1
|
He J, Ouyang X, Xiao F, Liu N, Wen L. Imaging-Guided Photoacoustic Immunotherapy Based on the Polydopamine-Functionalized Black Phosphorus Nanocomposites. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54322-54334. [PMID: 37967339 DOI: 10.1021/acsami.3c13998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Phototherapy has great application prospects in superficial tumors, such as melanoma, esophageal cancer, and breast carcinoma, owing to the advantages of noninvasiveness, high spatiotemporal selectivity, and less side effects. However, classical phototherapies including photodynamic and photothermal therapy still need to settle the bottleneck problems of poor efficacy, inevitable thermal damage, and a high rate of postoperative recurrence. In this study, we developed a nanocomposite with excellent optical properties and immune-stimulating properties, termed PBP@CpG, which was obtained by functionalizing black phosphorus (BP) with polydopamine and further adsorbing CpG. Benefiting from the protection of polydopamine against BP, ideal light absorption, and photoacoustic conversion properties, PBP@CpG not only enables precisely delineation of the tumor region with photoacoustic imaging but also powerfully disrupts the plasma membrane and cytoskeleton of tumor cells with a photoacoustic cavitation effect. In addition, we found that the photoacoustic cavitation effect was also capable of inducing immunogenic cell death and remarkably strengthening the antitumor immune response upon cooperating with immune adjuvant CpG. Therefore, PBP@CpG was expected to provide a promising nanoplatform for optical theranostics and herald a new strategy of photoimmunotherapy based on the photoacoustic cavitation effects and immunostimulatory effect.
Collapse
Affiliation(s)
- Jiawen He
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Xumei Ouyang
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Fengfeng Xiao
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| | - Ning Liu
- School of Clinical Medicine, Jining Medical University, 272067 Jining, Shandong, China
| | - Liewei Wen
- Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Jinan University, 519000 Zhuhai, Guangdong, China
| |
Collapse
|
2
|
Kaur H, Garg R, Singh S, Jana A, Bathula C, Kim HS, Kumbar SG, Mittal M. Progress and challenges of graphene and its congeners for biomedical applications. J Mol Liq 2022; 368:120703. [PMID: 38130892 PMCID: PMC10735213 DOI: 10.1016/j.molliq.2022.120703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Nanomaterials by virtue of their small size and enhanced surface area, present unique physicochemical properties that enjoy widespread applications in bioengineering, biomedicine, biotechnology, disease diagnosis, and therapy. In recent years, graphene and its derivatives have attracted a great deal of attention in various applications, including photovoltaics, electronics, energy storage, catalysis, sensing, and biotechnology owing to their exceptional structural, optical, thermal, mechanical, and electrical. Graphene is a two-dimensional sheet of sp2 hybridized carbon atoms of atomic thickness, which are arranged in a honeycomb crystal lattice structure. Graphene derivatives are graphene oxide (GO) and reduced graphene oxide (rGO), which are highly oxidized and less oxidized forms of graphene, respectively. Another form of graphene is graphene quantum dots (GQDs), having a size of less than 20 nm. Contemporary graphene research focuses on using graphene nanomaterials for biomedical purposes as they have a large surface area for loading biomolecules and medicine and offer the potential for the conjugation of fluorescent dyes or quantum dots for bioimaging. The present review begins with the synthesis, purification, structure, and properties of graphene nanomaterials. Then, we focussed on the biomedical application of graphene nanomaterials with special emphasis on drug delivery, bioimaging, biosensing, tissue engineering, gene delivery, and chemotherapy. The implications of graphene nanomaterials on human health and the environment have also been summarized due to their exposure to their biomedical applications. This review is anticipated to offer useful existing understanding and inspire new concepts to advance secure and effective graphene nanomaterials-based biomedical devices.
Collapse
Affiliation(s)
- Harshdeep Kaur
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
| | - Rahul Garg
- Department of Chemical Engineering, Indian Institute of Technology Ropar, Nangal Rd, Hussainpur, Rupnagar, Punjab 140001, India
| | - Sajan Singh
- AMBER/School of Chemistry, Trinity College of Dublin, Ireland
| | - Atanu Jana
- Division of Physics and Semiconductor Science, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Chinna Bathula
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Hyun-Seok Kim
- Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea
| | - Sangamesh G. Kumbar
- Department of Biomedical Engineering, University of Connecticut, Storrs, CT, USA
| | - Mona Mittal
- Department of Chemistry, University institute of science, Chandigarh University, Gharuan, Punjab 140413, India
- Department of Chemistry, Galgotia college of engineering, Knowledge Park, I, Greater Noida, Uttar Pradesh 201310, India
| |
Collapse
|
3
|
Huang Y, Zhang S, Chen Y, Dai H, Lin Y. Modular and Noncontact Wireless Detection Platform for Ovarian Cancer Markers: Electrochemiluminescent and Photoacoustic Dual-Signal Output Based on Multiresponse Carbon Nano-Onions. Anal Chem 2022; 94:13269-13277. [DOI: 10.1021/acs.analchem.2c03337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yitian Huang
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Shupei Zhang
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanjie Chen
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| | - Hong Dai
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
- College of Chemical and Material Engineering, Quzhou University, Quzhou, Zhejiang 32400, China
| | - Yanyu Lin
- College of Chemistry and Material, Fujian Normal University, Fuzhou, Fujian 350108, China
| |
Collapse
|
4
|
Lv F, Fan X, Liu D, Song F. Photothermal agents based on small organic fluorophores with intramolecular motion. Acta Biomater 2022; 149:16-29. [PMID: 35817339 DOI: 10.1016/j.actbio.2022.07.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/20/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022]
Abstract
Photothermal therapy (PTT) has attracted great attention due to its noninvasive and low side effects. Photothermal agents (PTAs) which could convert absorbing light into heat play a critical role in PTT. For conventional small organic PTAs, the photothermal conversion ability is mainly achieved by intermolecular noncovalent interactions such as π-π interactions. However, in terms of organic fluorophores with rotator or vibrator segments, the balance between fluorescence emission and heat generation is mainly regulated by intramolecular motions which could be mediated by molecular engineering. Following this designing principle, various fluorophores with intramolecular motions for effective PTT have been reported. In this review, we highlight the recent progress of PTAs based on small organic fluorophores with intramolecular motions for enhanced PTT. Designing tactics of these fluorophores to afford long-wavelength absorption, high photothermal conversion ability, and effective accumulation capability are emphasized. Finally, one-for-all phototheranostics achieved by mediating intramolecular motions of these fluorophores are highlighted. We hope this review could pave a new avenue to developing fluorophores with intramolecular motion as PTAs to advance their clinical transition. STATEMENT OF SIGNIFICANCE: Recent progress of photothermal agents (PTAs) based on small organic fluorophores with intramolecular motion is summarized in this review. Molecular engineering of these small organic fluorophores to afford long-wavelength absorption, high photothermal conversion ability, and effective accumulation at tumor sites for enhanced photothermal therapy (PTT) is highlighted. Strategies to tune the intramolecular motions of these fluorophores to achieve multimodal phototherapy are emphasized as well.
Collapse
Affiliation(s)
- Fangyuan Lv
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Xiaoxue Fan
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China
| | - Dapeng Liu
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| | - Fengling Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, Shandong 266237, China.
| |
Collapse
|
5
|
Li W, Zhang S, Xing D, Qin H. Pulsed Microwave-Induced Thermoacoustic Shockwave for Precise Glioblastoma Therapy with the Skin and Skull Intact. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201342. [PMID: 35585690 DOI: 10.1002/smll.202201342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/29/2022] [Indexed: 05/16/2023]
Abstract
Glioblastoma has a dismal prognosis and is a critical and urgent health issue that requires aggressive research and determined clinical efforts. Due to its diffuse and infiltrative growth in the brain parenchyma, complete neurosurgical resection is rarely possible. Here, pulsed microwave-induced thermoacoustic (MTA) therapy is proposed as a potential alternative modality to precisely and effectively eradicate in vivo orthotopic glioblastoma. A nanoparticle composed of polar amino acids and adenosine-based agonists is constructed with high microwave absorbance and selective penetration of the blood-brain barrier (BBB) at the tumor site. This nanoparticle can activate the adenosine receptor on the BBB to allow self-passage and tumor accumulation. The nanoparticle converts absorbed microwaves into ultrasonic shockwaves via the thermoacoustic cavitation effect. The ultrasonic shockwave can mechanically destroy tumor cells within a short range with minimal damage to adjacent normal brain tissue due to the rapid decay of the ultrasonic shockwave intensity. The deep tissue penetration characteristics of the microwave and the rapid decay of the ultrasonic shockwave make MTA therapy a promising glioblastoma cure including intact skin and skull.
