1
|
Wu KY, Mina M, Carbonneau M, Marchand M, Tran SD. Advancements in Wearable and Implantable Intraocular Pressure Biosensors for Ophthalmology: A Comprehensive Review. MICROMACHINES 2023; 14:1915. [PMID: 37893352 PMCID: PMC10609220 DOI: 10.3390/mi14101915] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/29/2023]
Abstract
Glaucoma, marked by its intricate association with intraocular pressure (IOP), stands as a predominant cause of non-reversible vision loss. In this review, the physiological relevance of IOP is detailed, alongside its potential pathological consequences. The review further delves into innovative engineering solutions for IOP monitoring, highlighting the latest advancements in wearable and implantable sensors and their potential in enhancing glaucoma management. These technological innovations are interwoven with clinical practice, underscoring their real-world applications, patient-centered strategies, and the prospects for future development in IOP control. By synthesizing theoretical concepts, technological innovations, and practical clinical insights, this review contributes a cohesive and comprehensive perspective on the IOP biosensor's role in glaucoma, serving as a reference for ophthalmological researchers, clinicians, and professionals.
Collapse
Affiliation(s)
- Kevin Y. Wu
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Mina Mina
- Department of Mechanical and Manufacturing Engineering, University of Calgary, Calgary, AB T2N 1N4, Canada
| | - Marjorie Carbonneau
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Michael Marchand
- Department of Surgery, Division of Ophthalmology, University of Sherbrooke, Sherbrooke, QC J1G 2E8, Canada; (K.Y.W.)
| | - Simon D. Tran
- Faculty of Dental Medicine and Oral Health Sciences, McGill University, Montreal, QC H3A 1G1, Canada
| |
Collapse
|
2
|
Lai CF, Shiau FJ. Enhanced and Extended Ophthalmic Drug Delivery by pH-Triggered Drug-Eluting Contact Lenses with Large-Pore Mesoporous Silica Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18630-18638. [PMID: 37023369 DOI: 10.1021/acsami.2c22860] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Drug-eluting contact lenses (DCLs) have attracted considerable attention as potential therapeutic ophthalmic drug delivery devices. In this study, we propose, fabricate, and investigate pH-triggered DCLs that are combined with large-pore mesoporous silica nanoparticles (LPMSNs). Compared to reference DCLs, LPMSN-laden DCLs can prolong the residence time of glaucoma drugs in an artificial lacrimal fluid (ALF) environment at pH 7.4. Additionally, LPMSN-laden DCLs do not require drug preloading and are compatible with current contact lens manufacturing processes. LPMSN-laden DCLs soaked at pH 6.5 exhibit better drug loading than reference DCLs due to their specific adsorption. The sustained and extended release of glaucoma drugs by LPMSN-laden DCLs was successfully monitored in ALF, and the drug release mechanism was further explained. We also evaluated the cytotoxicity of LPMSN-laden DCLs, and qualitative and quantitative results showed no cytotoxicity. Our experimental results demonstrate that LPMSNs are excellent nanocarriers that have the potential to be used as safe and stable nanocarriers for the delivery of glaucoma drugs or other drugs. pH-triggered LPMSN-laden DCLs can significantly improve drug loading efficiency and control prolonged drug release, indicating that they have great potential for future biomedical applications.
Collapse
Affiliation(s)
- Chun-Feng Lai
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| | - Fu-Jia Shiau
- Department of Photonics, Feng Chia University, No. 100, Wenhwa Road, Seatwen, Taichung 40724, Taiwan
| |
Collapse
|
3
|
Liu J, Su C, Chen Y, Tian S, Lu C, Huang W, Lv Q. Current Understanding of the Applications of Photocrosslinked Hydrogels in Biomedical Engineering. Gels 2022; 8:gels8040216. [PMID: 35448118 PMCID: PMC9026461 DOI: 10.3390/gels8040216] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/29/2022] [Accepted: 03/30/2022] [Indexed: 02/01/2023] Open
Abstract
Hydrogel materials have great application value in biomedical engineering. Among them, photocrosslinked hydrogels have attracted much attention due to their variety and simple convenient preparation methods. Here, we provide a systematic review of the biomedical-engineering applications of photocrosslinked hydrogels. First, we introduce the types of photocrosslinked hydrogel monomers, and the methods for preparation of photocrosslinked hydrogels with different morphologies are summarized. Subsequently, various biomedical applications of photocrosslinked hydrogels are reviewed. Finally, some shortcomings and development directions for photocrosslinked hydrogels are considered and proposed. This paper is designed to give researchers in related fields a systematic understanding of photocrosslinked hydrogels and provide inspiration to seek new development directions for studies of photocrosslinked hydrogels or related materials.
