 4 h. The MPs after photo-aging became stiffer, especially for the components surrounding the nano-TiO2 particle, indicating that photocatalytic reaction accelerated the aging process of MPs. The resonance frequency of MPs surrounding the nano-TiO2 particle was stronger after photo-aging and the stiffer components were uniformly distributed, confirming that the thermal and mechanical properties of MPs changed after photo-aging. These novel findings are essential to better understand the changes in the surface microstructures, physical properties, and chemical compositions of MPs during aging process.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
32
|
V. D. dos Santos AC, Heydenreich R, Derntl C, Mach-Aigner AR, Mach RL, Ramer G, Lendl B. Nanoscale Infrared Spectroscopy and Chemometrics Enable Detection of Intracellular Protein Distribution. Anal Chem 2020; 92:15719-15725. [PMID: 33259186 PMCID: PMC7745202 DOI: 10.1021/acs.analchem.0c02228] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 11/16/2020] [Indexed: 02/08/2023]
Abstract
Determination of the intracellular location of proteins is one of the fundamental tasks of microbiology. Conventionally, label-based microscopy and super-resolution techniques are employed. In this work, we demonstrate a new technique that can determine intracellular protein distribution at nanometer spatial resolution. This method combines nanoscale spatial resolution chemical imaging using the photothermal-induced resonance (PTIR) technique with multivariate modeling to reveal the intracellular distribution of cell components. Here, we demonstrate its viability by imaging the distribution of major cellulases and xylanases in Trichoderma reesei using the colocation of a fluorescent label (enhanced yellow fluorescence protein, EYFP) with the target enzymes to calibrate the chemometric model. The obtained partial least squares model successfully shows the distribution of these proteins inside the cell and opens the door for further studies on protein secretion mechanisms using PTIR.
Collapse
Affiliation(s)
| | - Rosa Heydenreich
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Christian Derntl
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Astrid R. Mach-Aigner
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Robert L. Mach
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, Vienna 1060, Austria
| | - Georg Ramer
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| | - Bernhard Lendl
- Institute
of Chemical Technologies and Analytics, TU Wien, Vienna 1060, Austria
| |
Collapse
|
33
|
Wang H, Wang L, Janzen E, Edgar JH, Xu XG. Total Internal Reflection Peak Force Infrared Microscopy. Anal Chem 2020; 93:731-736. [DOI: 10.1021/acs.analchem.0c01176] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Haomin Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Le Wang
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| | - Eli Janzen
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506, United States
| | - James H. Edgar
- Tim Taylor Department of Chemical Engineering, Kansas State University, Durland Hall, Manhattan, Kansas 66506, United States
| | - Xiaoji G. Xu
- Department of Chemistry, Lehigh University, Bethlehem, Pennsylvania 18015, United States
| |
Collapse
|
34
|
Luo H, Xiang Y, Zhao Y, Li Y, Pan X. Nanoscale infrared, thermal and mechanical properties of aged microplastics revealed by an atomic force microscopy coupled with infrared spectroscopy (AFM-IR) technique. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 744:140944. [PMID: 32702545 DOI: 10.1016/j.scitotenv.2020.140944] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/10/2020] [Accepted: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Microplastics (MPs) often undergo different degrees of aging, and the aged MPs exhibit different surface properties from pristine MPs. This study explored the nanoscale infrared, thermal and mechanical properties of TiO2-pigmented MPs before and after aging by using an AFM-IR technique. Results showed that the surface of MPs was relatively smooth before aging, and was rough with more granular domains after aging. The stronger band at 1706 cm-1 (assigned to CO) and the weaker band at 1470 cm-1 (assigned to -CH2) were observed in aged MPs due to oxidation of CH bond in low-density polyethylene (LDPE). The softening temperature of MPs was about 209.50 ± 11.48 °C before aging, but after aging it dropped to 94.91 ± 4.40 °C. Aging process mainly reduced the glass transition temperature of the continuous phase (LDPE) rather than the discrete phase (TiO2) in MPs. Resonance deviations of the two characteristic peaks (i.e., 299/645 kHz and 311/670 kHz) between unaged and aged MPs were observed, and these characteristic peaks obviously appeared at higher frequencies in aged MPs, suggesting that the MPs after aging became stiffer. A stronger signal at a high frequency and the uniform signal distribution at this frequency confirmed that the mechanical properties of MPs changed after aging. These findings help to better understand the effects of aging process on the physicochemical properties of MPs.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yahui Xiang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yaoyao Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yu Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
