1
|
An D, Wang Z, Ning Y, Yue Y, Xuan H, Hu Y, Yang M, Zhou H, Liu Q, Wang X, Wang P, Zhu Z, Rao J, Zhang J. One-Step Physical and Chemical Dual-Reinforcement with Hydrophobic Drug Delivery in Gelatin Hydrogels for Antibacterial Wound Healing. ACS OMEGA 2024; 9:34413-34427. [PMID: 39157075 PMCID: PMC11325409 DOI: 10.1021/acsomega.4c01963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 08/20/2024]
Abstract
Gelatin-based bioadhesives, especially methacrylated gelatin (GelMA), have emerged as superior alternatives to sutureless wound closure. Nowadays, their mechanical improvement and therapeutic delivery, particularly for hydrophobic antibiotics, have received ever-increasing interest. Herein, a reinforced gelatin-based hydrogel with a hydrophobic drug delivery property for skin wound treatment was reported. First, photosensitive monomers of N'-(2-nitrobenzyl)-N-acryloyl glycinamide (NBNAGA) were grafted onto GelMA via Michael addition, namely, GelMA-NBNAGA. Second, gelation of the GelMA-NBNAGA solution was accomplished in a few seconds under one step of ultraviolet (UV) light irradiation. Multiple effects were realized simultaneously, including chemical cross-linking initiated by lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP), physical cross-linking of uncaged dual hydrogen bonding, and hydrophobic drug release along with o-NB group disintegration. The mechanical properties of the dual-reinforcement hydrogels were verified to be superior to those only with a chemical or physical single-cross-linked network. The hydrophobic anticancer doxorubicin (DOX) and antibiotic rifampicin (Rif) were successfully charged into the hydrogels, separately. The in vitro antimicrobial tests confirmed the antibacterial activity of the hydrogels against Gram-negative (Escherichia coli) and Gram-positive (Staphylococcus aureus) bacteria. The in vivo wound-healing assessment in mice further assured their drug release and efficacy. Therefore, this NBNAGA-modified GelMA hydrogel has potential as a material in skin wound dressing with a hydrophobic antibiotic on-demand delivery.
Collapse
Affiliation(s)
- Di An
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Zhengkai Wang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Yishuo Ning
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Yuxing Yue
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Han Xuan
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Yongjin Hu
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Center for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Mingdi Yang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Haiou Zhou
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Qianqian Liu
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Xianbiao Wang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Ping Wang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| | - Zhiyuan Zhu
- Taizhou
Research Institute, Southern University
of Science and Technology, Taizhou, Zhejiang 318001, P. R. China
| | - Jingyi Rao
- Hubei
Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering
Research Center for Biomaterials and Medical Protective Materials,
School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, P. R. China
| | - Jingyan Zhang
- Anhui
Advanced Building Materials International Joint Research Center, School
of Materials and Chemical Engineering, Anhui
Jianzhu University, Hefei, Anhui 230022, P. R. China
| |
Collapse
|
2
|
Wei X, Wan C, Peng X, Luo Y, Hu M, Cheng C, Feng S, Yu X. Copper-based carbon dots modified hydrogel with osteoimmunomodulatory and osteogenesis for bone regeneration. J Mater Chem B 2024; 12:5734-5748. [PMID: 38771222 DOI: 10.1039/d4tb00526k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Biomaterials with dual functions of osteoimmunomodulation and bone repair are very promising in the field of orthopedic materials. For this purpose, we prepared copper-based carbon dots (CuCDs) and doped them into oxychondroitin sulfate/poly-acrylamide hydrogel (OPAM) to obtain a hybrid hydrogel (CuCDs/OPAM). We evaluated its osteoimmunomodulatory and bone repair properties in vitro and in vivo. The obtained CuCDs/OPAM exhibited good rBMSCs-cytocompatibility and anti-inflammatory properties in vitro. It also could effectively promote rBMSCs differentiation and the expression of osteogenic differentiation factors from rBMSCs under an inflammatory environment. Moreover, CuCDs/OPAM could induce macrophage phenotype switching (from M1-type macrophages to M2-type macrophages) in vivo, which is beneficial for anti-inflammatory action and presents good osteoimmunomodulation capability to induce a bone immune microenvironment to promote the differentiation of rBMSCs. In conclusion, CuCDs/OPAM hydrogel has dual functions of osteoimmunomodulatory and bone repair and is a promising bone filling and repair material.
