1
|
Tripathi A, Bonilla-Cruz J. Review on Healthcare Biosensing Nanomaterials. ACS APPLIED NANO MATERIALS 2023; 6:5042-5074. [DOI: 10.1021/acsanm.3c00941] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Alok Tripathi
- Department of Chemical and Biochemical Engineering, School of Engineering, Indrashil University, Rajpur 382715, Gujarat India
| | - José Bonilla-Cruz
- Advanced Functional Materials and Nanotechnology Group, Centro de Investigación en Materiales Avanzados S. C. (CIMAV-Subsede Monterrey), Avenida Alianza Norte Autopista Monterrey-Aeropuerto Km 10, PIIT, Apodaca, Nuevo León, México C.P. 66628
| |
Collapse
|
2
|
Ong V, Cortez NR, Xu Z, Amirghasemi F, Abd El-Rahman MK, Mousavi MPS. An Accessible Yarn-Based Sensor for In-Field Detection of Succinylcholine Poisoning. CHEMOSENSORS 2023; 11:175. [DOI: 10.3390/chemosensors11030175] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Succinylcholine (SUX) is a clinical anesthetic that induces temporary paralysis and is degraded by endogenous enzymes within the body. In high doses and without respiratory support, it results in rapid and untraceable death by asphyxiation. A potentiometric thread-based method was developed for the in-field and rapid detection of SUX for forensic use. We fabricated the first solid-contact SUX ion-selective electrodes from cotton yarn, a carbon black ink, and a polymeric ion-selective membrane. The electrodes could selectively measure SUX in a linear range of 1 mM to 4.3 μM in urine, with a Nernstian slope of 27.6 mV/decade. Our compact and portable yarn-based SUX sensors achieved 94.1% recovery at low concentrations, demonstrating feasibility in real-world applications. While other challenges remain, the development of a thread-based ion-selective electrode for SUX detection shows that it is possible to detect this poison in urine and paves the way for other low-cost, rapid forensic diagnostic devices.
Collapse
Affiliation(s)
- Victor Ong
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Nicholas R. Cortez
- Department of Biological Sciences, University of Southern California, Allan Hancock Foundation Building, Los Angeles, CA 90089, USA
| | - Ziru Xu
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Farbod Amirghasemi
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| | - Mohamed K. Abd El-Rahman
- Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr-El Aini Street, Cairo 11562, Egypt
- Department of Chemistry and Chemical Biology, Harvard University, 12 Oxford Street, Cambridge, MA 02138, USA
| | - Maral P. S. Mousavi
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA
| |
Collapse
|
3
|
Pheophorbide A and SN38 conjugated hyaluronan nanoparticles for photodynamic- and cascadic chemotherapy of cancer stem-like ovarian cancer. Carbohydr Polym 2022; 289:119455. [DOI: 10.1016/j.carbpol.2022.119455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Revised: 03/24/2022] [Accepted: 03/31/2022] [Indexed: 01/02/2023]
|
4
|
Peng Y, Sun F, Xiao C, Iqbal MI, Sun Z, Guo M, Gao W, Hu X. Hierarchically Structured and Scalable Artificial Muscles for Smart Textiles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:54386-54395. [PMID: 34747178 DOI: 10.1021/acsami.1c16323] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Fiber-based artificial muscles with excellent actuation performance are gaining great attention as soft materials for flexible actuators; however, current advances in fiber-based artificial muscles generally suffer from high cost, harsh stimulation regimes, limiting deformations, chemical toxicity, or complex manufacturing processing, which hinder the widespread application of those artificial muscles in engineering and practical usage. Herein, a facile cross-scale processing strategy is presented to construct commercially available nontoxic viscose fibers into fast responsive and humidity-driven yarn artificial muscles with a recorded torsional stroke of 1752° cm-1 and a maximum rotation speed up to 2100 rpm, which are comparable to certain artificial muscles made from carbon-based composite materials. The underlying mechanism of such outstanding actuation performance that begins to form at a mesoscale is discussed by theoretical modeling and microstructure characterization. The as-prepared yarn artificial muscles are further scaled up to large-sized fabric muscles through topological weaving structures by integrating different textile technologies. These fabric muscles extend the simple motion of yarn muscles into higher-level diverse deformations without any composite system, complex synthetic processing, and component design, which enables the development of new fiber-based artificial muscles for versatile applications, such as smart textiles and intelligent systems.
Collapse
Affiliation(s)
- Yangyang Peng
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Fengxin Sun
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
- Laboratory of Soft Fibrous Materials, College of Textile Science and Engineering, Jiangnan University, Wuxi 214122, China
| | - Caiqin Xiao
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mohammad Irfan Iqbal
- School of Energy and Environment, City University of Hong Kong, Hong Kong S.A.R. 999077, China
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong S.A.R. 999077, China
| | - Zhenguo Sun
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Mingrui Guo
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Weidong Gao
- Key Laboratory of Eco-textiles of Ministry of Education, Jiangnan University, Wuxi 214122, China
| | - Xiaorui Hu
- College of Design, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
5
|
Dong Y, Ramey-Ward AN, Salaita K. Programmable Mechanically Active Hydrogel-Based Materials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2006600. [PMID: 34309076 PMCID: PMC8595730 DOI: 10.1002/adma.202006600] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 11/20/2020] [Indexed: 05/14/2023]
Abstract
Programmable mechanically active materials (MAMs) are defined as materials that can sense and transduce external stimuli into mechanical outputs or conversely that can detect mechanical stimuli and respond through an optical change or other change in the appearance of the material. Programmable MAMs are a subset of responsive materials and offer potential in next generation robotics and smart systems. This review specifically focuses on hydrogel-based MAMs because of their mechanical compliance, programmability, biocompatibility, and cost-efficiency. First, the composition of hydrogel MAMs along with the top-down and bottom-up approaches used for programming these materials are discussed. Next, the fundamental principles for engineering responsivity in MAMS, which includes optical, thermal, magnetic, electrical, chemical, and mechanical stimuli, are considered. Some advantages and disadvantages of different responsivities are compared. Then, to conclude, the emerging applications of hydrogel-based MAMs from recently published literature, as well as the future outlook of MAM studies, are summarized.