35
|
Paz Ramos A, Gooris G, Bouwstra J, Molinari M, Lafleur M. Raman and AFM-IR chemical imaging of stratum corneum model membranes. CAN J CHEM 2020. [DOI: 10.1139/cjc-2019-0471] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Stratum corneum (SC), the outermost layer of the epidermis, is the primary barrier to percutaneous absorption. The diffusion of substances through the skin occurs through the SC lipid fraction, which is essentially constituted of an equimolar mixture of ceramides, free fatty acids, and cholesterol. The lipid constituents of SC are mainly forming continuous multilamellar membranes in the solid/crystalline state. However, recent findings suggest the presence of a highly disordered (liquid) phase formed by the unsaturated C18 chain of ceramide EOS, surrounded by a highly ordered lipid environment. The aim of the present work was to study the lipid spatial distribution of model SC membranes composed of ceramide EOS, ceramide NS, a mixture of free fatty acids, and cholesterol, using Raman microspectroscopy and AFM-IR spectroscopy techniques. The enhanced spatial resolution at the tens of nanometers scale of the AFM-IR technique revealed that the lipid matrix is overall homogeneous, with the presence of small, slightly enriched, and depleted regions in a lipid component. No liquid domains of ceramide EOS were observed at this scale, a result that is consistent with the model proposing that the oleate nanodrops are concentrated in the central layer of the three-layer organization of the SC membranes forming the long periodicity phase. In addition, both Raman microspectroscopy and AFM-IR techniques confirmed the fluid nature of the unsaturated chain of ceramide EOS while the rest of the lipid matrix was found highly ordered.
Collapse
Affiliation(s)
- Adrian Paz Ramos
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| | - Gert Gooris
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Joke Bouwstra
- Department of Drug Delivery Technology, Leiden Academic Centre for Drug Research, Einsteinweg 55, 2333 CC Leiden, the Netherlands
| | - Michael Molinari
- Institut de chimie et biologie des membranes et des nano-objets, CNRS UMR 5248, Université de Bordeaux, IPB, 33600 Pessac, France
| | - Michel Lafleur
- Department of Chemistry, Université de Montréal, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
36
|
Quaroni L. Imaging and spectroscopy of domains of the cellular membrane by photothermal-induced resonance. Analyst 2020; 145:5940-5950. [PMID: 32706007 DOI: 10.1039/d0an00696c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We use photothermal induced resonance (PTIR) imaging and spectroscopy, in resonant and non-resonant mode, to study the cytoplasmic membrane and surface of intact cells. Non-resonant PTIR images apparently provide rich details of the cell surface. However, we show that non-resonant image contrast does not arise from the infrared absorption of surface molecules and is instead dominated by the mechanics of tip-sample contact. In contrast, spectra and images of the cellular surface can be selectively obtained by tuning the pulsing structure of the laser to restrict thermal wave penetration to the surface layer. Resonant PTIR images reveal surface structures and domains that range in size from about 20 nm to 1 μm and are associated with the cytoplasmic membrane and its proximity. Resonant PTIR spectra of the cell surface are qualitatively comparable to far-field IR spectra and provide the first selective measurement of the IR absorption spectrum of the cellular membrane of an intact cell. In resonant PTIR images, signal intensity, and therefore contrast, can be ascribed to a variety of factors, including mechanical, thermodynamic and spectroscopic properties of the cellular surface. While PTIR images are difficult to interpret in terms of spectroscopic absorption, they are easy to collect and provide unique contrast mechanisms without any exogenous labelling. As such they provide a new paradigm in cellular imaging and membrane biology and can be used to address a range of critical questions, from the nature of membrane lipid domains to the mechanism of pathogen infection of a host cell.