Collapse
Affiliation(s)
- Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Shanxiang Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, P. R. China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Lab of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
6
|
Hu Q, Fang Z, Ge J, Li H. Nanotechnology for cardiovascular diseases. Innovation (N Y) 2022; 3:100214. [PMID: 35243468 PMCID: PMC8866095 DOI: 10.1016/j.xinn.2022.100214] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 01/30/2022] [Accepted: 01/30/2022] [Indexed: 11/23/2022] Open
Abstract
Cardiovascular diseases have become the major killers in today's world, among which coronary artery diseases (CADs) make the greatest contributions to morbidity and mortality. Although state-of-the-art technologies have increased our knowledge of the cardiovascular system, the current diagnosis and treatment modalities for CADs still have limitations. As an emerging cross-disciplinary approach, nanotechnology has shown great potential for clinical use. In this review, recent advances in nanotechnology in the diagnosis of CADs will first be elucidated. Both the sensitivity and specificity of biosensors for biomarker detection and molecular imaging strategies, such as magnetic resonance imaging, optical imaging, nuclear scintigraphy, and multimodal imaging strategies, have been greatly increased with the assistance of nanomaterials. Second, various nanomaterials, such as liposomes, polymers (PLGA), inorganic nanoparticles (AuNPs, MnO2, etc.), natural nanoparticles (HDL, HA), and biomimetic nanoparticles (cell-membrane coating) will be discussed as engineered as drug (chemicals, proteins, peptides, and nucleic acids) carriers targeting pathological sites based on their optimal physicochemical properties and surface modification potential. Finally, some of these nanomaterials themselves are regarded as pharmaceuticals for the treatment of atherosclerosis because of their intrinsic antioxidative/anti-inflammatory and photoelectric/photothermal characteristics in a complex plaque microenvironment. In summary, novel nanotechnology-based research in the process of clinical transformation could continue to expand the horizon of nanoscale technologies in the diagnosis and therapy of CADs in the foreseeable future.
Collapse
Affiliation(s)
- Qinqin Hu
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Zheyan Fang
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Junbo Ge
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| | - Hua Li
- Department of Cardiology, Shanghai Institute of Cardiovascular Diseases, Shanghai Xuhui District Central Hospital & Zhongshan-xuhui Hospital, Zhongshan Hospital, Fudan University, Shanghai 200032, China
- Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
7
|
Liu Y, Teng L, Yin B, Meng H, Yin X, Huan S, Song G, Zhang XB. Chemical Design of Activatable Photoacoustic Probes for Precise Biomedical Applications. Chem Rev 2022; 122:6850-6918. [PMID: 35234464 DOI: 10.1021/acs.chemrev.1c00875] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photoacoustic (PA) imaging technology, a three-dimensional hybrid imaging modality that integrates the advantage of optical and acoustic imaging, has great application prospects in molecular imaging due to its high imaging depth and resolution. To endow PA imaging with the ability for real-time molecular visualization and precise biomedical diagnosis, numerous activatable molecular PA probes which can specifically alter their PA intensities upon reacting with the targets or biological events of interest have been developed. This review highlights the recent developments of activatable PA probes for precise biomedical applications including molecular detection of the biotargets and imaging of the biological events. First, the generation mechanism of PA signals will be given, followed by a brief introduction to contrast agents used for PA probe design. Then we will particularly summarize the general design principles for the alteration of PA signals and activatable strategies for developing precise PA probes. Furthermore, we will give a detailed discussion of activatable PA probes in molecular detection and biomedical imaging applications in living systems. At last, the current challenges and outlooks of future PA probes will be discussed. We hope that this review will stimulate new ideas to explore the potentials of activatable PA probes for precise biomedical applications in the future.
Collapse
Affiliation(s)
- Yongchao Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lili Teng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Baoli Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Hongmin Meng
- College of Chemistry, Green Catalysis Center, Zhengzhou University, Zhengzhou 450001, China
| | - Xia Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Shuangyan Huan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Guosheng Song
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Xiao-Bing Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
8
|
Zhao Z, Swartchick CB, Chan J. Targeted contrast agents and activatable probes for photoacoustic imaging of cancer. Chem Soc Rev 2022; 51:829-868. [PMID: 35094040 PMCID: PMC9549347 DOI: 10.1039/d0cs00771d] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Photoacoustic (PA) imaging has emerged as a powerful technique for the high resolution visualization of biological processes within deep tissue. Through the development and application of exogenous targeted contrast agents and activatable probes that can respond to a given cancer biomarker, researchers can image molecular events in vivo during cancer progression. This information can provide valuable details that can facilitate cancer diagnosis and therapy monitoring. In this tutorial review, we provide a step-by-step guide to select a cancer biomarker and subsequent approaches to design imaging agents for in vivo use. We envision this information will be a useful summary to those in the field, new members to the community, and graduate students taking advanced imaging coursework. We also highlight notable examples from the recent literature, with emphasis on the molecular designs and their in vivo PA imaging performance. To conclude, we provide our outlook and future perspective in this exciting field.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Chelsea B Swartchick
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| | - Jefferson Chan
- Department of Chemistry, Beckman Institute for Advanced Science and Technology, and Cancer Center at Illinois, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois, USA.
| |
Collapse
|
9
|
Yim W, Takemura K, Zhou J, Zhou J, Jin Z, Borum RM, Xu M, Cheng Y, He T, Penny W, Miller BR, Jokerst JV. Enhanced Photoacoustic Detection of Heparin in Whole Blood via Melanin Nanocapsules Carrying Molecular Agents. ACS NANO 2022; 16:683-693. [PMID: 34962765 PMCID: PMC9237182 DOI: 10.1021/acsnano.1c08178] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Photoacoustic (PA) imaging has proved versatile for many biomedical applications from drug delivery tracking to disease diagnostics and postoperative surveillance. It recently emerged as a tool for accurate and real-time heparin monitoring to avoid bleeding complications associated with anticoagulant therapy. However, molecular-dye-based application is limited by high concentration requirements, photostability, and a strong background hemoglobin signal. We developed polydopamine nanocapsules (PNCs) via supramolecular templates and loaded them with molecular dyes for enhanced PA-mediated heparin detection. Depending on surface charge, the dye-loaded PNCs undergo disassembly or aggregation upon heparin recognition: both experiments and simulation have revealed that the increased PA signal mainly results from dye-loaded PNC-heparin aggregation. Importantly, Nile blue (NB)-loaded PNCs generated a 10-fold higher PA signal than free NB dye, and such PNC enabled the direct detection of heparin in a clinically relevant therapeutic window (0-4 U/mL) in whole human blood (R2 = 0.91). Furthermore, the PA signal of PNC@NB obtained from 17 patients linearly correlated with ACT values (R2 = 0.73) and cumulative heparin (R2 = 0.83). This PNC-based strategy for functional nanocapsules offers a versatile engineering platform for robust biomedical contrast agents and nanocarriers.
Collapse
Affiliation(s)
| | - Kathryn Takemura
- ENSCO, Inc., 4849 North Wickham Road, Melbourne, Florida 32940, United States
| | | | | | | | | | | | | | | | - William Penny
- Division of Cardiology, VA San Diego Healthcare System, University of California San Diego, 9500 Gilman Drive, La Jolla, California 92093, United States
| | - Bill R Miller
- Department of Chemistry, Truman State University, 100 East Normal Avenue, Kirkville, Missouri 63501, United States
| | | |
Collapse
|
10
|
Li X, Xiu W, Xiao H, Li Y, Yang K, Yuwen L, Yang D, Weng L, Wang L. Fluorescence and ratiometric photoacoustic imaging of endogenous furin activity via peptide functionalized MoS 2 nanosheets. Biomater Sci 2021; 9:8313-8322. [PMID: 34782897 DOI: 10.1039/d1bm01410b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Furin is an important cellular endoprotease, which is expressed at high levels in various cancer cells. Accurate and real-time detection of endogenous furin with high sensitivity and selectivity is significant for the diagnosis of cancer. Herein an activatable nanoprobe (MoS2@PDA-PEG/peptide, MPPF) with dual-mode near-infrared fluorescence (NIRF)/ratiometric photoacoustic (PA) imaging of endogenous furin activity has been developed. The MPPF nanoprobes were constructed by the covalent functionalization of polydopamine (PDA) coated MoS2 nanosheets (NSs) with Cy7-labeled furin substrate peptides. Upon cleavage of the peptides by furin, Cy7 molecules are released from MPPF nanoprobes and recover their fluorescence, realizing furin activity detection with the limit of detection (LOD) down to 3.73 × 10-4 U mL-1. Meanwhile, the ratio of the PA signal at 768 nm to that at 900 nm (PA768/PA900) decreases over time due to the destruction of fluorescence resonance energy transfer effect from Cy7 to MoS2 NSs and the rapid clearance of small Cy7 molecules from tissues. Thus, the simultaneous change in NIRF and ratiometric PA signals enables the imaging of endogenous furin activity in real time, and with high sensitivity, and high selectivity in both tumor cells and tumor-bearing mice.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Weijun Xiu
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Hang Xiao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Yuqing Li
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Kaili Yang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Lihui Yuwen
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| | - Dongliang Yang
- School of Physical and Mathematical Sciences & Institute of Advanced Materials (IAM), Nanjing Tech University, Nanjing 211800, China
| | - Lixing Weng
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lianhui Wang
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Centre for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.
| |
Collapse
|
11
|
Li Y, Ye F, Zhang S, Ni W, Wen L, Qin H. Carbon-Coated Magnetic Nanoparticle Dedicated to MRI/Photoacoustic Imaging of Tumor in Living Mice. Front Bioeng Biotechnol 2021; 9:800744. [PMID: 34926438 PMCID: PMC8675129 DOI: 10.3389/fbioe.2021.800744] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 11/08/2021] [Indexed: 11/17/2022] Open
Abstract
Multimodality imaging can reveal complementary anatomic and functional information as they exploit different contrast mechanisms, which has broad clinical applications and promises to improve the accuracy of tumor diagnosis. Accordingly, to attain the particular goal, it is critical to exploit multimodal contrast agents. In the present work, we develop novel cobalt core/carbon shell-based nanoparticles (Cobalt at carbon NPs) with both magnetization and light absorption properties for dual-modality magnetic resonance imaging (MRI) and photoacoustic imaging (PAI). The nanoparticle consists of ferromagnetic cobalt particles coated with carbon for biocompatibility and optical absorption. In addition, the prepared Cobalt at carbon NPs are characterized by transmission electron microscope (TEM), visible-near-infrared spectra, Raman spectrum, and X-ray powder diffraction for structural analysis. Experiments verify that Cobalt at carbon NPs have been successfully constructed and the designed Cobalt at carbon NPs can be detected by both MRI and PAI in vitro and in vivo. Importantly, intravenous injection of Cobalt at carbon NPs into glioblastoma-bearing mice led to accumulation and retention of Cobalt at carbon NPs in the tumors. Using such a multifunctional probe, MRI can screen rapidly to identify potential lesion locations, whereas PAI can provide high-resolution morphological structure and quantitative information of the tumor. The Cobalt at carbon NPs are likely to become a promising candidate for dual-modality MRI/PAI of the tumor.