Collapse
Affiliation(s)
- Juan Liu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunyu Su
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Yutong Chen
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Shujing Tian
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Chunxiu Lu
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
| | - Wei Huang
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Correspondence: (W.H.); (Q.L.)
| | - Qizhuang Lv
- College of Biology & Pharmacy, Yulin Normal University, Yulin 537000, China; (J.L.); (C.S.); (Y.C.); (S.T.); (C.L.)
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin 537000, China
- Correspondence: (W.H.); (Q.L.)
| |
Collapse
|
4
|
Liu Y, Zeng S, Ji W, Yao H, Lin L, Cui H, Santos HA, Pan G. Emerging Theranostic Nanomaterials in Diabetes and Its Complications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2102466. [PMID: 34825525 PMCID: PMC8787437 DOI: 10.1002/advs.202102466] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/03/2021] [Indexed: 05/14/2023]
Abstract
Diabetes mellitus (DM) refers to a group of metabolic disorders that are characterized by hyperglycemia. Oral subcutaneously administered antidiabetic drugs such as insulin, glipalamide, and metformin can temporarily balance blood sugar levels, however, long-term administration of these therapies is associated with undesirable side effects on the kidney and liver. In addition, due to overproduction of reactive oxygen species and hyperglycemia-induced macrovascular system damage, diabetics have an increased risk of complications. Fortunately, recent advances in nanomaterials have provided new opportunities for diabetes therapy and diagnosis. This review provides a panoramic overview of the current nanomaterials for the detection of diabetic biomarkers and diabetes treatment. Apart from diabetic sensing mechanisms and antidiabetic activities, the applications of these bioengineered nanoparticles for preventing several diabetic complications are elucidated. This review provides an overall perspective in this field, including current challenges and future trends, which may be helpful in informing the development of novel nanomaterials with new functions and properties for diabetes diagnosis and therapy.
Collapse
Affiliation(s)
- Yuntao Liu
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Siqi Zeng
- College of Food ScienceSichuan Agricultural UniversityYaan625014China
| | - Wei Ji
- Department of PharmaceuticsSchool of PharmacyJiangsu UniversityZhenjiangJiangsu212013China
| | - Huan Yao
- Sichuan Institute of Food InspectionChengdu610097China
| | - Lin Lin
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Haiying Cui
- School of Food & Biological EngineeringJiangsu UniversityZhenjiang212013China
| | - Hélder A. Santos
- Drug Research ProgramDivision of Pharmaceutical Chemistry and TechnologyFaculty of PharmacyUniversity of HelsinkiHelsinkiFI‐00014Finland
- Department of Biomedical Engineering and W.J. Kolff Institute for Biomedical Engineering and Materials ScienceUniversity of Groningen/University Medical Center GroningenAnt. Deusinglaan 1Groningen9713 AVThe Netherlands
| | - Guoqing Pan
- Institute for Advanced MaterialsSchool of Materials Science and EngineeringJiangsu UniversityZhenjiangJiangsu212013China
| |
Collapse
|
5
|
Shi Y, Jiang N, Bikkannavar P, Cordeiro MF, Yetisen AK. Ophthalmic sensing technologies for ocular disease diagnostics. Analyst 2021; 146:6416-6444. [PMID: 34591045 DOI: 10.1039/d1an01244d] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Point-of-care diagnosis and personalized treatments are critical in ocular physiology and disease. Continuous sampling of tear fluid for ocular diagnosis is a need for further exploration. Several techniques have been developed for possible ophthalmological applications, from traditional spectroscopies to wearable sensors. Contact lenses are commonly used devices for vision correction, as well as for other therapeutic and cosmetic purposes. They are increasingly being developed into ocular sensors, being used to sense and monitor biochemical analytes in tear fluid, ocular surface temperature, intraocular pressure, and pH value. These sensors have had success in detecting ocular conditions, optimizing pharmaceutical treatments, and tracking treatment efficacy in point-of-care settings. However, there is a paucity of new and effective instrumentation reported in ophthalmology. Hence, this review will summarize the applied ophthalmic technologies for ocular diagnostics and tear monitoring, including both conventional and biosensing technologies. Besides applications of smart readout devices for continuous monitoring, targeted biomarkers are also discussed for the convenience of diagnosis of various ocular diseases. A further discussion is also provided for future aspects and market requirements related to the commercialization of novel types of contact lens sensors.