Collapse
Affiliation(s)
- Xu Wei
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Chang Wan
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xu Peng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
- Experimental and Research Animal Institute, Sichuan University, Chengdu 610065, P. R. China
| | - Yihao Luo
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Mengyue Hu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Can Cheng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Shaoxiong Feng
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| | - Xixun Yu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, P. R. China.
| |
Collapse
|
3
|
Ren L, Liu S, Zhong J, Zhang L. Revolutionizing targeting precision: microfluidics-enabled smart microcapsules for tailored delivery and controlled release. LAB ON A CHIP 2024; 24:1367-1393. [PMID: 38314845 DOI: 10.1039/d3lc00835e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
As promising delivery systems, smart microcapsules have garnered significant attention owing to their targeted delivery loaded with diverse active materials. By precisely manipulating fluids on the micrometer scale, microfluidic has emerged as a powerful tool for tailoring delivery systems based on potential applications. The desirable characteristics of smart microcapsules are associated with encapsulation capacity, targeted delivery capability, and controlled release of encapsulants. In this review, we briefly describe the principles of droplet-based microfluidics for smart microcapsules. Subsequently, we summarize smart microcapsules as delivery systems for efficient encapsulation and focus on target delivery patterns, including passive targets, active targets, and microfluidics-assisted targets. Additionally, based on release mechanisms, we review controlled release modes adjusted by smart membranes and on/off gates. Finally, we discuss existing challenges and potential implications associated with smart microcapsules.
Collapse
Affiliation(s)
- Lingling Ren
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Shuang Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Junjie Zhong
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| | - Liyuan Zhang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong, China.
| |
Collapse
|
4
|
Malode SJ, Pandiaraj S, Alodhayb A, Shetti NP. Carbon Nanomaterials for Biomedical Applications: Progress and Outlook. ACS APPLIED BIO MATERIALS 2024; 7:752-777. [PMID: 38271214 DOI: 10.1021/acsabm.3c00983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Recent developments in nanoscale materials have found extensive use in various fields, especially in the biomedical industry. Several substantial obstacles must be overcome, particularly those related to nanostructured materials in biomedicine, before they can be used in therapeutic applications. Significant concerns in biomedicine include biological processes, adaptability, toxic effects, and nano-biointerfacial properties. Biomedical researchers have difficulty choosing suitable materials for drug carriers, cancer treatment, and antiviral uses. Carbon nanomaterials are among the various nanoparticle forms that are continually receiving interest for biomedical applications. They are suitable materials owing to their distinctive physical and chemical properties, such as electrical, high-temperature, mechanical, and optical diversification. An individualized, controlled, dependable, low-carcinogenic, target-specific drug delivery system can diagnose and treat infections in biomedical applications. The variety of carbon materials at the nanoscale is remarkable. Allotropes and other forms of the same element, carbon, are represented in nanoscale dimensions. These show promise for a wide range of applications. Carbon nanostructured materials with exceptional mechanical, electrical, and thermal properties include graphene and carbon nanotubes. They can potentially revolutionize industries, including electronics, energy, and medicine. Ongoing investigation and expansion efforts continue to unlock possibilities for these materials, making them a key player in shaping the future of advanced technology. Carbon nanostructured materials explore the potential positive effects of reducing the greenhouse effect. The current state of nanostructured materials in the biomedical sector is covered in this review, along with their synthesis techniques and potential uses.