Collapse
Affiliation(s)
- Yujing Li
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Fei Ye
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Shanxiang Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Wenjun Ni
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Liewei Wen
- Zhuhai Precision Medical Center, Zhuhai People’s Hospital, Zhuhai Hospital Affiliated with Jinan University, Zhuhai, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Lab of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
12
|
Zeng F, Qin H, Liu L, Chang H, Chen Q, Wu L, Zhang L, Wu Z, Xing D. Photoacoustic-immune therapy with a multi-purpose black phosphorus-based nanoparticle. NANO RESEARCH 2020; 13:3403-3415. [PMID: 32904446 PMCID: PMC7455780 DOI: 10.1007/s12274-020-3028-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/28/2020] [Accepted: 08/01/2020] [Indexed: 05/31/2023]
Abstract
UNLABELLED Effective therapeutic strategies to precisely eradicate primary tumors with minimal side effects on normal tissue, inhibit metastases, and prevent tumor relapses, are the ultimate goals in the battle against cancer. We report a novel therapeutic strategy that combines adjuvant black phosphorus nanoparticle-based photoacoustic (PA) therapy with checkpoint-blockade immunotherapy. With the mitochondria targeting nanoparticle, PA therapy can achieve localized mechanical damage of mitochondria via PA cavitation and thus achieve precise eradication of the primary tumor. More importantly, PA therapy can generate tumor-associated antigens via the presence of the R848-containing nanoparticles as an adjuvant to promote strong antitumor immune responses. When combined with the checkpoint-blockade using anti-cytotoxic T-lymphocyte antigen-4, the generated immunological responses will further promote the infiltrating CD8 and CD4 T-cells to increase the CD8/Foxp3 T-cell ratio to inhibit the growth of distant tumors beyond the direct impact range of the PA therapy. Furthermore, the number of memory T cells detected in the spleen is increased, and these cells inhibit tumor recurrence. This proposed strategy offers precise eradication of the primary tumor and can induce long-term tumor-specific immunity. ELECTRONIC SUPPLEMENTARY MATERIAL Supplementary material is available for this article at 10.1007/s12274-020-3028-x and is accessible for authorized users.
Collapse
Affiliation(s)
- Fanchu Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Liming Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Haocai Chang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Linghua Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Le Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Zhujun Wu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631 China
| |
Collapse
|
13
|
Chen M, Zhang X, Liu J, Liu F, Zhang R, Wei P, Feng H, Tu M, Qin A, Lam JWY, Ding D, Tang BZ. Evoking Photothermy by Capturing Intramolecular Bond Stretching Vibration-Induced Dark-State Energy. ACS NANO 2020; 14:4265-4275. [PMID: 32160460 DOI: 10.1021/acsnano.9b09625] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Development of highly effective approaches to desirable photothermal conversion agents is particularly valuable. Herein, we report a concept, namely, bond stretching vibration-induced photothermy, that serves as a mechanism to construct advanced photothermal conversion agents. As a proof-of-concept, two compounds (DCP-TPA and DCP-PTPA) with donor-acceptor (D-A) structures were synthesized. The bond stretching vibration of the pyrazine-containing unit in these molecules is vigorous and insensitive to the external environmental restraint, which efficiently transforms the absorbed photons to dark-state heat energy. The nanoparticles (NPs) of DCP-TPA and DCP-PTPA show rather high photothermal conversion efficiency (52% and 59%) and stronger photoacoustic (PA) signal than commercial methylene blue and reported high-performance semiconducting polymer nanoparticles. The DCP-PTPA NPs perform better than DCP-TPA NPs in terms of photothermal conversion, PA signal production, and in vivo PA tumor imaging because of the increased bond stretching vibration in the former molecule.
Collapse
Affiliation(s)
- Ming Chen
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Xiaoyan Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin 300071, China
| | - Junkai Liu
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Feng Liu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Ruoyao Zhang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Peifa Wei
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Haitao Feng
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Mei Tu
- College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, China
| | - Anjun Qin
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Jacky W Y Lam
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials, Ministry of Education, and College of Life Science, Nankai University, Tianjin 300071, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, Division of Life Science and State Key Laboratory of Molecular Neuroscience, and Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
- Center for Aggregation-Induced Emission, SCUT-HKUST Joint Research Institute, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
14
|
Qiao R, Huang X, Qin Y, Li Y, Davis TP, Hagemeyer CE, Gao M. Recent advances in molecular imaging of atherosclerotic plaques and thrombosis. NANOSCALE 2020; 12:8040-8064. [PMID: 32239038 DOI: 10.1039/d0nr00599a] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
As the complications of atherosclerosis such as myocardial infarction and stroke are still one of the leading causes of mortality worldwide, the development of new diagnostic tools for the early detection of plaque instability and thrombosis is urgently needed. Advanced molecular imaging probes based on functional nanomaterials in combination with cutting edge imaging techniques are now paving the way for novel and unique approaches to monitor the inflammatory progress in atherosclerosis. This review focuses on the development of various molecular probes for the diagnosis of plaques and thrombosis in atherosclerosis, along with perspectives of their diagnostic applications in cardiovascular diseases. Specifically, we summarize the biological targets that can be used for atherosclerosis and thrombosis imaging. Then we describe the emerging molecular imaging techniques based on the utilization of engineered nanoprobes together with their challenges in clinical translation.
Collapse
Affiliation(s)
- Ruirui Qiao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou 215123, China
| | | | | | | | | | | | | |
Collapse
|
15
|
Zhang C, Li D, Pei P, Wang W, Chen B, Chu Z, Zha Z, Yang X, Wang J, Qian H. Rod-based urchin-like hollow microspheres of Bi 2S 3: Facile synthesis, photo-controlled drug release for photoacoustic imaging and chemo-photothermal therapy of tumor ablation. Biomaterials 2020; 237:119835. [PMID: 32035321 DOI: 10.1016/j.biomaterials.2020.119835] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 01/08/2020] [Accepted: 01/30/2020] [Indexed: 12/23/2022]
Abstract
Hollow nanostructures have been evoked considerable attention owing to their intriguing hollow interior for important and potential applications in drug delivery, lithium battery, catalysis and etc. Herein, Bi2S3 hollow microspheres with rod-based urchin-like nanostructures (denoted as U-BSHM) were synthesized through a facile and rapid ion exchanging method using a particular hard template. The growth mechanism of the U-BSHM has been investigated and illustrated by the morphological evolution of the different samples at early stages. The obtained U-BSHM exhibited strong and wide UV-vis-NIR absorption ability and outstanding photothermal conversion efficiency. Thus, the U-BSHM can be used as spatio-temporal precisely controlled carrier by loading the mixture of 1-tetradecanol (phase change material, PCM) with melting point around 38 °C and hydrophilic chemotherapeutic doxorubicin hydrochloride (denoted as DOX) into the hollow interior to form (PCM + DOX)@Bi2S3 nanocomposites (denoted as PD@BS) for photoacoustic (PA) imaging and chemo-photothermal therapy of the tumors. When exposed to 808 nm near infrared light (NIR) laser irradiation, this nanocomposites could elevate the temperature of the surroundings by absorption and conversion of the NIR photons into heat energy, which inducing the triggered release of DOX from the hollow interior once the temperature reach up to the melting point of PCM. The killing efficiency of the chemo-photothermal therapy was systematically validated both in vitro and in vivo. In the meanwhile, the implanted tumor was completely restrained through PA imaging and combined therapies. Therefore, this kind of urchin-like hollow nanostructures would be used as important candidates for the multimodal bioimaging and therapy of tumors.
Collapse
Affiliation(s)
- Chenyang Zhang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, PR China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Dongdong Li
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China
| | - Pei Pei
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Wanni Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Benjin Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhaoyou Chu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, PR China
| | - Xianzhu Yang
- Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou, Guangdong, 510006, China; Guangzhou Regenerative Medicine and Health Guangdong Laboratory, 510005, Guangzhou, China.
| | - Jinbing Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai Key Laboratory of Stomatology & Shanghai Research Institute of Stomatology, National Clinical Center for Oral Disease, 639 Zhizaoju Road, Shanghai, 200011, PR China.
| | - Haisheng Qian
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, PR China.
| |
Collapse
|
16
|
Feng G, Zhang GQ, Ding D. Design of superior phototheranostic agents guided by Jablonski diagrams. Chem Soc Rev 2020; 49:8179-8234. [DOI: 10.1039/d0cs00671h] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review summarizes how Jablonski diagrams guide the design of advanced organic optical agents and improvement of disease phototheranostic efficacies.