Collapse
Affiliation(s)
- Yuqi Shi
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| | - Nan Jiang
- West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China.
| | | | - M Francesca Cordeiro
- UCL Institute of Ophthalmology, London, UK.,ICORG, Imperial College London, London, UK
| | - Ali K Yetisen
- Department of Chemical Engineering, Imperial College London, South Kensington, London, SW7 2BU, UK.
| |
Collapse
|
6
|
Novel Contact Lenses Embedded with Drug-Loaded Zwitterionic Nanogels for Extended Ophthalmic Drug Delivery. NANOMATERIALS 2021; 11:nano11092328. [PMID: 34578644 PMCID: PMC8465176 DOI: 10.3390/nano11092328] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 08/30/2021] [Accepted: 09/05/2021] [Indexed: 12/21/2022]
Abstract
Therapeutic ophthalmic contact lenses with prolonged drug release and improved bioavailability have been developed to circumvent tedious eye drop instillation. In this work, zwitterionic nanogels based on poly(sulfobetaine methacrylate) (PSBMA) were easily fabricated by one-step reflux-precipitation polymerization, with the advantages of being surfactant-free and morphology controlled. Then, the ophthalmic drug levofloxacin (LEV) was encapsulated into the nanogels. A set of contact lenses with varied nanogel-loading content was fabricated by the cast molding method, with the drug-loaded nanogels dispersed in pre-monomer solutions composed of 2-hydroxyethyl methacrylate (HEMA) and N-vinyl-2-pyrrolidone (NVP). The structure, surface morphology, water contact angle (WCA), equilibrium water content (EWC), transmittance, and mechanical properties of the contact lenses were subsequently investigated, and in vitro drug release and biocompatibility were further evaluated. As a result, the optimized contact lens with nanogel-loading content of 8 wt% could sustainably deliver LEV for ten days, with critical lens properties within the range of recommended values for commercial contact lenses. Moreover, cell viability assays revealed that the prepared contact lenses were cytocompatible, suggesting their significant potential as an alternative to traditional eye drops or ointment formulations for long-term oculopathy treatment.
Collapse
|
7
|
Wang Y, Zhao Q, Du X. Structurally coloured contact lens sensor for point-of-care ophthalmic health monitoring. J Mater Chem B 2021; 8:3519-3526. [PMID: 31989133 DOI: 10.1039/c9tb02389e] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Point-of-care (POC) diagnosis is of great significance in offering precise and personalized treatment for patients with eye diseases. Contact lenses, as a kind of popular wearable device on the eye, provide a suitable platform for the integration of biosensors for the POC diagnosis of eye diseases. However, existing contact lens sensors usually involve complex electronics and circuits, the manufacturing of which is complicated and signal readout requires additional instruments. To realize the instrument-free detection of pathologically relevant signals of eye diseases, we successfully established a structurally coloured contact lens sensor with a tunable colour in this investigation, which can directly report changes in moisture and pressure that are critical signs for xerophthalmia and glaucoma diagnosis, respectively, by altering colours. Importantly, this structurally coloured contact lens sensor is made solely from a biocompatible hydrogel, without the addition of any chemical pigments, therefore exhibiting superior biosafety and wearing comfort for wearable applications. With both excellent biocompatibility and sensing capabilities, this structurally coloured contact lens sensors thus holds great promise for instrument-free ophthalmic health monitoring, which will benefit a large proportion of the population that have a high risk of eye disease.
Collapse
Affiliation(s)
- Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035, China.
| | | | | |
Collapse
|
8
|
Zhao Q, Li C, Shum HC, Du X. Shape-adaptable biodevices for wearable and implantable applications. LAB ON A CHIP 2020; 20:4321-4341. [PMID: 33232418 DOI: 10.1039/d0lc00569j] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Emerging wearable and implantable biodevices have been significantly revolutionizing the diagnosis and treatment of disease. However, the geometrical mismatch between tissues and biodevices remains a great challenge for achieving optimal performances and functionalities for biodevices. Shape-adaptable biodevices enabling active compliance with human body tissues offer promising opportunities for addressing the challenge through programming their geometries on demand. This article reviews the design principles and control strategies for shape-adaptable biodevices with programmable shapes and actively compliant capabilities, which have offered innovative diagnostic/therapeutic tools and facilitated a variety of wearable and implantable applications. The state-of-the-art progress in applications of shape-adaptable biodevices in the fields of smart textiles, wound care, healthcare monitoring, drug and cell delivery, tissue repair and regeneration, nerve stimulation and recording, and biopsy and surgery, is highlighted. Despite the remarkable advances already made, shape-adaptable biodevices still confront many challenges on the road toward the clinic, such as enhanced intelligence for actively sensing and operating in response to physiological environments. Next-generation paradigms will shed light on future directions for extending the breadth and performance of shape-adaptable biodevices for wearable and implantable applications.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology (SIAT), Chinese Academy of Sciences (CAS), Shenzhen, 518035 China.