Collapse
Affiliation(s)
- Luca Quaroni
- Department of Physical Chemistry and Electrochemistry, Faculty of Chemistry, Jagiellonian University, 30-387, Kraków, Poland.
| |
Collapse
|
37
|
Bildstein L, Deniset-Besseau A, Pasini I, Mazilier C, Keuong YW, Dazzi A, Baghdadli N. Discrete Nanoscale Distribution of Hair Lipids Fails to Provide Humidity Resistance. Anal Chem 2020; 92:11498-11504. [DOI: 10.1021/acs.analchem.0c01043] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lucien Bildstein
- L’Oréal Research & Innovation, 11 rue Dora Maar, F93400 Saint-Ouen, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Isabelle Pasini
- L’Oréal Research & Innovation, 1 av. Eugène Schueller, F93600 Aulnay-sous-Bois, France
| | - Christian Mazilier
- L’Oréal Research & Innovation, 11 rue Dora Maar, F93400 Saint-Ouen, France
| | - Yann Waye Keuong
- L’Oréal Research & Innovation, 11 rue Dora Maar, F93400 Saint-Ouen, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Nawel Baghdadli
- L’Oréal Research & Innovation, 1 av. Eugène Schueller, F93600 Aulnay-sous-Bois, France
| |
Collapse
|
38
|
Morsch S, Lyon S, Edmondson S, Gibbon S. Reflectance in AFM-IR: Implications for Interpretation and Remote Analysis of the Buried Interface. Anal Chem 2020; 92:8117-8124. [PMID: 32412736 PMCID: PMC7467426 DOI: 10.1021/acs.analchem.9b05793] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AFM-IR combines the chemical sensitivity of infrared spectroscopy with the lateral resolution of scanning probe microscopy, allowing nanoscale chemical analysis of almost any organic material under ambient conditions. As a result, this versatile technique is rapidly gaining popularity among materials scientists. Here, we report a previously overlooked source of data and artifacts in AFM-IR analysis; reflection from the buried interface. Periodic arrays of gold on glass are used to show that the overall signal in AFM-IR is affected by the wavelength-dependent reflectivity and thermal response of the underlying substrate. Excitingly, this demonstrates that remote analysis of heterogeneities at the buried interface is possible alongside that of an overlying organic film. On the other hand, AFM-IR users should carefully consider the composition and topography of underlying substrates when interpreting nanoscale infrared data. The common practice of generating ratio images, or indeed the normalization of AFM-IR spectra, should be approached with caution in the presence of substrate heterogeneity or variable sample thickness.
Collapse
Affiliation(s)
- Suzanne Morsch
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Stuart Lyon
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Steve Edmondson
- School of Materials, The University of Manchester, The Mill, Sackville St, Manchester M13 9PL, United Kingdom
| | - Simon Gibbon
- AkzoNobel, Stoneygate Lane, Felling, Gateshead, Tyne and Wear NE10 0JY, United Kingdom
| |
Collapse
|
39
|
Ruggeri FS, Mannini B, Schmid R, Vendruscolo M, Knowles TPJ. Single molecule secondary structure determination of proteins through infrared absorption nanospectroscopy. Nat Commun 2020; 11:2945. [PMID: 32522983 PMCID: PMC7287102 DOI: 10.1038/s41467-020-16728-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/11/2020] [Indexed: 12/21/2022] Open
Abstract
The chemical and structural properties of biomolecules determine their interactions, and thus their functions, in a wide variety of biochemical processes. Innovative imaging methods have been developed to characterise biomolecular structures down to the angstrom level. However, acquiring vibrational absorption spectra at the single molecule level, a benchmark for bulk sample characterization, has remained elusive. Here, we introduce off-resonance, low power and short pulse infrared nanospectroscopy (ORS-nanoIR) to allow the acquisition of infrared absorption spectra and chemical maps at the single molecule level, at high throughput on a second timescale and with a high signal-to-noise ratio (~10-20). This high sensitivity enables the accurate determination of the secondary structure of single protein molecules with over a million-fold lower mass than conventional bulk vibrational spectroscopy. These results pave the way to probe directly the chemical and structural properties of individual biomolecules, as well as their interactions, in a broad range of chemical and biological systems.