Collapse
Affiliation(s)
- Yixiao Dong
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| | - Allison N. Ramey-Ward
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology/Emory University, Atlanta, GA, United States
| | - Khalid Salaita
- Department of Chemistry, Emory University, Atlanta, GA, United States, 30322
| |
Collapse
|
6
|
Santos Silva T, Melo Soares M, Oliveira Carreira AC, de Sá Schiavo Matias G, Coming Tegon C, Massi M, de Aguiar Oliveira A, da Silva Júnior LN, Costa de Carvalho HJ, Doná Rodrigues Almeida GH, Silva Araujo M, Fratini P, Miglino MA. Biological Characterization of Polymeric Matrix and Graphene Oxide Biocomposites Filaments for Biomedical Implant Applications: A Preliminary Report. Polymers (Basel) 2021; 13:3382. [PMID: 34641197 PMCID: PMC8512758 DOI: 10.3390/polym13193382] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/09/2021] [Accepted: 09/12/2021] [Indexed: 12/18/2022] Open
Abstract
Carbon nanostructures application, such as graphene (Gr) and graphene oxide (GO), provides suitable efforts for new material acquirement in biomedical areas. By aiming to combine the unique physicochemical properties of GO to Poly L-lactic acid (PLLA), PLLA-GO filaments were produced and characterized by X-ray diffraction (XRD). The in vivo biocompatibility of these nanocomposites was performed by subcutaneous and intramuscular implantation in adult Wistar rats. Evaluation of the implantation inflammatory response (21 days) and mesenchymal stem cells (MSCs) with PLLA-GO took place in culture for 7 days. Through XRD, new crystallographic planes were formed by mixing GO with PLLA (PLLA-GO). Using macroscopic analysis, GO implanted in the subcutaneous region showed particles' organization, forming a structure similar to a ribbon, without tissue invasion. Histologically, no tissue architecture changes were observed, and PLLA-GO cell adhesion was demonstrated by scanning electron microscopy (SEM). Finally, PLLA-GO nanocomposites showed promising results due to the in vivo biocompatibility test, which demonstrated effective integration and absence of inflammation after 21 days of implantation. These results indicate the future use of PLLA-GO nanocomposites as a new effort for tissue engineering (TE) application, although further analysis is required to evaluate their proliferative capacity and viability.
Collapse
Affiliation(s)
- Thamires Santos Silva
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Marcelo Melo Soares
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Ana Claudia Oliveira Carreira
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo de Sá Schiavo Matias
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Carolina Coming Tegon
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Marcos Massi
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Andressa de Aguiar Oliveira
- Department of Materials Engineering, Mackgraph Institute, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil; (M.M.S.); (C.C.T.); (M.M.); (A.d.A.O.)
| | - Leandro Norberto da Silva Júnior
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Hianka Jasmyne Costa de Carvalho
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Gustavo Henrique Doná Rodrigues Almeida
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Michelle Silva Araujo
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Paula Fratini
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| | - Maria Angelica Miglino
- Department of Surgery, School of Veterinary Medicine and Animal Science, University of São Paulo, São Paulo 05508-270, Brazil; (T.S.S.); (A.C.O.C.); (G.d.S.S.M.); (L.N.d.S.J.); (H.J.C.d.C.); (G.H.D.R.A.); (M.S.A.); (P.F.)
| |
Collapse
|
7
|
Xu L, Zhang X, Wang Z, Haidry AA, Yao Z, Haque E, Wang Y, Li G, Daeneke T, McConville CF, Kalantar-Zadeh K, Zavabeti A. Low dimensional materials for glucose sensing. NANOSCALE 2021; 13:11017-11040. [PMID: 34152349 DOI: 10.1039/d1nr02529e] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Biosensors are essential components for effective healthcare management. Since biological processes occur on molecular scales, nanomaterials and nanosensors intrinsically provide the most appropriate landscapes for developing biosensors. Low-dimensional materials have the advantage of offering high surface areas, increased reactivity and unique physicochemical properties for efficient and selective biosensing. So far, nanomaterials and nanodevices have offered significant prospects for glucose sensing. Targeted glucose biosensing using such low-dimensional materials enables much more effective monitoring of blood glucose levels, thus providing significantly better predictive diabetes diagnostics and management. In this review, recent advances in using low dimensional materials for sensing glucose are summarized. Sensing fundamentals are discussed, as well as invasive, minimally-invasive and non-invasive sensing methods. The effects of morphological characteristics and size-dependent properties of low dimensional materials are explored for glucose sensing, and the key performance parameters such as selectivity, stability and sensitivity are also discussed. Finally, the challenges and future opportunities that low dimensional materials can offer for glucose sensing are outlined.
Collapse
Affiliation(s)
- Linling Xu
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Xianfei Zhang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhe Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Azhar Ali Haidry
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Zhengjun Yao
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 211100, China
| | - Enamul Haque
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Yichao Wang
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Gang Li
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| | - Torben Daeneke
- School of Engineering, RMIT University, Melbourne, VIC 3000, Australia
| | - Chris F McConville
- Institute for Frontier Materials, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical Engineering, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.
| | - Ali Zavabeti
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC, 3010 Australia.