| | | | | | | |
Collapse
|
9
|
Shen X, Du J, Sun J, Guo J, Hu X, Wang C. Transparent and UV Blocking Structural Colored Hydrogel for Contact Lenses. ACS APPLIED MATERIALS & INTERFACES 2020; 12:39639-39648. [PMID: 32805949 DOI: 10.1021/acsami.0c10763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Usually, materials with perfect structures possess excellent properties, but it is not always the case. Here, a new approach is reported to construct structural colored hydrogel films with excellent ultraviolet (UV) blocking performance for contact lenses. The theoretical simulation predicts that with perfect periodic structures, the hydrogel films can strongly reflect incident light in a narrow visible wavelength range and thus exhibit extraordinarily brilliant colors. However, such hydrogel films cannot effectively block UV light. By slightly breaking the structural periodicity (quasi-periodic structure), strong diffuse scattering or pseudoabsorption of light can occur for all of the wavelengths shorter than a structural characteristic length, leading to perfect UV blocking. According to the theoretical prediction, a structural colored hydrogel film with nearly periodic polystyrene sphere arrays in poly(hydroxyethyl methacrylate) hydrogel matrix is fabricated; this hydrogel film possesses brilliant colors and perfect UV blocking, and the core particle composition and size have been investigated in detail for the optimized properties of contact lenses. Meanwhile, the cell proliferation assay proves the cytocompatibility of the hydrogel for real application. Regarding its unique optical characteristics, the as-prepared structural colored hydrogel shows great promise in the fields of UV-protective equipment, medical device, soft robot, sensor, and so on.
Collapse
Affiliation(s)
- Xiuqing Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiayuan Du
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jiaxin Sun
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Jia Guo
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Xinhua Hu
- Department of Materials Science, and Key Laboratory of Micro- and Nano-Photonic Structures (Ministry of Education), and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| | - Changchun Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, and Laboratory of Advanced Materials, Fudan University, Shanghai 200433, China
| |
Collapse
|
10
|
Tang W, Chen C. Hydrogel-Based Colloidal Photonic Crystal Devices for Glucose Sensing. Polymers (Basel) 2020; 12:E625. [PMID: 32182870 PMCID: PMC7182902 DOI: 10.3390/polym12030625] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 03/02/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
Diabetes, a common epidemic disease, is increasingly hazardous to human health. Monitoring body glucose concentrations for the prevention and therapy of diabetes has become very important. Hydrogel-based responsive photonic crystal (PC) materials are noninvasive options for glucose detection. This article reviews glucose-sensing materials/devices composed of hydrogels and colloidal photonic crystals (CPCs), including the construction of 2D/3D CPCs and 2D/3D hydrogel-based CPCs (HCPCs). The development and mechanisms of glucose-responsive hydrogels and the achieved technologies of HCPC glucose sensors were also concluded. This review concludes by showing a perspective for the future design of CPC glucose biosensors with functional hydrogels.
Collapse
Affiliation(s)
- Wenwei Tang
- Modern Service Department, College of International Vocational Education, Shanghai Polytechnic University, Shanghai 201209, China;
| | - Cheng Chen
- School of Environmental and Materials Engineering, College of Engineering, Shanghai Polytechnic University, Shanghai 201209, China
- Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, Shanghai 201209, China
| |
Collapse
|
11
|
Yu S, Cao X, Niu W, Wu S, Ma W, Zhang S. Large-Area and Water Rewriteable Photonic Crystal Films Obtained by the Thermal Assisted Air-Liquid Interface Self Assembly. ACS APPLIED MATERIALS & INTERFACES 2019; 11:22777-22785. [PMID: 31194499 DOI: 10.1021/acsami.9b06470] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Compared with traditional paper, water rewritable photonic crystal (PC) paper is an environmentally friendly and low resource-consuming material for information storage. Although, recently reported PC papers have high-quality structure color showing promising prospect, the paper size, that is within several centimeters, still limits turning it from potential to reality. Here, we present a new water rewritable PC film as large as the A4 size (210 × 300 mm2) with a high-quality structure color. The material is prepared by thermal assisted self-assembly on the air-liquid interface. To fix such a large-area self-assembled PC film, we partially deform and coalesce the self-assembled nanoparticles, which have low glass transition temperature. This process causes the film to be transparent and structural colorless but still keeps the inner 3D-ordered structure. Then, utilizing the hydrophilic nature of the assembled block, the film can be switched to a structural color state by touching water. Diverse brilliant structural colors appear with different assembled particle (poly(butyl methacrylate- co-methylmethacrylate- co-butyl acrylate- co-diacetone acrylamide) named as PBMBD) sizes. The transparency-structural color transition can be performed multiple times reversibly in all or specific regions of the film. It provides a new solution for future applications of rewriteable PC paper.