Collapse
Affiliation(s)
| | - Benedetta Mannini
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | - Roman Schmid
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK
| | | | - Tuomas P J Knowles
- Department of Chemistry, University of Cambridge, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| |
Collapse
|
40
|
Kurouski D, Dazzi A, Zenobi R, Centrone A. Infrared and Raman chemical imaging and spectroscopy at the nanoscale. Chem Soc Rev 2020; 49:3315-3347. [PMID: 32424384 PMCID: PMC7675782 DOI: 10.1039/c8cs00916c] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The advent of nanotechnology, and the need to understand the chemical composition at the nanoscale, has stimulated the convergence of IR and Raman spectroscopy with scanning probe methods, resulting in new nanospectroscopy paradigms. Here we review two such methods, namely photothermal induced resonance (PTIR), also known as AFM-IR and tip-enhanced Raman spectroscopy (TERS). AFM-IR and TERS fundamentals will be reviewed in detail together with their recent crucial advances. The most recent applications, now spanning across materials science, nanotechnology, biology, medicine, geology, optics, catalysis, art conservation and other fields are also discussed. Even though AFM-IR and TERS have developed independently and have initially targeted different applications, rapid innovation in the last 5 years has pushed the performance of these, in principle spectroscopically complimentary, techniques well beyond initial expectations, thus opening new opportunities for their convergence. Therefore, subtle differences and complementarity will be highlighted together with emerging trends and opportunities.
Collapse
Affiliation(s)
- Dmitry Kurouski
- Department Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843, USA.
| | | | | | | |
Collapse
|
41
|
Morsch S, Liu Y, Lyon S, Gibbon S, Gabriele B, Malanin M, Eichhorn KJ. Examining the early stages of thermal oxidative degradation in epoxy-amine resins. Polym Degrad Stab 2020. [DOI: 10.1016/j.polymdegradstab.2020.109147] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Esteve E, Luque Y, Waeytens J, Bazin D, Mesnard L, Jouanneau C, Ronco P, Dazzi A, Daudon M, Deniset-Besseau A. Nanometric Chemical Speciation of Abnormal Deposits in Kidney Biopsy: Infrared-Nanospectroscopy Reveals Heterogeneities within Vancomycin Casts. Anal Chem 2020; 92:7388-7392. [PMID: 32406230 DOI: 10.1021/acs.analchem.0c00290] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Infrared (IR) spectromicroscopy allows chemical mapping of a kidney biopsy. It is particularly interesting for chemical speciation of abnormal tubular deposits and calcification. In 2017, using IR spectromicroscopy, we described a new entity called vancomycin cast nephropathy. However, despite recent progresses, the IR microspectrometer spatial resolution is intrinsically limited by diffraction (a few micrometers). Combining atomic force microscopy and IR lasers (AFMIR) allows acquisition of infrared absorption spectra with a resolution and sensitivity in between 10 and 100 nm. Here we show that AFMIR can be used on standard paraffin embedded kidney biopsies. Vancomycin cast could be identified in a damaged tubule. Interestingly unlike standard IR spectromicroscopy, AFMIR revealed heterogeneity of the deposits and established that vancomycin coprecipitated with phosphate containing molecules. These findings highlight the high potential of this approach with nanometric spatial resolution which opens new perspectives for studies on drug-induced nephritis, nanocrystals, and local lipid or carbohydrates alterations.