| |
Collapse
|
8
|
Bilge S, Ergene E, Talak E, Gokyer S, Donar YO, Sınağ A, Yilgor Huri P. Recycled algae-based carbon materials as electroconductive 3D printed skeletal muscle tissue engineering scaffolds. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2021; 32:73. [PMID: 34152502 PMCID: PMC8217022 DOI: 10.1007/s10856-021-06534-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 05/28/2021] [Indexed: 05/03/2023]
Abstract
Skeletal muscle is an electrically and mechanically active tissue that contains highly oriented, densely packed myofibrils. The tissue has self-regeneration capacity upon injury, which is limited in the cases of volumetric muscle loss. Several regenerative therapies have been developed in order to enhance this capacity, as well as to structurally and mechanically support the defect site during regeneration. Among them, biomimetic approaches that recapitulate the native microenvironment of the tissue in terms of parallel-aligned structure and biophysical signals were shown to be effective. In this study, we have developed 3D printed aligned and electrically active scaffolds in which the electrical conductivity was provided by carbonaceous material (CM) derived from algae-based biomass. The synthesis of this conductive and functional CM consisted of eco-friendly synthesis procedure such as pre-carbonization and multi-walled carbon nanotube (MWCNT) catalysis. CM obtained from biomass via hydrothermal carbonization (CM-03) and its ash form (CM-03K) were doped within poly(ɛ-caprolactone) (PCL) matrix and 3D printed to form scaffolds with aligned fibers for structural biomimicry. Scaffolds were seeded with C2C12 mouse myoblasts and subjected to electrical stimulation during the in vitro culture. Enhanced myotube formation was observed in electroactive groups compared to their non-conductive counterparts and it was observed that myotube formation and myotube maturity were significantly increased for CM-03 group after electrical stimulation. The results have therefore showed that the CM obtained from macroalgae biomass is a promising novel source for the production of the electrically conductive scaffolds for skeletal muscle tissue engineering.
Collapse
Affiliation(s)
- Selva Bilge
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Emre Ergene
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
- Ankara University Biotechnology Institute, Ankara, Turkey
| | - Ebru Talak
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Seyda Gokyer
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey
| | - Yusuf Osman Donar
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey
| | - Ali Sınağ
- Department of Chemistry, Ankara University Faculty of Science, Ankara, Turkey.
| | - Pinar Yilgor Huri
- Department of Biomedical Engineering, Ankara University Faculty of Engineering, Ankara, Turkey.
| |
Collapse
|
9
|
Sim HJ, Jang Y, Kim H, Choi JG, Park JW, Lee DY, Kim SJ. Self-Helical Fiber for Glucose-Responsive Artificial Muscle. ACS APPLIED MATERIALS & INTERFACES 2020; 12:20228-20233. [PMID: 32275818 DOI: 10.1021/acsami.0c03120] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
A helical configuration confers a great advantage in artificial muscle due to great movement potential. However, most helical fibers are exposed to a high temperature to produce the coiled helical structure. Hence, thermoset polymer-composed hydrogels are difficult to fabricate as helical fibers due to their thermal degeneration. Here, we describe a self-helical hydrogel fiber that is produced without thermal exposure as a glucose-responsive artificial muscle. The sheath-core fiber was spontaneously transformed into the helical structure during the swelling state by balancing the forces between the untwisting force of the twisted nylon fiber core and the recovery force of the hydrogel sheath. To induce controllable actuation, we also applied a reversible interaction between phenylboronic acid and glucose to the self-helical hydrogel. Consequently, the maximum tensile stroke was 2.3%, and the performance was six times greater than that of the nonhelical fiber. The fiber also exhibited tensile stroke with load and a maximum work density of 130 kJ/m3. Furthermore, we showed a reversible tensile stroke in response to the change in glucose level. Therefore, these results indicate that the self-helical hydrogel fiber has a high potential for use in artificial muscles, glucose sensors, and drug delivery systems.
Collapse
Affiliation(s)
- Hyeon Jun Sim
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Yongwoo Jang
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Hyunsoo Kim
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jung Gi Choi
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Jong Woo Park
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Dong Yeop Lee
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| | - Seon Jeong Kim
- Center for Self-powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
10
|
Mu J, Jung de Andrade M, Fang S, Wang X, Gao E, Li N, Kim SH, Wang H, Hou C, Zhang Q, Zhu M, Qian D, Lu H, Kongahage D, Talebian S, Foroughi J, Spinks G, Kim H, Ware TH, Sim HJ, Lee DY, Jang Y, Kim SJ, Baughman RH. Sheath-run artificial muscles. SCIENCE (NEW YORK, N.Y.) 2020; 365:150-155. [PMID: 31296765 DOI: 10.1126/science.aaw2403] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Accepted: 06/11/2019] [Indexed: 11/02/2022]
Abstract
Although guest-filled carbon nanotube yarns provide record performance as torsional and tensile artificial muscles, they are expensive, and only part of the muscle effectively contributes to actuation. We describe a muscle type that provides higher performance, in which the guest that drives actuation is a sheath on a twisted or coiled core that can be an inexpensive yarn. This change from guest-filled to sheath-run artificial muscles increases the maximum work capacity by factors of 1.70 to 2.15 for tensile muscles driven electrothermally or by vapor absorption. A sheath-run electrochemical muscle generates 1.98 watts per gram of average contractile power-40 times that for human muscle and 9.0 times that of the highest power alternative electrochemical muscle. Theory predicts the observed performance advantages of sheath-run muscles.
Collapse
Affiliation(s)
- Jiuke Mu
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Mônica Jung de Andrade
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Shaoli Fang
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Xuemin Wang
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA.,Department of Mechanical Engineering, Georgia Southern University, Statesboro, GA 30458, USA
| | - Enlai Gao
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA.,Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan, Hubei 430072, China
| | - Na Li
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA.,Materials Science, MilliporeSigma, Milwaukee, WI 53209, USA
| | - Shi Hyeong Kim
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongzhi Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Chengyi Hou
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Qinghong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Dong Qian
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hongbing Lu
- Department of Mechanical Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Dharshika Kongahage
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Sepehr Talebian
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Javad Foroughi
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Geoffrey Spinks
- Intelligent Polymer Research Institute, Australian Institute for Innovative Materials, University of Wollongong, Wollongong, New South Wales 2522, Australia
| | - Hyun Kim
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Taylor H Ware
- Department of Bioengineering, The University of Texas at Dallas, Richardson, TX 75080, USA
| | - Hyeon Jun Sim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Dong Yeop Lee
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Yongwoo Jang
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering, Hanyang University, Seoul 04763, South Korea
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute, The University of Texas at Dallas, Richardson, TX 75080, USA.