Collapse
Affiliation(s)
- Shuzhen Yu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Xu Cao
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wenbin Niu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Suli Wu
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Wei Ma
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| | - Shufen Zhang
- State Key Laboratory of Fine Chemicals , Dalian University of Technology , West Campus, 2 Linggong Rd. , Dalian 116024 , China
| |
Collapse
|
12
|
Liu P, Bai L, Yang J, Gu H, Zhong Q, Xie Z, Gu Z. Self-assembled colloidal arrays for structural color. NANOSCALE ADVANCES 2019; 1:1672-1685. [PMID: 36134244 PMCID: PMC9417313 DOI: 10.1039/c8na00328a] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 02/25/2019] [Indexed: 06/09/2023]
Abstract
Structural color materials that are colloidally assembled as inspired by nature are attracting increased interest in a wide range of research fields. The assembly of colloidal particles provides a facile and cost-effective strategy for fabricating three-dimensional structural color materials. In this review, the generation mechanisms of structural colors from colloidally assembled photonic crystalline structures (PCSs) and photonic amorphous structures (PASs) are first presented, followed by the state-of-the-art and detailed technologies for their fabrication. The variable optical properties of PASs and PCSs are then discussed, focusing on their spatial long- and short-order structures and surface topography, followed by a detailed description of the modulation of structural color by refractive index and lattice distance. Finally, the current applications of structural color materials colloidally assembled in various fields including biomaterials, microfluidic chips, sensors, displays, and anticounterfeiting are reviewed, together with future applications and tasks to be accomplished.
Collapse
Affiliation(s)
- Panmiao Liu
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Ling Bai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Jianjun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University Zhengzhou 450052 China
| | - Hongcheng Gu
- Key Laboratory of Child Development and Learning Science, Research Center for Learning Science, Southeast University Nanjing 210096 China
| | - Qifeng Zhong
- Department of Pharmaceutical Equipment and Electronic Instruments, School of Engineering, China Pharmaceutical University 24 Tongjia Lane, Gulou District Nanjing 210009 China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| | - Zhongze Gu
- Key Laboratory of Child Development and Learning Science, Research Center for Learning Science, Southeast University Nanjing 210096 China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University Nanjing 210096 China
| |
Collapse
|
13
|
Lee GH, Kim JB, Choi TM, Lee JM, Kim SH. Structural Coloration with Nonclose-Packed Array of Bidisperse Colloidal Particles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804548. [PMID: 30637948 DOI: 10.1002/smll.201804548] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 12/05/2018] [Indexed: 06/09/2023]
Abstract
Colloidal crystals and glasses have their own photonic effects. Colloidal crystals show high reflectivity at narrowband, whereas colloidal glasses show low reflectivity at broadband. To compromise the opposite optical properties, a simple means is suggested to control the colloidal arrangement between crystal and glass by employing two different sizes of silica particles with repulsive interparticle potential. Monodisperse silica particles with repulsive potential spontaneously form crystalline structure at volume fraction far below 0.74. When two different sizes of silica particles coexist, the arrangement of silica particles is significantly influenced by two parameters: size contrast and mixing ratio. When the size contrast is small, a long-range order is partially conserved in the entire mixing ratio, resulting in a pronounced reflectance peak and brilliant structural color. When the size contrast is large, the long-range order is rapidly reduced along with mixing ratio. Nevertheless, a short-range order survives, which causes low reflectivity at a broad wavelength, developing faint structural colors. These findings offer an insight into controlling the colloidal arrangements and provide a simple way to tune the optical property of colloidal arrays for structural coloration.