Collapse
Affiliation(s)
- Emmanuel Esteve
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Yosu Luque
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Jehan Waeytens
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France.,Structure et Fonction des Membranes Biologiques, Faculté des Sciences, Université Libre de Bruxelles (ULB), CP 206/02, Boulevard du Triomphe, B-1050 Bruxelles, Belgium
| | - Dominique Bazin
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Laurent Mesnard
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Urgences Néphrologiques et Transplantation Rénale, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Chantal Jouanneau
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France
| | - Pierre Ronco
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Nephrology and Dialysis Department, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Michel Daudon
- Sorbonne Université, UPMC Paris 06, Institut National de la Santé et de la Recherche Médicale, Unité Mixte de Recherche S 1155, F-75020 Paris, France.,Explorations Fonctionnelles Multidisciplinaires, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, 75020 Paris, France
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| |
Collapse
|
43
|
Nguyen-Tri P, Ghassemi P, Carriere P, Nanda S, Assadi AA, Nguyen DD. Recent Applications of Advanced Atomic Force Microscopy in Polymer Science: A Review. Polymers (Basel) 2020; 12:E1142. [PMID: 32429499 PMCID: PMC7284686 DOI: 10.3390/polym12051142] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/11/2020] [Accepted: 05/13/2020] [Indexed: 12/26/2022] Open
Abstract
Atomic force microscopy (AFM) has been extensively used for the nanoscale characterization of polymeric materials. The coupling of AFM with infrared spectroscope (AFM-IR) provides another advantage to the chemical analyses and thus helps to shed light upon the study of polymers. This paper reviews some recent progress in the application of AFM and AFM-IR in polymer science. We describe the principle of AFM-IR and the recent improvements to enhance its resolution. We also discuss the latest progress in the use of AFM-IR as a super-resolution correlated scanned-probe infrared spectroscopy for the chemical characterization of polymer materials dealing with polymer composites, polymer blends, multilayers, and biopolymers. To highlight the advantages of AFM-IR, we report several results in studying the crystallization of both miscible and immiscible blends as well as polymer aging. Finally, we demonstrate how this novel technique can be used to determine phase separation, spherulitic structure, and crystallization mechanisms at nanoscales, which has never been achieved before. The review also discusses future trends in the use of AFM-IR in polymer materials, especially in polymer thin film investigation.
Collapse
Affiliation(s)
- Phuong Nguyen-Tri
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Payman Ghassemi
- Département de Chimie, Biochimie et Physique, Université du Québec à Trois-Rivières (UQTR), Trois-Rivières, QC G8Z 4M3, Canada;
| | - Pascal Carriere
- Laboratoire MAPIEM (EA 4323), Matériaux Polymères Interfaces Environnement Marin, Université de Toulon, CEDEX 9, 83041 Toulon, France;
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, SK S7N 5A2, Canada;
| | - Aymen Amine Assadi
- ENSCR—Institut des Sciences Chimiques de Rennes (ISCR)—UMR CNRS 6226, Univ Rennes, 35700 Rennes, France;
| | - Dinh Duc Nguyen
- Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, 300A Nguyen Tat Thanh, District 4, Ho Chi Minh City 755414, Vietnam;
- Department of Environmental Energy Engineering, Kyonggi University, Suwon 16227, Korea
| |
Collapse
|
44
|
Kemel K, Deniset-Besseau A, Baillet-Guffroy A, Faivre V, Dazzi A, Laugel C. Nanoscale investigation of human skin and study of skin penetration of Janus nanoparticles. Int J Pharm 2020; 579:119193. [PMID: 32135229 DOI: 10.1016/j.ijpharm.2020.119193] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 02/28/2020] [Accepted: 02/29/2020] [Indexed: 11/28/2022]