Collapse
Affiliation(s)
- Guangxue Feng
- State Key Laboratory of Luminescent Materials and Devices
- Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates
- AIE Institute
- School of Materials Science and Engineering
- South China University of Technology
| | - Guo-Qiang Zhang
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education, and College of Life Sciences
- Nankai University
- Tianjin 300071
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology
- Key Laboratory of Bioactive Materials
- Ministry of Education, and College of Life Sciences
- Nankai University
- Tianjin 300071
| |
Collapse
|
17
|
Govindaraju S, Roshini A, Lee MH, Yun K. Kaempferol conjugated gold nanoclusters enabled efficient for anticancer therapeutics to A549 lung cancer cells. Int J Nanomedicine 2019; 14:5147-5157. [PMID: 31371953 PMCID: PMC6636439 DOI: 10.2147/ijn.s209773] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2019] [Accepted: 06/15/2019] [Indexed: 12/18/2022] Open
Abstract
Background: Kaempferol (K) is a recognized anticancer drug that can conjugate with small-size gold nanoclusters (AuNCs). Materials and methods: K-AuNCs were synthesized and their use as an anticancer drug was explored using A549 lung cancer cells. Colony formation and cell migration assays were carried out. The morphology of the K-AuNCs treated A549 cells was explored using bio-atomic force microscopy. Results: The K-AuNCs were 1-3 nm in diameter and emitted strong fluorescent at 650 nm following excitation at 550 nm. The stretching and bending nature of the K-AuNCs were analyzed by the Fourier transform infrared spectroscopy. The presence of kaempferol in the AuNCs were confirmed by the PL spectroscopy. Conclusion: The synthesized K-AuNCs mainly targeted and damaged the nuclei of the cancer cells. This composite nanocluster was less toxicity to the normal human cell and higher toxicity to the A549 lunch cancer cell and these material is potential for anticancer drug delivery and bio imaging applications.
Collapse
Affiliation(s)
- Saravanan Govindaraju
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| | - Arivazhagan Roshini
- Department of Neuroscience and Physiology, SUNY Upstate Medical University, Syracuse, NY 13210, USA
| | - Min-Ho Lee
- School of Integrative Engineering, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Kyusik Yun
- Department of Bionanotechnology, Gachon University, Gyeonggi-do 13120, Republic of Korea
| |
Collapse
|
18
|
Yang Y, Chen J, Yang Y, Xie Z, Song L, Zhang P, Liu C, Liu J. A 1064 nm excitable semiconducting polymer nanoparticle for photoacoustic imaging of gliomas. NANOSCALE 2019; 11:7754-7760. [PMID: 30949651 DOI: 10.1039/c9nr00552h] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Photoacoustic (PA) imaging in the second near-infrared (NIR-II) window (especially at 1064 nm) has the benefits of low background signal, high spatial resolution and deep tissue penetration. Here we report a semiconducting polymer nanoparticle (PDPPTBZ NP) and demonstrate its potential as a contrast agent for PA imaging of orthotopic brain tumors, using a 1064 nm pulsed laser as a light source. PDPPTBZ NPs have maximum absorption at 1064 nm with a mass extinction coefficient of 43 mL mg-1 cm-1, which is the highest value reported so far in this region. The high photothermal conversion efficiency (67%) and near non-fluorescence impart PDPPTBZ NPs with excellent PA properties. We used PDPPTBZ NP-containing agar gel phantoms even at a low concentration (50 μg mL-1) to successfully image to a depth of 4 cm (of chicken-breast tissue), with an ultralow power fluence (4 mJ cm-2). Furthermore, we could clearly visualize a glioma tumor in a mouse at a depth of 3.8 mm below the skull. This study demonstrates that PDPPTBZ NPs display great potential as a NIR-II PA contrast agent for high quality deep tissue imaging.
Collapse
Affiliation(s)
- Yanqing Yang
- Key Laboratory of Flexible Electronics (KLOFE) Institute of Advanced Materials (IAM), Nanjing Tech University (Nianjing Tech), 30 South Puzhu Road, Nanjing 211800, China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Yu R, Zou Y, Liu B, Guo Y, Wang X, Han M. Surface modification of pH-sensitive honokiol nanoparticles based on dopamine coating for targeted therapy of breast cancer. Colloids Surf B Biointerfaces 2019; 177:1-10. [PMID: 30690424 DOI: 10.1016/j.colsurfb.2019.01.047] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 01/21/2019] [Accepted: 01/23/2019] [Indexed: 01/16/2023]
Abstract
At present, there is a higher demand for the efficacy of nanoparticle drugs. It is hoped that more drugs will reach the tumor site and that the drug will be less harmful to other normal cells of the body before reaching the tumor site. Most target research for nanomedicine can achieve better positioning through complex processes, such as synthesis. To overcome these difficulties, such as the complexity of the preparation method and lack of good targeting, we used simple polydopamine (PDA) as a pH-sensitive targeting anchor for nanoparticles (NPs). We successfully conjugated folic acid (FA) to the surface of honokiol (HK) nanoparticles coated with PDA using a typical surface modifier. After preparation into HK-PDA-FA-NPs, we characterized the particle size, potential and transmission electron microscope (TEM). The targeted nanoparticles (HK-PDA-FA-NPs) can be stably present in various physiological media and exhibit pH sensitivity during drug release in vitro. HK-PDA-FA-NPs have better targeting ability to 4T1 cells than HK-NPs. Targeted nanoparticles have a tumor inhibition rate of greater than 80% in vivo, which is significantly higher than ordinary HK-NPs. This experiment shows that surface modification of HK-NPs coated with PDA is a promising preparation method for targeted therapy.
Collapse
Affiliation(s)
- RunQi Yu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, PR China; School of Pharmacy, Heilongjiang University of Chinese Medicine, No. 24, Heping Road, Xiangfang District, Harbin, PR China
| | - Yuan Zou
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, PR China
| | - Biao Liu
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, PR China; Life Sciences and Environmental Sciences Center, Harbin University of Commerce, PR China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, PR China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, PR China.
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Peking Union Medical College, No. 151, Malianwa North Road, Haidian District, Beijing, PR China.
| |
Collapse
|
20
|
Chen R, Chen Q, Qin H, Xing D. A photoacoustic shockwave triggers the size shrinkage of nanoparticles to obviously improve tumor penetration and therapeutic efficacy. NANOSCALE 2019; 11:1423-1436. [PMID: 30608103 DOI: 10.1039/c8nr08271e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Drug delivery to a tumor site with an insufficient microvascular network remains a challenge due to the size preference for transport in terms of circulation and distribution. In this work, an integrated nano-therapeutic parcel disintegrable by a photoacoustic shockwave was developed. Nano-therapeutic particles with red absorbance are packaged into a larger parcel to generate a longer circulation half-life and improved accumulation in tumor tissue. Pulse-laser irradiation is absorbed by the nanoparticles and it generates a photoacoustic shockwave. This triggers a liquid-gas phase transition of the nano-parcel, leading to the high-efficiency release of smaller nanoparticles, thus achieving excellent therapeutic diffusion with improved uniformity. This results in a highly effective therapeutic effect, as demonstrated with both in vitro and in vivo tumor models. Compared to previously reported work, this approach has the distinctive advantage of precisely controllable therapeutic release that is independent of the physiological environment in the tumor and it is less limited than a UV-based release mechanism. In addition, the concept of photoacoustic shockwave-based nanoparticle release can be extended over a wide wavelength range, including microwaves, to match specific needs and achieve optimal therapeutic depth. The results demonstrate that the proposed strategy holds great potential for improved tumor therapy efficacy.
Collapse
Affiliation(s)
- Rong Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, South China Normal University, Guangzhou 510631, China.
| | | | | | | |
Collapse
|
21
|
Viseu T, Lopes CM, Fernandes E, Oliveira MECDR, Lúcio M. A Systematic Review and Critical Analysis of the Role of Graphene-Based Nanomaterialsin Cancer Theranostics. Pharmaceutics 2018; 10:E282. [PMID: 30558378 PMCID: PMC6321636 DOI: 10.3390/pharmaceutics10040282] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 12/08/2018] [Accepted: 12/13/2018] [Indexed: 12/18/2022] Open
Abstract
Many graphene-based materials (GBNs) applied to therapy and diagnostics (theranostics) in cancer have been developed. Most of them are hybrid combinations of graphene with other components (e.g, drugs or other bioactives, polymers, and nanoparticles) aiming toward a synergic theranostic effect. However, the role of graphene in each of these hybrids is sometimes not clear enough and the synergic graphene effect is not proven. The objective of this review is to elaborate on the role of GBNs in the studies evaluated and to compare the nanoformulations in terms of some of their characteristics, such as therapeutic outcomes and toxicity, which are essential features for their potential use as bionanosystems. A systematic review was carried out using the following databases: PubMed, Scopus, and ISI Web of Science (2013⁻2018). Additional studies were identified manually by consulting the references list of relevant reviews. Only English papers presenting at least one strategy for cancer therapy and one strategy for cancer diagnostics, and that clearly show the role of graphene in theranostics, were included. Data extraction and quality assessment was made by reviewer pairings. Fifty-five studies met the inclusion criteria, but they were too heterogeneous to combine in statistical meta-analysis. Critical analysis and discussion of the selected papers are presented.