Collapse
Affiliation(s)
- Gun Ho Lee
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jong Bin Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Tae Min Choi
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| | - Jung Min Lee
- The 4th R&D Institute, Agency for Defense Development (ADD), Daejeon, 34060, Korea
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering (BK21+ Program), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Korea
| |
Collapse
|
14
|
Zhang D, Gao B, Zhao C, Liu H. Visualized Quantitation of Trace Nucleic Acids Based on the Coffee-Ring Effect on Colloid-Crystal Substrates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:248-253. [PMID: 30512960 DOI: 10.1021/acs.langmuir.8b03609] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We report a visualized quantitative detection method for nucleic acid amplification tests based on the coffee-ring effect on colloid-crystal substrates. The solution for loop-mediated isothermal amplification (LAMP) of DNA is drop cast on a colloid-crystal surface. After complete drying, a coffee ring containing the LAMP byproduct (i.e., magnesium pyrophosphate) is formed, and it is found that the width of the coffee ring is linearly correlated to the logarithm of the original DNA concentration before the isothermal amplification. Importantly, compared with other substrates, we found that the colloid-crystal substrate is an appropriate substrate for carrying out the assay of high sensitivity. On the basis of these findings, we develop a coffee-ring-based assay for quantitative readout of trace DNA in a sample. The assay requires 0.50 μL of the sample and is completed in 5 min in a homemade chamber with constant humidity. Semiquantitative detection of trace DNA is performed using naked eyes. With the use of a smartphone, the DNA in a sample can be quantitatively detected with a limit of detection of 20 copies.
Collapse
Affiliation(s)
- Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Bingbing Gao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Chao Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Hong Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
15
|
Yang Y, Zhang Y, Chai R, Gu Z. Designs of Biomaterials and Microenvironments for Neuroengineering. Neural Plast 2018; 2018:1021969. [PMID: 30627148 PMCID: PMC6304813 DOI: 10.1155/2018/1021969] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 11/09/2018] [Indexed: 01/05/2023] Open
Abstract
Recent clinical research on neuroengineering is primarily focused on biocompatible materials, which can be used to provide electroactive and topological cues, regulate the microenvironment, and perform other functions. Novel biomaterials for neuroengineering have been received much attention in the field of research, including graphene, photonic crystals, and organ-on-a-chip. Graphene, which has the advantage of high mechanical strength and chemical stability with the unique electrochemical performance for electrical signal detection and transmission, has significant potential as a conductive scaffolding in the field of medicine. Photonic crystal materials, known as a novel concept in nerve substrates, have provided a new avenue for neuroengineering research because of their unique ordered structure and spectral attributes. The "organ-on-a-chip" systems have shown significant prospects for the developments of the solutions to nerve regeneration by mimicking the microenvironment of nerve tissue. This paper presents a review of current progress in the designs of biomaterials and microenvironments and provides case studies in developing nerve system stents upon these biomaterials. In addition, we compose a conductive patterned compounded biomaterial, which could mimic neuronal microenvironment for neuroengineering by concentrating the advantage of such biomaterials.
Collapse
Affiliation(s)
- Yanru Yang
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| | - Yuhua Zhang
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
| | - Renjie Chai
- Key Laboratory for Developmental Genes and Human Disease, Ministry of Education, Institute of Life Sciences, Southeast University, Nanjing 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong 226001, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing 100101, China
- Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing 211189, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing 210096, China
| |
Collapse
|
16
|
Deng J, Chen S, Chen J, Ding H, Deng D, Xie Z. Self-Reporting Colorimetric Analysis of Drug Release by Molecular Imprinted Structural Color Contact Lens. ACS APPLIED MATERIALS & INTERFACES 2018; 10:34611-34617. [PMID: 30211539 DOI: 10.1021/acsami.8b11655] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
As a prospective ophthalmic drug delivery device, contact lenses attract a lot of attention because of the improved drug residence time and bioavailability. Herein, we proposed and fabricated a molecular imprinted structural color contact lens for sustained timolol release which could self-report the release process by color change. The specific recognition of target timolol by molecular imprinted sites can not only increase the loading amount and the residence time of the drug but also endow the structure color of lens remarkable blue shift with the accumulative release of timolol. The fascinating contact lens can be further used for controlling release of a large number of ophthalmic drugs and has high potential to be a new generation of functional contact lenses.