Abstract
Janus nanoparticles (JNP) are innovative nanocarriers with an interesting pharmaceutical and cosmetic potential. They are characterized by the presence of a lipid compartment associated with an aqueous compartment delimited by a phospholipid bilayer containing phospholipids and non-ionic surfactants. The hydrodynamic diameter of JNP varies between 150 and 300 nm. The purpose of this study was to answer the following questions: after cutaneous application, are JNP penetrating? If so, how deep? And in which state, intact or degraded? It was essential to understand these phenomena in order to control the rate and kinetics of diffusion of active ingredients, which can be encapsulated in this vehicle for pharmaceutical or cosmetic purposes. An innovative technique called AFM-IR, was used to elucidate the behavior of JNP after cutaneous application. This instrument, coupling atomic force microscopy and IR spectroscopy, allowing to perform chemical analysis at the nanometer scale thanks to local absorption measurements. The identification of organic molecules at the nanoscale is possible without any labelling. Before cutaneous application of JNP, the nano-structure of untreated human skin was investigated with AFM-IR. Then, in vitro human skin penetration of JNP was studied using Franz cells, and AFM-IR allowed us to perform ultra-local information investigations.
Collapse
Affiliation(s)
- Kamilia Kemel
- U-Psud, Univ. Paris-Saclay, Lip(Sys)2 Chimie Analytique Pharmaceutique, EA7357, UFR-Pharmacy, Châtenay-Malabry, France.
| | - Ariane Deniset-Besseau
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Arlette Baillet-Guffroy
- U-Psud, Univ. Paris-Saclay, Lip(Sys)2 Chimie Analytique Pharmaceutique, EA7357, UFR-Pharmacy, Châtenay-Malabry, France
| | - Vincent Faivre
- Equipe Physico-chimie des Systèmes Polyphasés, UMR CNRS 8612, Labex LERMIT Université Paris Sud, France
| | - Alexandre Dazzi
- Université Paris-Saclay, CNRS, Institut de Chimie Physique, UMR 8000, 91405 Orsay, France
| | - Cécile Laugel
- U-Psud, Univ. Paris-Saclay, Lip(Sys)2 Chimie Analytique Pharmaceutique, EA7357, UFR-Pharmacy, Châtenay-Malabry, France
| |
Collapse
|
45
|
Beebe JM, Swatowski BW, Weidner WK, Shepherd DA, Reinhardt CW, Rickard MA, Meyers GF. Semiquantitative Atomic Force Microscopy-Infrared Spectroscopy Analysis of Chemical Gradients in Silicone Optical Waveguides. ACS APPLIED MATERIALS & INTERFACES 2020; 12:11287-11295. [PMID: 32049488 DOI: 10.1021/acsami.0c00350] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Crossing losses in silicone optical waveguides are related to the magnitude and spatial extent of the waveguide refractive index gradient. When processing conditions are altered, the refractive index gradient can vary substantially, even when the formulation remains constant. Controlling the refractive index gradient requires control of the concentration of small molecules present within the core and clad layers. Developing a fundamental understanding of how small molecule migration drives changes in crossing loss requires the ability to examine chemical functionality over small length scales, which is a natural fit for atomic force microscopy-infrared spectroscopy (AFM-IR). In this work, AFM-IR spectra from model bilayer stacks are initially examined to understand molecular migration that occurs from heating the core and clad layers. The results of these model studies are then applied to photopatterned waveguide builds, where structure-function relationships are constructed between values of crossing loss and the concentration of C-H and O-H functionalities present in the core and clad layers. Results show that small molecule evaporation and migration are competing processes that need to be controlled to minimize crossing loss.