Collapse
Affiliation(s)
- Teresa Viseu
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Carla M Lopes
- FP-ENAS/CEBIMED-Fernando Pessoa Energy, Environment and Health Research Unit/Biomedical Research Centre, Faculty of Health Sciences, Fernando Pessoa University, 4249-004 Porto, Portugal.
| | - Eduarda Fernandes
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Maria Elisabete C D Real Oliveira
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| | - Marlene Lúcio
- CF-UM-UP-Centre of Physics of Universities of Minho and Porto, Departament of Physics of University of Minho, Escola de Ciências, Campus de Gualtar, 4710-057 Braga, Portugal.
| |
Collapse
|
22
|
Zhang Y, Wu M, Wu M, Zhu J, Zhang X. Multifunctional Carbon-Based Nanomaterials: Applications in Biomolecular Imaging and Therapy. ACS OMEGA 2018; 3:9126-9145. [PMID: 31459047 PMCID: PMC6644613 DOI: 10.1021/acsomega.8b01071] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 07/27/2018] [Indexed: 05/30/2023]
Abstract
Molecular imaging has been widely used not only as an important detection technology in the field of medical imaging for cancer diagnosis but also as a theranostic approach for cancer in recent years. Multifunctional carbon-based nanomaterials (MCBNs), characterized by unparalleled optical, electronic, and thermal properties, have attracted increasing interest and demonstrably hold the greatest promise in biomolecular imaging and therapy. As such, it should come as no surprise that MCBNs have already revealed a great deal of potential applications in biomedical areas, such as bioimaging, drug delivery, and tumor therapy. Carbon nanomaterials can be categorized as graphene, single-walled carbon nanotubes, mesoporous carbon, nanodiamonds, fullerenes, or carbon dots on the basis of their morphologies. In this article, reports of the use of MCBNs in various chemical conjugation/functionalization strategies, focusing on their applications in cancer molecular imaging and imaging-guided therapy, will be comprehensively summarized. MCBNs show the possibility to serve as optimal candidates for precise cancer biotheranostics.
Collapse
Affiliation(s)
- Yanyan Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| | - Minghao Wu
- Department
of Radiology, Tianjin Medical University
Cancer Institute and Hospital, National Clinical Research Center for
Cancer, Tianjin’s Clinical Research Center for Cancer Key Laboratory
of Cancer Prevention and Therapy, Tianjin 300060, P. R.
China
| | - Mingjie Wu
- Institut
National de la Recherche Scientifique-Énergie Matériaux
et Télécommunications, Varennes, Quebec J3X 1S2, Canada
| | - Jingyi Zhu
- School
of Pharmaceutical Science, Nanjing Tech
University, Nanjing 211816, P. R. China
| | - Xuening Zhang
- Department
of Medical Imaging, Second Hospital of Tianjin Medical University, Tianjin 300211, P. R. China
| |
Collapse
|
23
|
Zhou P, Zhao H, Wang Q, Zhou Z, Wang J, Deng G, Wang X, Liu Q, Yang H, Yang S. Photoacoustic-Enabled Self-Guidance in Magnetic-Hyperthermia Fe@Fe 3 O 4 Nanoparticles for Theranostics In Vivo. Adv Healthc Mater 2018; 7:e1701201. [PMID: 29356419 DOI: 10.1002/adhm.201701201] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 12/26/2017] [Indexed: 01/01/2023]
Abstract
Magnetic nanoparticles have gained much interest for theranostics benefited from their intrinsic integration of imaging and therapeutic abilities. Herein, c(RGDyK) peptide PEGylated Fe@Fe3 O4 nanoparticles (RGD-PEG-MNPs) are developed for photoacoustic (PA)-enabled self-guidance in tumor-targeting magnetic hyperthermia therapy in vivo. In the αv β3 -positive U87MG glioblastoma xenograft model, the PA signal of RGD-PEG-MNPs reaches its maximum in the tumor at 6 h after intravenous administration. This signal is enhanced by 2.2-folds compared to that of the preinjection and is also 2.2 times higher than that in the blocking group. It demonstrates the excellent targeting property of RGD-PEG-MNPs. With the guidance of the PA, an effective magnetic hyperthermia to tumor is achieved using RGD-PEG-MNPs.
Collapse
Affiliation(s)
- Ping Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Heng Zhao
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Quan Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Zhiguo Zhou
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Jing Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Guang Deng
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Xiyou Wang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Qian Liu
- Department of Chemistry; Fudan University; Shanghai 200433 China
| | - Hong Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| | - Shiping Yang
- The Key Laboratory of Resource Chemistry of Ministry of Education; Shanghai Key Laboratory of Rare Earth Functional Materials; and Shanghai Municipal Education Committee Key Laboratory of Molecular Imaging Probes and Sensors; Shanghai Normal University; Shanghai 200234 China
| |
Collapse
|
24
|
Chen X, Chen Z, Hu B, Cai P, Wang S, Xiao S, Wu YL, Chen X. Synergistic Lysosomal Activatable Polymeric Nanoprobe Encapsulating pH Sensitive Imidazole Derivative for Tumor Diagnosis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:1703164. [PMID: 29265697 DOI: 10.1002/smll.201703164] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Developing optical tumor imaging probes with minimal background noise is very important for its early detection of small lesions and accurate diagnosis of cancer. To overcome the bottleneck of low signal to noise ratio and sensitivity, it needs further improvement in fluorescent probe design and understanding of tumor development process. Recent reports reveal that lysosome's acidity in cancer cells can be below 4.5 with high Na+ /H+ exchange activity, which makes it an ideal target intracellular organelle for cancer diagnosis based on the variation of pH. Herein, a boron 2-(2'-pyridyl) imidazole complex derivative (BOPIM-N) is developed, with the ability to show a pH-activatable "OFF-ON" fluorescent switch by inhibiting twisted intramolecular charge transfer upon protonation at pH 3.8-4.5, which is studied for its selective viable cancer cell imaging ability in both in vitro and in vivo experiments. Interestingly, BOPIM-N can specifically emit green fluorescence in lysosomes of cancer cells, indicating its promising cancer cell specific imaging ability. More importantly, nanoformulated BOPIM-N probes can be specifically light-ON in tumor bearing site of nude mice with resolution up to cellular level, indicating its potential application in tumor diagnosis and precision medicine.
Collapse
Affiliation(s)
- Xiaohong Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Ziwen Chen
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Benhui Hu
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Pingqiang Cai
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Sa Wang
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei Yichang, 443002, P. R. China
| | - Shuzhang Xiao
- College of Biological and Pharmaceutical Sciences, China Three Gorges University, Hubei Yichang, 443002, P. R. China
| | - Yun-Long Wu
- Fujian Provincial Key Laboratory of Innovative Drug Target Research and State Key Laboratory of Cellular Stress Biology, School of Pharmaceutical Sciences, Xiamen University, Xiamen, 361102, P. R. China
| | - Xiaodong Chen
- Innovative Center for Flexible Devices, School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| |
Collapse
|
25
|
Yang L, Li J, Pan W, Wang H, Li N, Tang B. Fluorescence and photoacoustic dual-mode imaging of tumor-related mRNA with a covalent linkage-based DNA nanoprobe. Chem Commun (Camb) 2018; 54:3656-3659. [DOI: 10.1039/c8cc01335g] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A fluorescence and photoacoustic dual-mode DNA nanoprobe based on covalent linkage was developed for detecting tumor-associated mRNA.
Collapse
Affiliation(s)
- Limin Yang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Jia Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Wei Pan
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Hongyu Wang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Na Li
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| | - Bo Tang
- College of Chemistry
- Chemical Engineering and Materials Science
- Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong
- Key Laboratory of Molecular and Nano Probes
- Ministry of Education
| |
Collapse
|
26
|
Abstract
It is highly desirable to develop novel approaches to improve patient survival rate of pancreatic cancer through early detection. Here, we present such an approach based on photoacoustic and fluorescence molecular imaging of pancreatic tumor using a miniature multimodal endoscope in combination with targeted multifunctional iron oxide nanoparticles (IONPs). A novel fan-shaped scanning mechanism was developed to minimize the invasiveness for endoscopic imaging of pancreatic tumors. The results show that the enhancements in photoacoustic and fluorescence signals using amino-terminal fragment (ATF) targeted IONPs were ~four to six times higher compared to that using non-targeted IONPs. Our study indicates the potential of the combination of the multimodal photoacoustic-fluorescence endoscopy and targeted multifunctional nanoparticles as an efficient tool to provide improved specificity and sensitivity for pancreatic cancer detection.