Collapse
Affiliation(s)
- Jingzhe Deng
- Department of Biomedical Engineering , China Pharmaceutical University , Nanjing 211198 , China
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Shan Chen
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Jialun Chen
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Hailong Ding
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| | - Dawei Deng
- Department of Biomedical Engineering , China Pharmaceutical University , Nanjing 211198 , China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics , Southeast University , Nanjing 210096 , China
| |
Collapse
|
17
|
Zhang D, Gao B, Chen Y, Liu H. Converting colour to length based on the coffee-ring effect for quantitative immunoassays using a ruler as readout. LAB ON A CHIP 2018; 18:271-275. [PMID: 29236123 DOI: 10.1039/c7lc01127j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
We report a method for converting the colorimetric results of an enzyme-linked immunosorbent assay (ELISA) into length based on the coffee-ring effect, so that the quantitative detection of analytes can be carried out simply using a ruler. The influence of the shape and lamination of the paper strip on the test results is studied. As a demonstration, human IgG is quantitatively analyzed. It is found that the width of the colored stains correlates with the concentration of the analyte which can be measured for quantitative analysis. The method is promising for quantitative point-of-care detection of biomarkers under resource-limited settings.
Collapse
Affiliation(s)
- Dagan Zhang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | | | | | | |
Collapse
|
18
|
Zhang D, Ma B, Tang L, Liu H. Toward Quantitative Chemical Analysis Using a Ruler on Paper: An Approach to Transduce Color to Length Based on Coffee-Ring Effect. Anal Chem 2018; 90:1482-1486. [DOI: 10.1021/acs.analchem.7b03790] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Affiliation(s)
- Dagan Zhang
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Biao Ma
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Litianyi Tang
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
19
|
Lai CF, Li JS, Fang YT, Chien CJ, Lee CH. UV and blue-light anti-reflective structurally colored contact lenses based on a copolymer hydrogel with amorphous array nanostructures. RSC Adv 2018. [DOI: 10.1039/c7ra12753g] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Novel anti-reflective structurally colored contact lenses not only block UV- and blue-light but also avoid the risk of chemical dyes.
Collapse
Affiliation(s)
- Chun-Feng Lai
- Department of Photonics
- Feng Chia University
- Taichung 40724
- Taiwan
| | - Jia-Sian Li
- Department of Photonics
- Feng Chia University
- Taichung 40724
- Taiwan
| | - Yu-Ting Fang
- Section of Medical Device and Cosmetics Analysis
- Division of Research and Analysis
- Food and Drug Administration
- Taipei 11561
- Taiwan
| | - Chun-Jen Chien
- Section of Medical Device and Cosmetics Analysis
- Division of Research and Analysis
- Food and Drug Administration
- Taipei 11561
- Taiwan
| | | |
Collapse
|
20
|
Zhang Y, Quan M, Zhao W, Yang Z, Wang D, Cao H, He W. Preferential self-assembly behavior of polydisperse silica particles under negative pressure. Colloids Surf A Physicochem Eng Asp 2017. [DOI: 10.1016/j.colsurfa.2017.06.042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
21
|
Ding H, Zhu C, Tian L, Liu C, Fu G, Shang L, Gu Z. Structural Color Patterns by Electrohydrodynamic Jet Printed Photonic Crystals. ACS APPLIED MATERIALS & INTERFACES 2017; 9:11933-11941. [PMID: 28120613 DOI: 10.1021/acsami.6b11409] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
In this work, we demonstrate the fabrication of photonic crystal patterns with controllable morphologies and structural colors utilizing electrohydrodynamic jet (E-jet) printing with colloidal crystal inks. The final shape of photonic crystal units is controlled by the applied voltage signal and wettability of the substrate. Optical properties of the structural color patterns are tuned by the self-assembly of the silica nanoparticle building blocks. Using this direct printing technique, it is feasible to print customized functional patterns composed of photonic crystal dots or photonic crystal lines according to relevant printing mode and predesigned tracks. This is the first report for E-jet printing with colloidal crystal inks. Our results exhibit promising applications in displays, biosensors, and other functional devices.