| |
Collapse
|
11
|
Pirzada M, Altintas Z. Nanomaterials for Healthcare Biosensing Applications. SENSORS (BASEL, SWITZERLAND) 2019; 19:E5311. [PMID: 31810313 PMCID: PMC6928990 DOI: 10.3390/s19235311] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/22/2019] [Accepted: 11/27/2019] [Indexed: 12/12/2022]
Abstract
In recent years, an increasing number of nanomaterials have been explored for their applications in biomedical diagnostics, making their applications in healthcare biosensing a rapidly evolving field. Nanomaterials introduce versatility to the sensing platforms and may even allow mobility between different detection mechanisms. The prospect of a combination of different nanomaterials allows an exploitation of their synergistic additive and novel properties for sensor development. This paper covers more than 290 research works since 2015, elaborating the diverse roles played by various nanomaterials in the biosensing field. Hence, we provide a comprehensive review of the healthcare sensing applications of nanomaterials, covering carbon allotrope-based, inorganic, and organic nanomaterials. These sensing systems are able to detect a wide variety of clinically relevant molecules, like nucleic acids, viruses, bacteria, cancer antigens, pharmaceuticals and narcotic drugs, toxins, contaminants, as well as entire cells in various sensing media, ranging from buffers to more complex environments such as urine, blood or sputum. Thus, the latest advancements reviewed in this paper hold tremendous potential for the application of nanomaterials in the early screening of diseases and point-of-care testing.
Collapse
Affiliation(s)
| | - Zeynep Altintas
- Technical University of Berlin, Straße des 17. Juni 124, 10623 Berlin, Germany;
| |
Collapse
|
12
|
Dong R, Ma PX, Guo B. Conductive biomaterials for muscle tissue engineering. Biomaterials 2019; 229:119584. [PMID: 31704468 DOI: 10.1016/j.biomaterials.2019.119584] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 10/23/2019] [Accepted: 10/27/2019] [Indexed: 12/20/2022]
Abstract
Muscle tissues are soft tissues that are of great importance in force generation, body movements, postural support and internal organ function. Muscle tissue injuries would not only result in the physical and psychological pain and disability to the patient, but also become a severe social problem due to the heavy financial burden they laid on the governments. Current treatments for muscle tissue injuries all have their own severe limitations and muscle tissue engineering has been proposed as a promising therapeutic strategy to treat with this problem. Conductive biomaterials are good candidates as scaffolds in muscle tissue engineering due to their proper conductivity and their promotion on muscle tissue formation. However, a review of conductive biomaterials function in muscle tissue engineering, including the skeletal muscle tissue, cardiac muscle tissue and smooth muscle tissue regeneration is still lacking. Here we reviewed the recent progress of conductive biomaterials for muscle regeneration. The recent synthesis and fabrication methods of conductive scaffolds containing conductive polymers (mainly polyaniline, polypyrrole and poly(3,4-ethylenedioxythiophene), carbon-based nanomaterials (mainly graphene and carbon nanotube), and metal-based biomaterials were systematically discussed, and their application in a variety of forms (such as hydrogels, films, nanofibers, and porous scaffolds) for different kinds of muscle tissues formation (skeletal muscle, cardiac muscle and smooth muscle) were summarized. Furthermore, the mechanism of how the conductive biomaterials affect the muscle tissue formation was discussed and the future development directions were included.
Collapse
Affiliation(s)
- Ruonan Dong
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Peter X Ma
- Macromolecular Science and Engineering Center, Department of Materials Science and Engineering, Department of Biologic and Materials Science, University of Michigan, Ann Arbor, MI 48109, USA
| | - Baolin Guo
- Frontier Institute of Science and Technology, and State Key Laboratory for Mechanical Behavior of Materials, Xi'an Jiaotong University, Xi'an, 710049, China; Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an 710049, China.
| |
Collapse
|
13
|
Kim SK, Jeon C, Lee GH, Koo J, Cho SH, Han S, Shin MH, Sim JY, Hahn SK. Hyaluronate-Gold Nanoparticle/Glucose Oxidase Complex for Highly Sensitive Wireless Noninvasive Glucose Sensors. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37347-37356. [PMID: 31502433 DOI: 10.1021/acsami.9b13874] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Noninvasive real-time biosensors to measure glucose levels in the body fluids have been widely investigated for continuous glucose monitoring of diabetic patients. However, they suffered from low sensitivity and reproducibility due to the instability of nanomaterials used for glucose biosensors. Here, we developed a hyaluronate-gold nanoparticle/glucose oxidase (HA-AuNP/GOx) complex and an ultralow-power application-specific integrated circuit chip for noninvasive and robust wireless patch-type glucose sensors. The HA-AuNP/GOx complex was prepared by the facile conjugation of thiolated HA to AuNPs and the following physical binding of GOx. The wireless glucose sensor exhibited slow water evaporation (0.11 μL/min), fast response (5 s), high sensitivity (12.37 μA·dL/mg·cm2) and selectivity, a low detection limit (0.5 mg/dL), and highly stable enzymatic activity (∼14 days). We successfully demonstrated the strong correlation between glucose concentrations measured by a commercially available blood glucometer and the wireless patch-type glucose sensor. Taken together, we could confirm the feasibility of the wireless patch-type robust glucose sensor for noninvasive and continuous diabetic diagnosis.