Collapse
|
27
|
Du L, Qin H, Ma T, Zhang T, Xing D. In Vivo Imaging-Guided Photothermal/Photoacoustic Synergistic Therapy with Bioorthogonal Metabolic Glycoengineering-Activated Tumor Targeting Nanoparticles. ACS NANO 2017; 11:8930-8943. [PMID: 28892360 DOI: 10.1021/acsnano.7b03226] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Developing multifunctional phototheranostics with nanoplatforms offers promising potential for effective eradication of malignant solid tumors. In this study, we develop a multifunctional phototheranostic by combining photothermal therapy (PTT) and photoacoustic therapy (PAT) based on a tumor-targeting nanoagent (DBCO-ZnPc-LP). The nanoagent DBCO-ZnPc-LP was facilely prepared by self-assembling of a single lipophilic near-infrared (NIR) dye zinc(II)-phthalocyanine (ZnPc) with a lipid-poly(ethylene glycol) (LP) and following modified further with dibenzyl cyclootyne (DBCO) for introducing the two-step chemical tumor-targeting strategy based on metabolic glycoengineering and click chemistry. The as-prepared DBCO-ZnPc-LP could not only convert NIR light into heat for effective thermal ablation but also induce a thermal-enhanced ultrasound shockwave boost to trigger substantially localized mechanical damage, achieving synergistic antitumor effect both in vitro and in vivo. Moreover, DBCO-ZnPc-LP can be efficiently delivered into tumor cells and solid tumors after being injected intravenously via the two-step tumor-targeting strategy. By integrating the targeting strategy, photoacoustic imaging, and the synergistic interaction between PTT and PAT, a solid tumor could be accurately positioned and thoroughly eradicated in vivo. Therefore, this multifunctional phototheranostic is believed to play an important role in future oncotherapy by the enhanced synergistic effect of PTT and PAT under the guidance of photoacoustic imaging.
Collapse
Affiliation(s)
- Lihua Du
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Teng Ma
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Tao Zhang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics, South China Normal University , Guangzhou 510631, China
| |
Collapse
|
28
|
Jin Y, Ma X, Zhang S, Meng H, Xu M, Yang X, Xu W, Tian J. A tantalum oxide-based core/shell nanoparticle for triple-modality image-guided chemo-thermal synergetic therapy of esophageal carcinoma. Cancer Lett 2017; 397:61-71. [DOI: 10.1016/j.canlet.2017.03.030] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Revised: 03/17/2017] [Accepted: 03/17/2017] [Indexed: 12/29/2022]
|
29
|
Wen L, Yang S, Zhong J, Zhou Q, Xing D. Thermoacoustic Imaging and Therapy Guidance based on Ultra-short Pulsed Microwave Pumped Thermoelastic Effect Induced with Superparamagnetic Iron Oxide Nanoparticles. Am J Cancer Res 2017. [PMID: 28638483 PMCID: PMC5479284 DOI: 10.7150/thno.17846] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Multifunctional nanoparticle-mediated imaging and therapeutic techniques are promising modalities for accurate localization and targeted treatment of cancer in clinical settings. Thermoacoustic (TA) imaging is highly sensitive to detect the distribution of water, ions or specific nanoprobes and provides excellent resolution, good contrast and superior tissue penetrability. TA therapy is a potential non-invasive approach for the treatment of deep-seated tumors. In this study, human serum albumin (HSA)-functionalized superparamagnetic iron oxide nanoparticle (HSA-SPIO) is used as a multifunctional nanoprobe with clinical application potential for MRI, TA imaging and treatment of tumor. In addition to be a MRI contrast agent for tumor localization, HSA-SPIO can absorb pulsed microwave energy and transform it into shockwave via the thermoelastic effect. Thereby, the reconstructed TA image by detecting TA signal is expected to be a sensitive and accurate representation of the HSA-SPIO accumulation in tumor. More importantly, owing to the selective retention of HSA-SPIO in tumor tissues and strong TA shockwave at the cellular level, HSA-SPIO induced TA effect under microwave-pulse radiation can be used to highly-efficiently kill cancer cells and inhibit tumor growth. Furthermore, ultra-short pulsed microwave with high excitation efficiency and deep penetrability in biological tissues makes TA therapy a highly-efficient anti-tumor modality on the versatile platform. Overall, HSA-SPIO mediated MRI and TA imaging would offer more comprehensive diagnostic information and enable dynamic visualization of nanoagents in the tumorous tissue thereby tumor-targeted therapy.
Collapse
|
30
|
Zheng S, Yuan Y, Duoduo H. A computer-based simulator for intravascular photoacoustic images. Comput Biol Med 2017; 81:176-187. [PMID: 28088080 DOI: 10.1016/j.compbiomed.2017.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 01/05/2017] [Accepted: 01/05/2017] [Indexed: 10/20/2022]
Abstract
Intravascular photoacoustic (IVPA) is a newly developed catheter-based imaging technique for the diagnosis of arterial atherosclerosis. A framework of simulating IVPA transversal images from a cross-sectional vessel model with given optical and acoustic parameters was presented. The light illumination and transportation in multi-layered wall and atherosclerotic plaque tissues were modeled through Monte Carlo (MC) simulation. The generation and transmission of photoacoustic (PA) waves in the acoustically homogeneous medium were modeled through the PA wave equation, which is solved explicitly with a finite difference time domain (FDTD) algorithm in polar coordinates. Finally, a series of cross-sectional gray-scale images displaying the distribution of the deposited optical energy were reconstructed from the time-dependent acoustic pressure series with a time-reversal based algorithm. Experimental results demonstrate a good correlation between the simulated IVPA images and the optical absorption distribution profiles. The simulator provides a powerful tool for generating IVPA image data sets, which are used to improve the imaging catheter and to test the performance of image post-processing algorithms.
Collapse
Affiliation(s)
- Sun Zheng
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China.
| | - Yuan Yuan
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| | - Han Duoduo
- Department of Electronic and Communication Engineering, North China Electric Power University, Baoding 071003, Hebei, China
| |
Collapse
|
31
|
Huang H, Lovell JF. Advanced Functional Nanomaterials for Theranostics. ADVANCED FUNCTIONAL MATERIALS 2017; 27:1603524. [PMID: 28824357 PMCID: PMC5560626 DOI: 10.1002/adfm.201603524] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Nanoscale materials have been explored extensively as agents for therapeutic and diagnostic (i.e. theranostic) applications. Research efforts have shifted from exploring new materials in vitro to designing materials that function in more relevant animal disease models, thereby increasing potential for clinical translation. Current interests include non-invasive imaging of diseases, biomarkers and targeted delivery of therapeutic drugs. Here, we discuss some general design considerations of advanced theranostic materials and challenges of their use, from both diagnostic and therapeutic perspectives. Common classes of nanoscale biomaterials, including magnetic nanoparticles, quantum dots, upconversion nanoparticles, mesoporous silica nanoparticles, carbon-based nanoparticles and organic dye-based nanoparticles, have demonstrated potential for both diagnosis and therapy. Variations such as size control and surface modifications can modulate biocompatibility and interactions with target tissues. The needs for improved disease detection and enhanced chemotherapeutic treatments, together with realistic considerations for clinically translatable nanomaterials will be key driving factors for theranostic agent research in the near future.
Collapse
Affiliation(s)
- Haoyuan Huang
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| | - Jonathan F Lovell
- Department of Biomedical Engineering, University at Buffalo, State University of New York, Buffalo, New York, 14260, United States
| |
Collapse
|
32
|
Ma Z, Qin H, Chen H, Yang H, Xu J, Yang S, Hu J, Xing D. Phage display-derived oligopeptide-functionalized probes for in vivo specific photoacoustic imaging of osteosarcoma. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2017; 13:111-121. [PMID: 27621054 DOI: 10.1016/j.nano.2016.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 08/16/2016] [Accepted: 09/02/2016] [Indexed: 02/05/2023]
Abstract
Specific detection of various tumor types remains crucial for designing effective treatment strategies. We demonstrate photoacoustic imaging (PAI) using high-affinity and high-specificity peptide-based probes for accurate and specific diagnosis of osteosarcoma. Herein, two new tumor-specific oligopeptides, termed PT6 and PT7, were identified using phage display-based screening on an osteosarcoma cell line (UMR-106). The identified oligopeptides were able to detect clinical osteosarcoma samples on tissue microarrays. Oligopeptide-conjugated PEGylated gold nanorods (PGNR) were designed to specifically target UMR-106 cells. More importantly, PAI revealed that both PGNR-PT6 and PGNR-PT7 could bind selectively to subcutaneous UMR-106 xenografts after systemic administration and enhance the contrast of osteosarcoma images by 170% and 230%, respectively, compared to tumor-bearing mice injected with PGNRs conjugated to scrambled oligopeptides. PAI employing PGNRs conjugated to specifically designed nanoprobes may provide a new method for tumor type-specific diagnosis of osteosarcoma.
Collapse
Affiliation(s)
- Zebin Ma
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Hongjiang Chen
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Hailong Yang
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Jiankun Xu
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jun Hu
- Department of Orthopaedics, the First Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, China.
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China.
| |
Collapse
|
33
|
Wu P, Li N, Gu Y, Guo Y, Lou H, He H. A turn-on FRET sensor based on dichlorofluorescein and AuNPs for rapid and ultrasensitive detection of ambroxol hydrochloride in urine. NEW J CHEM 2017. [DOI: 10.1039/c6nj04003a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schematic illustration for the detection of ambroxol based on FRET between the AuNPs and DCF.