Collapse
Affiliation(s)
- Haibo Ding
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Cun Zhu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Lei Tian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Cihui Liu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Guangbin Fu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Luoran Shang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University , Nanjing 210096, China
| |
Collapse
|
22
|
Controlling coffee ring structure on hydrophobic polymer surface by manipulating wettability with O 2 plasma. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.07.028] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Affiliation(s)
- Bingbing Gao
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Hong Liu
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics,
School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| |
Collapse
|
24
|
Wang Y, Wei C, Cong H, Yang Q, Wu Y, Su B, Zhao Y, Wang J, Jiang L. Hybrid Top-Down/Bottom-Up Strategy Using Superwettability for the Fabrication of Patterned Colloidal Assembly. ACS APPLIED MATERIALS & INTERFACES 2016; 8:4985-4993. [PMID: 26824430 DOI: 10.1021/acsami.5b11945] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Superwettability of substrates has had a profound influence on the production of novel and advanced colloidal assemblies in recent decades owing to its effect on the spreading area, evaporation rate, and the resultant assembly structure. In this paper, we investigated in detail the influence of the superwettability of a transfer/template substrate on the colloidal assembly from a hybrid top-down/bottom-up strategy. By taking advantage of a superhydrophilic flat transfer substrate and a superhydrophobic groove-structured silicon template, the patterned colloidal microsphere assembly was formed including linear and mesh-, cyclic-, and multistopband assembly arrays of microspheres, and the optic-waveguide of a circular colloidal structure was demonstrated. We believed this liquid top-down/bottom-up strategy would open an efficient avenue for assembling/integrating microspheres building blocks into device applications in a low-cost manner.
Collapse
Affiliation(s)
- Yuezhong Wang
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University , Qingdao 266071, China
- The Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Science , Beijing 100190, China
| | - Cong Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Hailin Cong
- Laboratory for New Fiber Materials and Modern Textile, Growing Base for State Key Laboratory, Qingdao University , Qingdao 266071, China
| | - Qiang Yang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yuchen Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Bin Su
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Yongsheng Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Photochemistry, Key Laboratory of Organic Solids, Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190, China
| | - Jingxia Wang
- The Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Science , Beijing 100190, China
| | - Lei Jiang
- The Laboratory of Bio-Inspired Smart Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Science , Beijing 100190, China
| |
Collapse
|
25
|
Liu P, Xie Z, Zheng F, Zhao Y, Gu Z. Surfactant-free HEMA crystal colloidal paint for structural color contact lens. J Mater Chem B 2016; 4:5222-5227. [DOI: 10.1039/c6tb01089j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
A new type of structural color paint was fabricated by dispersing poly(methyl methacrylate-hydroxyethyl methacrylate) (PMH) nanoparticles in 2-hydroxyethyl methacrylate (HEMA) solvent without additional surfactants. The paints then were directly cast to form structural color contact lenses by UV polymerization in moulds.
Collapse
Affiliation(s)
- Panmiao Liu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Zhuoying Xie
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Fuyin Zheng
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| | - Zhongze Gu
- State Key Laboratory of Bioelectronics
- School of Biological Science and Medical Engineering
- Southeast University
- Nanjing 210096
- China
| |
Collapse
|
26
|
Lao Z, Hu Y, Zhang C, Yang L, Li J, Chu J, Wu D. Capillary Force Driven Self-Assembly of Anisotropic Hierarchical Structures Prepared by Femtosecond Laser 3D Printing and Their Applications in Crystallizing Microparticles. ACS NANO 2015; 9:12060-9. [PMID: 26506428 DOI: 10.1021/acsnano.5b04914] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The hierarchical structures are the derivation of various functionalities in the natural world and have inspired broad practical applications in chemical systhesis and biological manipulation. However, traditional top-down fabrication approaches suffered from low complexity. We propose a laser printing capillary-assisted self-assembly (LPCS) strategy for fabricating regular periodic structures. Microscale pillars are first produced by the localized femtosecond laser polymerization and are subsequently self-assembled into periodic hierarchical architectures with the assistance of controlled capillary force. Moreover, based on anisotropic assemblies of micropillars, the LPCS method is further developed for the preparation of more complicated and advanced functional microstructures. Pillars cross section, height, and spatial arrangement can be tuned to guide capillary force, and diverse assemblies with different configurations are thus achieved. Finally, we developed a strategy for growing micro/nanoparticles in designed spatial locations through solution-evaporation self-assembly induced by morphology. Due to the high flexibility of LPCS method, the special arrangements, sizes, and distribution density of the micro/nanoparticles can be controlled readily. Our method will be employed not only to fabricate anisotropic hierarchical structures but also to design and manufacture organic/inorganic microparticles.
Collapse
Affiliation(s)
- Zhaoxin Lao
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Yanlei Hu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Chenchu Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Liang Yang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Jiawen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Jiaru Chu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| | - Dong Wu
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China , Hefei, Anhui 230027, China
| |
Collapse
|