Collapse
Affiliation(s)
- Su-Kyoung Kim
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Cheonhoo Jeon
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 37673 , Gyeongbuk , Korea
| | - Geon-Hui Lee
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Jahyun Koo
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 37673 , Gyeongbuk , Korea
| | - Seong Hwi Cho
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Seulgi Han
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Myeong-Hwan Shin
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
| | - Jae-Yoon Sim
- Department of Electrical Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 37673 , Gyeongbuk , Korea
| | - Sei Kwang Hahn
- Department of Materials Science and Engineering , Pohang University of Science and Technology (POSTECH) , 77 Cheongam-ro, Nam-gu , Pohang 790-784 , Gyeongbuk , Korea
- PHI BIOMED Co. , #613, 12 Gangnam-daero 65-gil, Seocho-gu , Seoul 06612 , Korea
| |
Collapse
|
14
|
Kim KJ, Hyeon JS, Kim H, Mun TJ, Haines CS, Li N, Baughman RH, Kim SJ. Enhancing the Work Capacity of Electrochemical Artificial Muscles by Coiling Plies of Twist-Released Carbon Nanotube Yarns. ACS APPLIED MATERIALS & INTERFACES 2019; 11:13533-13537. [PMID: 30924629 DOI: 10.1021/acsami.8b21417] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Twisted-yarn-based artificial muscles can potentially be used in diverse applications, such as valves in microfluidic devices, smart textiles, air vehicles, and exoskeletons, because of their high torsional and tensile strokes, high work capacities, and long cycle life. Here, we demonstrate electrochemically powered, hierarchically twisted carbon nanotube yarn artificial muscles that have a contractile work capacity of 3.78 kJ/kg, which is 95 times the work capacity of mammalian skeletal muscles. This record work capacity and a tensile stroke of 15.1% were obtained by maximizing yarn capacitance by optimizing the degree of inserted twist in component yarns that are plied until fully coiled. These electrochemically driven artificial muscles can be operated in reverse as mechanical energy harvesters that need no externally applied bias. In aqueous sodium chloride electrolyte, a peak electrical output power of 0.65 W/kg of energy harvester was generated by 1 Hz sinusoidal elongation.
Collapse
Affiliation(s)
- Keon Jung Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Jae Sang Hyeon
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Hyunsoo Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Tae Jin Mun
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| | - Carter S Haines
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Na Li
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Ray H Baughman
- Alan G. MacDiarmid NanoTech Institute , University of Texas at Dallas , Richardson , Texas 75080 , United States
| | - Seon Jeong Kim
- Center for Self-Powered Actuation, Department of Biomedical Engineering , Hanyang University , Seoul 04763 , Korea
| |
Collapse
|
15
|
Simon J, Flahaut E, Golzio M. Overview of Carbon Nanotubes for Biomedical Applications. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E624. [PMID: 30791507 PMCID: PMC6416648 DOI: 10.3390/ma12040624] [Citation(s) in RCA: 130] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/08/2019] [Accepted: 02/14/2019] [Indexed: 12/18/2022]
Abstract
The unique combination of mechanical, optical and electrical properties offered by carbon nanotubes has fostered research for their use in many kinds of applications, including the biomedical field. However, due to persisting outstanding questions regarding their potential toxicity when considered as free particles, the research is now focusing on their immobilization on substrates for interface tuning or as biosensors, as load in nanocomposite materials where they improve both mechanical and electrical properties or even for direct use as scaffolds for tissue engineering. After a brief introduction to carbon nanotubes in general and their proposed applications in the biomedical field, this review will focus on nanocomposite materials with hydrogel-based matrices and especially their potential future use for diagnostics, tissue engineering or targeted drug delivery. The toxicity issue will also be briefly described in order to justify the safe(r)-by-design approach offered by carbon nanotubes-based hydrogels.
Collapse
Affiliation(s)
- Juliette Simon
- CIRIMAT, Université Toulouse Paul Sabatier, B.t. CIRIMAT, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse CEDEX 4, France.
| | - Emmanuel Flahaut
- CIRIMAT, Université Toulouse Paul Sabatier, B.t. CIRIMAT, 118 route de Narbonne, 31062 Toulouse CEDEX 9, France.
| | - Muriel Golzio
- Institut de Pharmacologie et de Biologie Structurale, IPBS, Université de Toulouse Paul Sabatier, 205, Route de Narbonne, 31077 Toulouse CEDEX 4, France.
| |
Collapse
|
16
|
Tian Y, Tian R, Chen L, Jin R, Feng Y, Bai Y, Chen X. Redox‐Responsive Nanogel with Intracellular Reconstruction and Programmable Drug Release for Targeted Tumor Therapy. Macromol Rapid Commun 2019; 40:e1800824. [DOI: 10.1002/marc.201800824] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Indexed: 01/08/2023]
Affiliation(s)
- Yu Tian
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| | - Ran Tian
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| | - Li Chen
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| | - Ronghua Jin
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| | - Yiming Feng
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| | - Yongkang Bai
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| | - Xin Chen
- School of Chemical Engineering and TechnologyShanxi Key Laboratory of Energy Chemical Process IntensificationInstitute of Polymer Science in Chemical EngineeringXi'an Jiao Tong University Xi'an China 710049
| |
Collapse
|
17
|
Zhou X, Zhu L, Fan L, Deng H, Fu Q. Fabrication of Highly Stretchable, Washable, Wearable, Water-Repellent Strain Sensors with Multi-Stimuli Sensing Ability. ACS APPLIED MATERIALS & INTERFACES 2018; 10:31655-31663. [PMID: 30141328 DOI: 10.1021/acsami.8b11766] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Stretchable and wearable sensors with active response to various environmental stimuli possess numerous potential applications in stretchable electronics, motion sensors, environmental monitoring, and so on. Herein, we report a new method to realize control on the local conductive networks of strain sensors, thus, their sensing behavior. These multifunctional crack-based sensors were prepared via spray coating a mixture of carbon nanotube (CNT) and 3-aminopropyltriethoxysilane (KH550) with various ratios onto polydimethylsiloxane (PDMS). The conductive CNT/KH550 layer exhibits brittle mechanical behavior which triggers the formation of cracks upon stretching. This is thought to be responsible for the observed electromechanical behavior. These sensors exhibit adjustable gauge factors of 5-1000, stretchability (ε) of 2-250%, linearity (nonlinearity-linearity) and high durability over 1000 stretching-releasing cycles for mechanical deformation. Washable, wearable, and water-repellent sensors were prepared through such a method to successfully detect human physiological activities. Moreover, the variation in temperature or the presence of solvent can also be detected due to the thermal expansion and swelling of the PDMS layer. It is expected that such a concept could be used to prepare sensors for multiple applications, thanks to its multifunctionality, adjustable and robust performance, simple and low-cost fabrication strategy.