Collapse
Affiliation(s)
- Jeremy M Beebe
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | | | - W Ken Weidner
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Debra A Shepherd
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Carl W Reinhardt
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Mark A Rickard
- The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Gregory F Meyers
- The Dow Chemical Company, Midland, Michigan 48674, United States
| |
Collapse
|
46
|
Ramer G, Tuteja M, Matson JR, Davanco M, Folland TG, Kretinin A, Taniguchi T, Watanabe K, Novoselov KS, Caldwell JD, Centrone A. High- Q dark hyperbolic phonon-polaritons in hexagonal boron nitride nanostructures. NANOPHOTONICS 2020; 9:10.1515/nanoph-2020-0048. [PMID: 33365225 PMCID: PMC7754710 DOI: 10.1515/nanoph-2020-0048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The anisotropy of hexagonal boron nitride (hBN) gives rise to hyperbolic phonon-polaritons (HPhPs), notable for their volumetric frequency-dependent propagation and strong confinement. For frustum (truncated nanocone) structures, theory predicts five, high-order HPhPs, sets, but only one set was observed previously with far-field reflectance and scattering-type scanning near-field optical microscopy. In contrast, the photothermal induced resonance (PTIR) technique has recently permitted sampling of the full HPhP dispersion and observing such elusive predicted modes; however, the mechanism underlying PTIR sensitivity to these weakly-scattering modes, while critical to their understanding, has not yet been clarified. Here, by comparing conventional contact- and newly developed tapping-mode PTIR, we show that the PTIR sensitivity to those weakly-scattering, high-Q (up to ≈280) modes is, contrary to a previous hypothesis, unrelated to the probe operation (contact or tapping) and is instead linked to PTIR ability to detect tip-launched dark, volumetrically-confined polaritons, rather than nanostructure-launched HPhPs modes observed by other techniques. Furthermore, we show that in contrast with plasmons and surface phonon-polaritons, whose Q-factors and optical cross-sections are typically degraded by the proximity of other nanostructures, the high-Q HPhP resonances are preserved even in high-density hBN frustum arrays, which is useful in sensing and quantum emission applications.
Collapse
Affiliation(s)
- Georg Ramer
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Mohit Tuteja
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA; Maryland Nanocenter, University of Maryland, College Park, MD, 20742, USA
| | - Joseph R. Matson
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Marcelo Davanco
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| | - Thomas G. Folland
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrey Kretinin
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK
| | - Takashi Taniguchi
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kenji Watanabe
- National Institute for Materials Science, 1-1 Maniki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Kostya S. Novoselov
- School of Physics and Astronomy, University of Manchester, Oxford Rd, Manchester, M13 9PL, UK; Chongqing 2D Materials Institute, Liangjiang New Area, Chongqing, 400714, China
| | - Joshua D. Caldwell
- Department of Mechanical Engineering, Vanderbilt University, 101 Olin Hall, Nashville, TN, 37212, USA
| | - Andrea Centrone
- Physical Measurement Laboratory, National Institute of Standards and Technology, 100 Bureau Dr., Gaithersburg, MD, 20899, USA
| |
Collapse
|
47
|
Quaroni L. Characterization of Intact Eukaryotic Cells with Subcellular Spatial Resolution by Photothermal-Induced Resonance Infrared Spectroscopy and Imaging. Molecules 2019; 24:E4504. [PMID: 31835358 PMCID: PMC6943681 DOI: 10.3390/molecules24244504] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 12/14/2022] Open
Abstract
Photothermal-induced resonance (PTIR) spectroscopy and imaging with infrared light has seen increasing application in the molecular spectroscopy of biological samples. The appeal of the technique lies in its capability to provide information about IR light absorption at a spatial resolution better than that allowed by light diffraction, typically below 100 nm. In the present work, we tested the capability of the technique to perform measurements with subcellular resolution on intact eukaryotic cells, without drying or fixing. We demonstrate the possibility of obtaining PTIR images and spectra from the nucleus and multiple organelles with high resolution, better than that allowed by diffraction with infrared light. We obtain particularly strong signal from bands typically assigned to acyl lipids and proteins. We also show that while a stronger signal is obtained from some subcellular structures, other large subcellular components provide a weaker or undetectable PTIR response. The mechanism that underlies such variability in response is presently unclear. We propose and discuss different possibilities, addressing thermomechanical, geometrical, and electrical properties of the sample and the presence of cellular water, from which the difference in response may arise.