Collapse
Affiliation(s)
- Pinping Wu
- Division of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Nan Li
- Division of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yu Gu
- Division of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Yuhan Guo
- Division of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Haoshuang Lou
- Division of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
| | - Hua He
- Division of Analytical Chemistry
- China Pharmaceutical University
- Nanjing 210009
- China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
34
|
Qin H, Zhao Y, Zhang J, Pan X, Yang S, Xing D. Inflammation-targeted gold nanorods for intravascular photoacoustic imaging detection of matrix metalloproteinase-2 (MMP 2 ) in atherosclerotic plaques. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1765-1774. [DOI: 10.1016/j.nano.2016.02.016] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Revised: 01/25/2016] [Accepted: 02/14/2016] [Indexed: 12/29/2022]
|
35
|
Kanazaki K, Sano K, Makino A, Homma T, Ono M, Saji H. Polyoxazoline multivalently conjugated with indocyanine green for sensitive in vivo photoacoustic imaging of tumors. Sci Rep 2016; 6:33798. [PMID: 27667374 PMCID: PMC5036052 DOI: 10.1038/srep33798] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 08/24/2016] [Indexed: 11/09/2022] Open
Abstract
Photoacoustic imaging, which enables high-resolution imaging in deep tissues, has lately attracted considerable attention. For tumor imaging, photoacoustic probes have been proposed to enhance the photoacoustic effect to improve detection sensitivity. Here, we evaluated the feasibility of using a biocompatible hydrophilic polymer, polyoxazoline, conjugated with indocyanine green (ICG) as a tumor-targeted photoacoustic probe via enhanced permeability and retention effect. ICG molecules were multivalently conjugated to partially hydrolyzed polyoxazoline, thereby serving as highly sensitive photoacoustic probes. Interestingly, loading multiple ICG molecules to polyoxazoline significantly enhanced photoacoustic signal intensity under the same ICG concentration. In vivo biodistribution studies using tumor bearing mice demonstrated that 5% hydrolyzed polyoxazoline (50 kDa) conjugated with ICG (ICG/polyoxazoline = 7.8), P14-ICG7.8, showed relatively high tumor accumulation (9.4%ID/g), resulting in delivery of the highest dose of ICG among the probes tested. P14-ICG7.8 enabled clear visualization of the tumor regions by photoacoustic imaging 24 h after administration; the photoacoustic signal increased in proportion with the injected dose. In addition, the signal intensity in blood vessels in the photoacoustic images did not show much change, which was attributed to the high tumor-to-blood ratios of P14-ICG7.8. These results suggest that polyoxazoline-ICG would serve as a robust probe for sensitive photoacoustic tumor imaging.
Collapse
Affiliation(s)
- Kengo Kanazaki
- Department of Patho-Functional Bioanalysis Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Medical Imaging Project, Corporate R&D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo, 146-8501, Japan
| | - Kohei Sano
- Department of Patho-Functional Bioanalysis Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Kyoto University Hospital, 54 Kawaharacho, Shogoin, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Akira Makino
- Department of Patho-Functional Bioanalysis Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan.,Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuokashimoaizuki, Eiheiji-cho, Yoshida-gun, Fukui, 910-1193, Japan
| | - Tsutomu Homma
- Medical Imaging Project, Corporate R&D Headquarters, Canon Inc., 3-30-2 Shimomaruko, Ohta-ku, Tokyo, 146-8501, Japan
| | - Masahiro Ono
- Department of Patho-Functional Bioanalysis Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hideo Saji
- Department of Patho-Functional Bioanalysis Graduate School of Pharmaceutical Sciences, Kyoto University, 46-29 Yoshida Shimoadachi-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
36
|
Novel targets for paclitaxel nano formulations: Hopes and hypes in triple negative breast cancer. Pharmacol Res 2016; 111:577-591. [PMID: 27461138 DOI: 10.1016/j.phrs.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2016] [Revised: 07/18/2016] [Accepted: 07/19/2016] [Indexed: 12/30/2022]
Abstract
Triple negative breast cancer is defined as one of the utmost prevailing breast cancers worldwide, possessing an inadequate prognosis and treatment option limited to chemotherapy and radiotherapy, creating a challenge for researchers as far as developing a specific targeted therapy is concerned. The past research era has shown several promising outcomes for TNBC such as nano-formulations of the chemotherapeutic agents already used for the management of the malignant tumor. Taking a glance at paclitaxel nano formulations, it has been proven beneficial in several researches in the past decade; nevertheless its solubility is often a challenge to scientists in achieving success. We have henceforth discussed the basic heterogeneity of triple negative breast cancer along with the current management options as well as a brief outlook on pros and cons of paclitaxel, known as the most widely used chemotherapeutic agent for the treatment of the disease. We further analyzed the need of nanotechnology pertaining to the problems encountered with the current paclitaxel formulations available discussing the strategic progress in various nano-formulations till date taking into account the basic research strategies required in terms of solubility, permeability, physicochemical properties, active and passive targeting. A thorough review in recent advances in active targeting for TNBC was carried out whereby the various ligands which are at present finding its way into TNBC research such as hyaluronic acid, folic acid, transferrin, etc. were discussed. These ligands have specific receptor affinity to TNBC tumor cells hence can be beneficial for novel drug targeting approaches. Conversely, there are currently several novel strategies in the research pipeline whose targeting ligands have not yet been studied. Therefore, we reviewed upon the numerous novel receptor targets along with the respective nano-formulation aspects which have not yet been fully researched upon and could be exemplified as outstanding target strategies for TNBC which is currently an urgent requirement.
Collapse
|
37
|
Huang L, Cai W, Zhao Y, Wu D, Wang L, Wang Y, Lai D, Rong J, Gao F, Jiang H. In vivo tumor detection with combined MR–Photoacoustic-Thermoacoustic imaging. JOURNAL OF INNOVATIVE OPTICAL HEALTH SCIENCES 2016. [DOI: 10.1142/s1793545816500152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Here, we report a new method using combined magnetic resonance (MR)–Photoacoustic (PA)–Thermoacoustic (TA) imaging techniques, and demonstrate its unique ability for in vivo cancer detection using tumor-bearing mice. Circular scanning TA and PA imaging systems were used to recover the dielectric and optical property distributions of three colon carcinoma bearing mice While a 7.0-T magnetic resonance imaging (MRI) unit with a mouse body volume coil was utilized for high resolution structural imaging of the same mice. Three plastic tubes filled with soybean sauce were used as fiducial markers for the co-registration of MR, PA and TA images. The resulting fused images provided both enhanced tumor margin and contrast relative to the surrounding normal tissues. In particular, some finger-like protrusions extending into the surrounding tissues were revealed in the MR/TA infused images. These results show that the tissue functional optical and dielectric properties provided by PA and TA images along with the anatomical structure by MRI in one picture make accurate tumor identification easier. This combined MR–PA–TA-imaging strategy has the potential to offer a clinically useful triple-modality tool for accurate cancer detection and for intraoperative surgical navigation.
Collapse
Affiliation(s)
- Lin Huang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Wei Cai
- Department of Biomedical Engineering, University of Florida, FL 32611, USA
| | - Yuan Zhao
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Dan Wu
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Lei Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Yuqing Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Dakun Lai
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Jian Rong
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
| | - Fabao Gao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, P. R. China
| | - Huabei Jiang
- School of Physical Electronics, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Biomedical Engineering, University of Florida, FL 32611, USA
| |
Collapse
|
38
|
Xu D, Yang S, Wang Y, Gu Y, Xing D. Noninvasive and high-resolving photoacoustic dermoscopy of human skin. BIOMEDICAL OPTICS EXPRESS 2016; 7:2095-102. [PMID: 27375929 PMCID: PMC4918567 DOI: 10.1364/boe.7.002095] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 04/28/2016] [Accepted: 05/02/2016] [Indexed: 05/21/2023]
Abstract
We proposed and developed a photoacoustic (PA) dermoscope equipped with an integrated PA probe to achieve quantification and high-resolution, high-contrast deep imaging of human skin. The PA probe, with light-sound confocal excitation and reception, is specially designed, and integrated with an objective lens, an ultrasound transducer, and an inverted-triangle coupling cup to facilitate convenient implementation in a clinical setting. The PA dermoscope was utilized for noninvasive and high-resolution imaging of epidermal and dermal structure in volunteers. The imaging results demonstrated that the characteristic parameters of skin disease, including pigment distribution and thickness, vascular diameter, and depth, can be obtained by the PA dermoscope, confirming that PA dermoscopy can serve as a potential tool for the diagnosis and curative effect evaluation of human skin disease.
Collapse
Affiliation(s)
- Dong Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Ying Wang
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China
| | - Ying Gu
- Department of Laser Medicine, Chinese People's Liberation Army General Hospital, Beijing 100853, China;
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China;
| |
Collapse
|
39
|
Liu Y, Nie L, Chen X. Photoacoustic Molecular Imaging: From Multiscale Biomedical Applications Towards Early-Stage Theranostics. Trends Biotechnol 2016; 34:420-433. [PMID: 26924233 DOI: 10.1016/j.tibtech.2016.02.001] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 02/01/2016] [Indexed: 10/22/2022]
Abstract
Photoacoustic imaging (PAI) has ushered in a new era of observational biotechnology and has facilitated the exploration of fundamental biological mechanisms and clinical translational applications, which has attracted tremendous attention in recent years. By converting laser into ultrasound emission, PAI combines rich optical contrast, high ultrasonic spatial resolution, and deep penetration depth in a single modality. This evolutional technique enables multiscale and multicontrast visualization from cells to organs, anatomy to function, and molecules to metabolism with high sensitivity and specificity. The state-of-the-art developments and applications of PAI are described in this review. Future prospects for clinical use are also highlighted. Collectively, PAI holds great promise to drive biomedical applications towards early-stage theranostics.