Collapse
Affiliation(s)
- Xin Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Li Zhu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Li Fan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Hua Deng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , P. R. China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering , Sichuan University , Chengdu 610065 , P. R. China
| |
Collapse
|
18
|
Wan G, Jin C, Trase I, Zhao S, Chen Z. Helical Structures Mimicking Chiral Seedpod Opening and Tendril Coiling. SENSORS (BASEL, SWITZERLAND) 2018; 18:E2973. [PMID: 30200611 PMCID: PMC6164363 DOI: 10.3390/s18092973] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 08/24/2018] [Accepted: 09/03/2018] [Indexed: 12/30/2022]
Abstract
Helical structures are ubiquitous in natural and engineered systems across multiple length scales. Examples include DNA molecules, plants' tendrils, sea snails' shells, and spiral nanoribbons. Although this symmetry-breaking shape has shown excellent performance in elastic springs or propulsion generation in a low-Reynolds-number environment, a general principle to produce a helical structure with programmable geometry regardless of length scales is still in demand. In recent years, inspired by the chiral opening of Bauhinia variegata's seedpod and the coiling of plant's tendril, researchers have made significant breakthroughs in synthesizing state-of-the-art 3D helical structures through creating intrinsic curvatures in 2D rod-like or ribbon-like precursors. The intrinsic curvature results from the differential response to a variety of external stimuli of functional materials, such as hydrogels, liquid crystal elastomers, and shape memory polymers. In this review, we give a brief overview of the shape transformation mechanisms of these two plant's structures and then review recent progress in the fabrication of biomimetic helical structures that are categorized by the stimuli-responsive materials involved. By providing this survey on important recent advances along with our perspectives, we hope to solicit new inspirations and insights on the development and fabrication of helical structures, as well as the future development of interdisciplinary research at the interface of physics, engineering, and biology.
Collapse
Affiliation(s)
- Guangchao Wan
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | - Congran Jin
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | - Ian Trase
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | - Shan Zhao
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| | - Zi Chen
- Thayer School of Engineering, Dartmouth College, Hanover, NH 03755, USA.
| |
Collapse
|
19
|
Qiao J, Di J, Zhou S, Jin K, Zeng S, Li N, Fang S, Song Y, Li M, Baughman RH, Li Q. Large-Stroke Electrochemical Carbon Nanotube/Graphene Hybrid Yarn Muscles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1801883. [PMID: 30152590 DOI: 10.1002/smll.201801883] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 08/05/2018] [Indexed: 06/08/2023]
Abstract
Artificial muscles are reported in which reduced graphene oxide (rGO) is trapped in the helical corridors of a carbon nanotube (CNT) yarn. When electrochemically driven in aqueous electrolytes, these coiled CNT/rGO yarn muscles can contract by 8.1%, which is over six times that of the previous results for CNT yarn muscles driven in an inorganic electrolyte (1.3%). They can contract to provide a final stress of over 14 MPa, which is about 40 times that of natural muscles. The hybrid yarn muscle shows a unique catch state, in which 95% of the contraction is retained for 1000 s following charging and subsequent disconnection from the power supply. Hence, they are unlike thermal muscles and natural muscles, which need to consume energy to maintain contraction. Additionally, these muscles can be reversibly cycled while lifting heavy loads.
Collapse
Affiliation(s)
- Jian Qiao
- School of Materials Science and Engineering and Key Laboratory of Aerospace Materials and Performance, Ministry of Education, Beihang University, Beijing, 100083, P. R. China
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Jiangtao Di
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Susheng Zhou
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Kaiyun Jin
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Sha Zeng
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Na Li
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, TX, 75083, USA
| | - Shaoli Fang
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, TX, 75083, USA
| | - Yanhui Song
- School of Materials Science and Engineering and Key Laboratory of Aerospace Materials and Performance, Ministry of Education, Beihang University, Beijing, 100083, P. R. China
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| | - Min Li
- School of Materials Science and Engineering and Key Laboratory of Aerospace Materials and Performance, Ministry of Education, Beihang University, Beijing, 100083, P. R. China
| | - Ray H Baughman
- The Alan G. MacDiarmid NanoTech Institute, University of Texas at Dallas, TX, 75083, USA
| | - Qingwen Li
- Key Laboratory of Nanodevices and Applications, Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou, 215123, P. R. China
| |
Collapse
|
20
|
Wang H, Chen Q, Zhou S. Carbon-based hybrid nanogels: a synergistic nanoplatform for combined biosensing, bioimaging, and responsive drug delivery. Chem Soc Rev 2018; 47:4198-4232. [PMID: 29667656 DOI: 10.1039/c7cs00399d] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Nanosized crosslinked polymer networks, named as nanogels, are playing an increasingly important role in a diverse range of applications by virtue of their porous structures, large surface area, good biocompatibility and responsiveness to internal and/or external chemico-physical stimuli. Recently, a variety of carbon nanomaterials, such as carbon quantum dots, graphene/graphene oxide nanosheets, fullerenes, carbon nanotubes, and nanodiamonds, have been embedded into responsive polymer nanogels, in order to integrate the unique electro-optical properties of carbon nanomaterials with the merits of nanogels into a single hybrid nanogel system for improvement of their applications in nanomedicine. A vast number of studies have been pursued to explore the applications of carbon-based hybrid nanogels in biomedical areas for biosensing, bioimaging, and smart drug carriers with combinatorial therapies and/or theranostic ability. New synthetic methods and structures have been developed to prepare carbon-based hybrid nanogels with versatile properties and functions. In this review, we summarize the latest developments and applications and address the future perspectives of these carbon-based hybrid nanogels in the biomedical field.