Collapse
Affiliation(s)
- Luca Quaroni
- Faculty of Chemistry, Jagiellonian University, ul. Gronostajowa 2, 30-387 Kraków, Poland; ; Tel.: +48-12-6862520
- Institute of Nuclear Physics, Polish Academy of Sciences, ul. Radzikowskiego 152, 31-342 Kraków, Poland
| |
Collapse
|
48
|
Advanced Characterizations of Solid Electrolyte Interphases in Lithium-Ion Batteries. ELECTROCHEM ENERGY R 2019. [DOI: 10.1007/s41918-019-00058-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
49
|
Wang L, Jakob DS, Wang H, Apostolos A, Pires MM, Xu XG. Generalized Heterodyne Configurations for Photoinduced Force Microscopy. Anal Chem 2019; 91:13251-13259. [PMID: 31545025 DOI: 10.1021/acs.analchem.9b03712] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Infrared chemical microscopy through mechanical probing of light-matter interactions by atomic force microscopy (AFM) bypasses the diffraction limit. One increasingly popular technique is photoinduced force microscopy (PiFM), which utilizes the mechanical heterodyne signal detection between cantilever mechanical resonant oscillations and the photoinduced force from the light-matter interaction. So far, PiFM has been operated in only one heterodyne configuration. In this Article, we generalize heterodyne configurations of PiFM by introducing two new schemes: harmonic heterodyne detection and sequential heterodyne detection. In harmonic heterodyne detection, the laser repetition rate matches integer fractions of the difference between the two mechanical resonant modes of the AFM cantilever. The high harmonic of the beating from the photothermal expansion mixes with the AFM cantilever oscillation to provide the PiFM signal. In sequential heterodyne detection, the combination of the repetition rate of laser pulses and the polarization modulation frequency matches the difference between two AFM mechanical modes, leading to detectable PiFM signals. These two generalized heterodyne configurations for PiFM deliver new avenues for chemical imaging and broadband spectroscopy at ∼10 nm spatial resolution. They are suitable for a wide range of heterogeneous materials across various disciplines: from structured polymer film, to polaritonic boron nitride materials, to isolated bacterial peptidoglycan cell walls. The generalized heterodyne configurations introduce flexibility for the implementation of PiFM and the related tapping-mode AFM-IR and provide possibilities for an additional modulation channel in PiFM for targeted signal extraction with nanoscale spatial resolution.
Collapse
Affiliation(s)
- Le Wang
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Devon S Jakob
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Haomin Wang
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Alexis Apostolos
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Marcos M Pires
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| | - Xiaoji G Xu
- Department of Chemistry , Lehigh University , 6 East Packer Avenue , Bethlehem , Pennsylvania 18015 , United States
| |
Collapse
|
50
|
Khanal D, Chang RYK, Morales S, Chan HK, Chrzanowski W. High Resolution Nanoscale Probing of Bacteriophages in an Inhalable Dry Powder Formulation for Pulmonary Infections. Anal Chem 2019; 91:12760-12767. [DOI: 10.1021/acs.analchem.9b02282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dipesh Khanal
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sandra Morales
- AmpliPhi Biosciences AU, Brookvale, Sydney, NSW 2001, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
| | - Wojciech Chrzanowski
- Sydney Pharmacy School, The University of Sydney, Sydney, NSW 2006, Australia
- Sydney Nano Institute, Faculty of Medicine and Health, Sydney Pharmacy School, The University of Sydney, Sydney, New South Wales 2006, Australia
| |
Collapse
|