Collapse
Affiliation(s)
- Yajing Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine (CMITM), School of Public Health, Xiamen University, Xiamen 361102, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine (CMITM), School of Public Health, Xiamen University, Xiamen 361102, China.
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine, National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD 20892, USA.
| |
Collapse
|
40
|
Zang Y, Wei Y, Shi Y, Chen Q, Xing D. Chemo/Photoacoustic Dual Therapy with mRNA-Triggered DOX Release and Photoinduced Shockwave Based on a DNA-Gold Nanoplatform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2016; 12:756-769. [PMID: 26683002 DOI: 10.1002/smll.201502857] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2015] [Revised: 11/08/2015] [Indexed: 06/05/2023]
Abstract
A multifunctional nanoparticle based on gold nanorod (GNR), utilizing mRNA triggered chemo-drug release and near-infrared photoacoustic effect, is developed for a combined chemo-photoacoustic therapy. The constructed nanoparticle (GNR-DNA/FA:DOX) comprises three functional components: (i) GNR as the drug delivery platform and photoacoustic effect enhancer; (ii) toehold-possessed DNA dressed on the GNR to load doxorubicin (DOX) to implement a tumor cell specific chemotherapy; and (iii) folate acid (FA) modified on GNR to guide the nanoparticle to target tumor cells. The results show that, upon an effective and specific delivery of the nanoparticles to the tumor cells with overexpressed folate receptors, the cytotoxic DOX loaded on the GNR-DNA nanoplatform can be released through DNA displacement reaction in melanoma-associated antigen gene mRNA expressed cells. With 808 nm pulse laser irradiation, the photoacoustic effect of the GNR leads to a direct physical damage to the cells. The combined treatment of the two modalities can effectively destroy tumor cells and eradicate the tumors with two distinctively different and supplementing mechanisms. With the nanoparticle, photoacoustic imaging is successfully performed in situ to monitor the drug distribution and tumor morphology for therapeutical guidance. With further in-depth investigation, the proposed nanoparticle may provide an effective and safe alternative cancer treatment modality.
Collapse
Affiliation(s)
- Yundong Zang
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Yanchun Wei
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Yujiao Shi
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science and Institute of Laser Life Science, College of Biophotonics South China Normal University, Guangzhou, 510631, P. R. China
- Joint Laboratory of Laser Oncology with Cancer Center of Sun Yat-sen University, South China Normal University, Guangzhou, 510631, China
| |
Collapse
|
41
|
Wang L, Yang PP, Zhao XX, Wang H. Self-assembled nanomaterials for photoacoustic imaging. NANOSCALE 2016; 8:2488-2509. [PMID: 26757620 DOI: 10.1039/c5nr07437a] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In recent years, extensive endeavors have been paid to construct functional self-assembled nanomaterials for various applications such as catalysis, separation, energy and biomedicines. To date, different strategies have been developed for preparing nanomaterials with diversified structures and functionalities via fine tuning of self-assembled building blocks. In terms of biomedical applications, bioimaging technologies are urgently calling for high-efficient probes/contrast agents for high-performance bioimaging. Photoacoustic (PA) imaging is an emerging whole-body imaging modality offering high spatial resolution, deep penetration and high contrast in vivo. The self-assembled nanomaterials show high stability in vivo, specific tolerance to sterilization and prolonged half-life stability and desirable targeting properties, which is a kind of promising PA contrast agents for biomedical imaging. Herein, we focus on summarizing recent advances in smart self-assembled nanomaterials with NIR absorption as PA contrast agents for biomedical imaging. According to the preparation strategy of the contrast agents, the self-assembled nanomaterials are categorized into two groups, i.e., the ex situ and in situ self-assembled nanomaterials. The driving forces, assembly modes and regulation of PA properties of self-assembled nanomaterials and their applications for long-term imaging, enzyme activity detection and aggregation-induced retention (AIR) effect for diagnosis and therapy are emphasized. Finally, we conclude with an outlook towards future developments of self-assembled nanomaterials for PA imaging.
Collapse
Affiliation(s)
- Lei Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| | - Pei-Pei Yang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| | - Xiao-Xiao Zhao
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| | - Hao Wang
- CAS Center for Excellence in Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology, No. 11 Beiyitiao, Zhongguancun, Haidian District, Beijing, 100190, China.
| |
Collapse
|
42
|
Zhong J, Yang S, Wen L, Xing D. Imaging-guided photoacoustic drug release and synergistic chemo-photoacoustic therapy with paclitaxel-containing nanoparticles. J Control Release 2016; 226:77-87. [PMID: 26860283 DOI: 10.1016/j.jconrel.2016.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 01/22/2016] [Accepted: 02/05/2016] [Indexed: 01/01/2023]
Abstract
Here, a novel triggered drug release modality was developed for oncotherapy. Paclitaxel (PTX), perfluorohexane (PFH) and gold nanorods (AuNRs) loaded nanoparticles (PTX-PAnP) were synthesized. Folic acid (FA) conjugated PTX-PAnP (PTX-PAnP-FA) could be selectively taken into folate receptor-overexpressed tumor cells. Upon pulsed laser irradiation, the PTX-PAnP-FA could be rapidly destructed because of the PFH vaporization, resulting in fast drug release, which induced apoptosis of cancer cells efficiently. Stimulated fragmentation of the PTX-PAnP-FA nanoparticles can facilitate multiple mechanisms such as bubble implosion, shockwave generation, and sonoporation that further enhance the therapeutic efficiency. The in vivo therapy study further confirmed this new approach resulted in efficient tumor suppression. The results demonstrate a unique drug release mechanism based on photoacoustic effect. It provides an all-in-one platform for photoacoustic image-guided drug release and synergistic chemo-photoacoustic therapy.
Collapse
Affiliation(s)
- Junping Zhong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Liewei Wen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| | - Da Xing
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
43
|
Gao C, Deng ZJ, Peng D, Jin YS, Ma Y, Li YY, Zhu YK, Xi JZ, Tian J, Dai ZF, Li CH, Liang XL. Near-infrared dye-loaded magnetic nanoparticles as photoacoustic contrast agent for enhanced tumor imaging. Cancer Biol Med 2016; 13:349-359. [PMID: 27807502 PMCID: PMC5069831 DOI: 10.20892/j.issn.2095-3941.2016.0048] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Objective: Photoacoustic (PA) tomography (PAT) has attracted extensive interest because of its optical absorption contrast and ultrasonic detection. This study aims to develop a biocompatible and biodegradable PA contrast agent particularly promising for clinical applications in human body.
Methods: In this study, we presented a PA contrast agent: 1, 2-distearoyl-sn-glycero-3-phosphoethanolamine-
N-[methoxy (polyethylene glycol)] (DSPE-PEG)-coated superparamagnetic iron oxide (SPIO) nanoparticles (NPs) loaded with indocyanine green (ICG). We used ICG and SPIO NPs because both drugs are approved by the U.S. Food and Drug Administration. Given the strong absorption of near-infrared laser pulses, SPIO@DSPE-PEG/ICG NPs with a uniform diameter of ~28 nm could significantly enhance PA signals.
Results: We demonstrated the contrast enhancement of these NPs in phantom and animal experiments, in which the
in vivo circulation time of SPIO@DSPE-PEG/ICG NPs was considerably longer than that of free ICG. These novel NPs also displayed a high efficiency of tumor targeting.
Conclusions: SPIO@DSPE-PEG/ICG NPs are promising PAT contrast agents for clinical applications.
Collapse
Affiliation(s)
- Chuang Gao
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Zi-Jian Deng
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Dong Peng
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Yu-Shen Jin
- Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yan Ma
- Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yan-Yan Li
- Nanomedicine and Biosensor Laboratory, School of Life Science and Technology, Harbin Institute of Technology, Harbin 150080, China
| | - Yu-Kun Zhu
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Jian-Zhong Xi
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Jie Tian
- Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhi-Fei Dai
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Chang-Hui Li
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| | - Xiao-Long Liang
- Department of Biomedical Engineering, College of Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
44
|
Microwave pumped high-efficient thermoacoustic tumor therapy with single wall carbon nanotubes. Biomaterials 2015; 75:163-173. [PMID: 26513410 DOI: 10.1016/j.biomaterials.2015.10.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 10/10/2015] [Accepted: 10/14/2015] [Indexed: 12/27/2022]
Abstract
The ultra-short pulse microwave could excite to the strong thermoacoustic (TA) shock wave and deeply penetrate in the biological tissues. Based on this, we developed a novel deep-seated tumor therapy modality with mitochondria-targeting single wall carbon nanotubes (SWNTs) as microwave absorbing agents, which act efficiently to convert ultra-short microwave energy into TA shock wave and selectively destroy the targeted mitochondria, thereby inducing apoptosis in cancer cells. After the treatment of SWNTs (40 μg/mL) and ultra-short microwave (40 Hz, 1 min), 77.5% of cancer cells were killed and the vast majority were caused by apoptosis that initiates from mitochondrial damage. The orthotopic liver cancer mice were established as deep-seated tumor model to investigate the anti-tumor effect of mitochondria-targeting TA therapy. The results suggested that TA therapy could effectively inhibit the tumor growth without any observable side effects, while it was difficult to achieve with photothermal or photoacoustic therapy. These discoveries implied the potential application of TA therapy in deep-seated tumor models and should be further tested for development into a promising therapeutic modality for cancer treatment.
Collapse
|