Collapse
Affiliation(s)
- Hui Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, P. R. China.
| | | | | |
Collapse
|
21
|
Vashist A, Kaushik A, Vashist A, Sagar V, Ghosal A, Gupta YK, Ahmad S, Nair M. Advances in Carbon Nanotubes-Hydrogel Hybrids in Nanomedicine for Therapeutics. Adv Healthc Mater 2018; 7:e1701213. [PMID: 29388356 PMCID: PMC6248342 DOI: 10.1002/adhm.201701213] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Revised: 11/21/2017] [Indexed: 12/21/2022]
Abstract
In spite of significant advancement in hydrogel technology, low mechanical strength and lack of electrical conductivity have limited their next-level biomedical applications for skeletal muscles, cardiac and neural cells. Host-guest chemistry based hybrid nanocomposites systems have gained attention as they completely overcome these pitfalls and generate bioscaffolds with tunable electrical and mechanical characteristics. In recent years, carbon nanotube (CNT)-based hybrid hydrogels have emerged as innovative candidates with diverse applications in regenerative medicines, tissue engineering, drug delivery devices, implantable devices, biosensing, and biorobotics. This article is an attempt to recapitulate the advancement in synthesis and characterization of hybrid hydrogels and provide deep insights toward their functioning and success as biomedical devices. The improved comparative performance and biocompatibility of CNT-hydrogels hybrids systems developed for targeted biomedical applications are addressed here. Recent updates toward diverse applications and limitations of CNT hybrid hydrogels is the strength of the review. This will provide a holistic approach toward understanding of CNT-based hydrogels and their applications in nanotheranostics.
Collapse
Affiliation(s)
- Arti Vashist
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Ajeet Kaushik
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Atul Vashist
- Department of Biotechnology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Vidya Sagar
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| | - Anujit Ghosal
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India, 110067
| | - Y. K. Gupta
- Department of Pharmacology, All India Institute of Medical Sciences, New Delhi, India, 110029
| | - Sharif Ahmad
- Materials Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India, 110025
| | - Madhavan Nair
- Center for Personalized Nanomedicine, Department of Immunology, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
| |
Collapse
|
22
|
Tension-induced twist of twist-spun carbon nanotube yarns and its effect on their torsional behavior. Sci Rep 2018; 8:6146. [PMID: 29670186 PMCID: PMC5906567 DOI: 10.1038/s41598-018-24458-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 03/27/2018] [Indexed: 11/08/2022] Open
Abstract
Twist-spun carbon nanotube (CNT) yarns exhibit a large and reversible rotational behavior under specific boundary conditions. In situ polarized Raman spectroscopy revealed that a tension-induced twist provides reversibility to this rotation. The orientation changes of individual CNTs were followed when twist-spun CNT yarns were untwisted and subsequently retwisted. Twist-spun CNT yarn, when untwisted and subsequently retwisted under the one-ended tethered boundary condition, showed irreversible orientation changes of the individual CNTs due to snarls formed during the untwisting operation, which resulted in macroscopic irreversible rotational behavior of the CNT yarns. In contrast, the orientation changes of the individual CNTs in twist-spun CNT yarn, when operated under the two-ended tethered boundary condition, were hysteretically reversible due to a tension-induced twist, which has not been reported previously. Indeed, the tension-induced twist was observed by following the orientation change of individual CNTs in elongated CNT yarns, which simulated the deformational behavior of the CNT yarn rotated under the two-ended tethered boundary condition.
Collapse
|
23
|
Jiang D, Liu Z, Wu K, Mou L, Ovalle-Robles R, Inoue K, Zhang Y, Yuan N, Ding J, Qiu J, Huang Y, Liu Z. Fabrication of Stretchable Copper Coated Carbon Nanotube Conductor for Non-Enzymatic Glucose Detection Electrode with Low Detection Limit and Selectivity. Polymers (Basel) 2018; 10:E375. [PMID: 30966410 PMCID: PMC6415456 DOI: 10.3390/polym10040375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Revised: 03/18/2018] [Accepted: 03/19/2018] [Indexed: 11/17/2022] Open
Abstract
The increasing demand for wearable glucose sensing has stimulated growing interest in stretchable electrodes. The development of the electrode materials having large stretchability, low detection limit, and good selectivity is the key component for constructing high performance wearable glucose sensors. In this work, we presented fabrication of stretchable conductor based on the copper coated carbon nanotube sheath-core fiber, and its application as non-enzymatic electrode for glucose detection with high stretchability, low detection limit, and selectivity. The sheath-core fiber was fabricated by coating copper coated carbon nanotube on a pre-stretched rubber fiber core followed by release of pre-stretch, which had a hierarchically buckled structure. It showed a small resistance change as low as 27% as strain increasing from 0% to 500% strain, and a low resistance of 0.4 Ω·cm-1 at strain of 500%. This electrode showed linear glucose concentration detection in the range between 0.05 mM and 5 mM and good selectivity against sucrose, lactic acid, uric acid, acrylic acid in phosphate buffer saline solution, and showed stable signal in high salt concentration. The limit of detection (LOD) was 0.05 mM, for the range of 0.05⁻5 mM, the sensitivity is 46 mA·M-1. This electrode can withstand large strain of up to 60% with negligible influence on its performance.
Collapse
Affiliation(s)
- Dawei Jiang
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhongsheng Liu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Kunkun Wu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Linlin Mou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Raquel Ovalle-Robles
- Lintec of America, Nano-Science and Technology Center Richardson, Dallas, TX 75081, USA.
| | - Kanzan Inoue
- Lintec of America, Nano-Science and Technology Center Richardson, Dallas, TX 75081, USA.
| | - Yu Zhang
- Department of Building Engineering, Logistics University of PAPF, Tianjin 300309, China.
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Ningyi Yuan
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianning Ding
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Jianhua Qiu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
| | - Yi Huang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| | - Zunfeng Liu
- School of Materials Science and Engineering, Jiangsu Collaborative Innovation Center of Photovolatic Science and Engineering, Changzhou University, Changzhou 213164, China.
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Functional Polymer Materials, Ministry of Education, College of Pharmacy, Nankai University, Tianjin 300071, China.
| |
Collapse
|
24
|
Wan H, Yin H, Lin L, Zeng X, Mason AJ. Miniaturized Planar Room Temperature Ionic Liquid Electrochemical Gas Sensor for Rapid Multiple Gas Pollutants Monitoring. SENSORS AND ACTUATORS. B, CHEMICAL 2018. [PMID: 29255341 DOI: 10.1016/j.snb.2017.09.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The growing impact of airborne pollutants and explosive gases on human health and occupational safety has escalated the demand of sensors to monitor hazardous gases. This paper presents a new miniaturized planar electrochemical gas sensor for rapid measurement of multiple gaseous hazards. The gas sensor features a porous polytetrafluoroethylene substrate that enables fast gas diffusion and room temperature ionic liquid as the electrolyte. Metal sputtering was utilized for platinum electrodes fabrication to enhance adhesion between the electrodes and the substrate. Together with carefully selected electrochemical methods, the miniaturized gas sensor is capable of measuring multiple gases including oxygen, methane, ozone and sulfur dioxide that are important to human health and safety. Compared to its manually-assembled Clark-cell predecessor, this sensor provides better sensitivity, linearity and repeatability, as validated for oxygen monitoring. With solid performance, fast response and miniaturized size, this sensor is promising for deployment in wearable devices for real-time point-of-exposure gas pollutant monitoring.
Collapse
Affiliation(s)
- Hao Wan
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, U.S.A
| | - Heyu Yin
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, U.S.A
| | - Lu Lin
- Department of Chemistry, Oakland University, Rochester, MI, 48309, U.S.A
| | - Xiangqun Zeng
- Department of Chemistry, Oakland University, Rochester, MI, 48309, U.S.A
| | - Andrew J Mason
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, 48824, U.S.A
| |
Collapse
|
25
|
Tong Y, Xu J, Jiang H, Gao F, Lu Q. One-step synthesis of novel Cu@polymer nanocomposites through a self-activated route and their application as nonenzymatic glucose sensors. Dalton Trans 2017; 46:9918-9924. [DOI: 10.1039/c7dt01931a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Novel core–shell Cu@polymer nanocomposites were synthesized through a one-step self-activated route and developed as nonenzymatic glucose sensor.
Collapse
Affiliation(s)
- Yinlin Tong
- Department of Materials Science and Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Jiaying Xu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
| | - Hong Jiang
- Department of Materials Science and Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Feng Gao
- Department of Materials Science and Engineering
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing University
- Nanjing 210093
- P. R. China
| | - Qingyi Lu
- State Key Laboratory of Coordination Chemistry
- Coordination Chemistry Institute
- Collaborative Innovation Center of Advanced Microstructures
- Nanjing National Laboratory of Microstructures
- School of Chemistry and Chemical Engineering
| |
Collapse
|
26
|
Chandran GT, Li X, Ogata A, Penner RM. Electrically Transduced Sensors Based on Nanomaterials (2012-2016). Anal Chem 2016; 89:249-275. [PMID: 27936611 DOI: 10.1021/acs.analchem.6b04687] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Girija Thesma Chandran
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Xiaowei Li
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Alana Ogata
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| | - Reginald M Penner
- Department of Chemistry, University of California, Irvine , Irvine, California 92697-2025, United States
| |
Collapse
|
27
|
Chen S, Wei Y, Wei S, Lin Y, Liu L. Ultrasensitive Cracking-Assisted Strain Sensors Based on Silver Nanowires/Graphene Hybrid Particles. ACS APPLIED MATERIALS & INTERFACES 2016; 8:25563-70. [PMID: 27599264 DOI: 10.1021/acsami.6b09188] [Citation(s) in RCA: 102] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Strain sensors with ultrahigh sensitivity under microstrain have numerous potential applications in heartbeat monitoring, pulsebeat detection, sound signal acquisition, and recognition. In this work, a two-part strain sensor (i.e., polyurethane part and brittle conductive hybrid particles layer on top) based on silver nanowires/graphene hybrid particles is developed via a simple coprecipitation, reduction, vacuum filtration, and casting process. Because of the nonuniform interface, weak interfacial bonding, and the hybrid particles' point-to-point conductive networks, the crack and overlap morphologies are successfully formed on the strain sensor after a prestretching; the crack-based stain sensor exhibits gauge factors as high as 20 (Δε < 0.3%), 1000 (0.3% < Δε < 0.5%), and 4000 (0.8% < Δε < 1%). In addition, we demonstrate the sensing mechanism under strain results in the high gauge factor of the strain sensor. Combined with its good response to bending, high strain resolution, and high working stability, the developed strain sensor is promising in the applications of electronic skins, motion sensors, and health monitoring sensors.
Collapse
Affiliation(s)
- Song Chen
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology , Guangzhou 510640, P. R. China
| | - Yong Wei
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology , Guangzhou 510640, P. R. China
| | - Siman Wei
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology , Guangzhou 510640, P. R. China
| | - Yong Lin
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology , Guangzhou 510640, P. R. China
| | - Lan Liu
- College of Materials Science and Engineering, Key Lab of Guangdong Province for High Property and Functional Macromolecular Materials, South China University of Technology , Guangzhou 510640, P. R. China
| |
Collapse
|
28
|
Abstract
Lightweight artificial muscle fibers that can match the large tensile stroke of natural muscles have been elusive. In particular, low stroke, limited cycle life, and inefficient energy conversion have combined with high cost and hysteretic performance to restrict practical use. In recent years, a new class of artificial muscles, based on highly twisted fibers, has emerged that can deliver more than 2,000 J/kg of specific work during muscle contraction, compared with just 40 J/kg for natural muscle. Thermally actuated muscles made from ordinary polymer fibers can deliver long-life, hysteresis-free tensile strokes of more than 30% and torsional actuation capable of spinning a paddle at speeds of more than 100,000 rpm. In this perspective, we explore the mechanisms and potential applications of present twisted fiber muscles and the future opportunities and challenges for developing twisted muscles having improved cycle rates, efficiencies, and functionality. We also demonstrate artificial muscle sewing threads and textiles and coiled structures that exhibit nearly unlimited actuation strokes. In addition to robotics and prosthetics, future applications include smart textiles that change breathability in response to temperature and moisture and window shutters that automatically open and close to conserve energy.
Collapse
|