Collapse
Affiliation(s)
- Shweta J Malode
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
| | - Saravanan Pandiaraj
- Department of Self-Development Skills, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah Alodhayb
- Department of Physics and Astronomy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nagaraj P Shetti
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Vidyanagar, Hubballi 580031, Karnataka, India
- University Center for Research & Development (UCRD), Chandigarh University, Gharuan, Mohali 140413, Panjab, India
| |
Collapse
|
5
|
Mahajan K, Bhattacharya S. The Advancement and Obstacles in Improving the Stability of Nanocarriers for Precision Drug Delivery in the Field of Nanomedicine. Curr Top Med Chem 2024; 24:686-721. [PMID: 38409730 DOI: 10.2174/0115680266287101240214071718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 01/19/2024] [Accepted: 01/23/2024] [Indexed: 02/28/2024]
Abstract
Nanocarriers have emerged as a promising class of nanoscale materials in the fields of drug delivery and biomedical applications. Their unique properties, such as high surface area- tovolume ratios and enhanced permeability and retention effects, enable targeted delivery of therapeutic agents to specific tissues or cells. However, the inherent instability of nanocarriers poses significant challenges to their successful application. This review highlights the importance of nanocarrier stability in biomedical applications and its impact on biocompatibility, targeted drug delivery, long shelf life, drug delivery performance, therapeutic efficacy, reduced side effects, prolonged circulation time, and targeted delivery. Enhancing nanocarrier stability requires careful design, engineering, and optimization of physical and chemical parameters. Various strategies and cutting-edge techniques employed to improve nanocarrier stability are explored, with a focus on their applications in drug delivery. By understanding the advances and challenges in nanocarrier stability, this review aims to contribute to the development and implementation of nanocarrier- based therapies in clinical settings, advancing the field of nanomedicine.
Collapse
Affiliation(s)
- Kalpesh Mahajan
- Department of Quality Assurence, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai, India
| | - Sankha Bhattacharya
- Department of Pharmaceutics, School of Pharmacy and Technology Management, SVKMS NMIMS Maharashtra, Shirpur, 425405, India
| |
Collapse
|
6
|
Zhang Z, Zhang Y, Zhang M, Yu C, Yang P, Xu M, Ling J, Wu Y, Zhu Z, Chen Y, Shi A, Liu X, Zhang J, Yu P, Zhang D. Food-derived peptides as novel therapeutic strategies for NLRP3 inflammasome-related diseases: a systematic review. Crit Rev Food Sci Nutr 2023:1-32. [PMID: 38153262 DOI: 10.1080/10408398.2023.2294164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
NLRP3 (NOD-, LRR- and pyrin domain-containing protein 3), a member of the nucleotide-binding domain (NOD) and leucine-rich repeat sequence (LRR) protein (NLR) family, plays an essential role in the inflammation initiation and inflammatory mediator secretion, and thus is also associated with many disease progressions. Food-derived bioactive peptides (FDBP) exhibit excellent anti-inflammatory activity in both in vivo and in vitro models. They are encrypted in plant, meat, and milk proteins and can be released under enzymatic hydrolysis or fermentation conditions, thereby hindering the progression of hyperuricemia, inflammatory bowel disease, chronic liver disease, neurological disorders, lung injury and periodontitis by inactivating the NLRP3. However, there is a lack of systematic review around FDBP, NLRP3, and NLRP3-related diseases. Therefore, this review summarized FDBP that exert inhibiting effects on NLRP3 inflammasome from different protein sources and detailed their preparation and purification methods. Additionally, this paper also compiled the possible inhibitory mechanisms of FDBP on NLRP3 inflammasomes and its regulatory role in NLRP3 inflammasome-related diseases. Finally, the progress of cutting-edge technologies, including nanoparticle, computer-aided screening strategy and recombinant DNA technology, in the acquisition or encapsulation of NLRP3 inhibitory FDBP was discussed. This review provides a scientific basis for understanding the anti-inflammatory mechanism of FDBP through the regulation of the NLRP3 inflammasome and also provides guidance for the development of therapeutic adjuvants or functional foods enriched with these FDBP.
Collapse
Affiliation(s)
- Ziqi Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yuan Zhang
- School of Public Health, Nanchang University, Jiangxi, China
| | - Meiying Zhang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Chenfeng Yu
- Huankui College, Nanchang University, Jiangxi, China
| | - Pingping Yang
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Minxuan Xu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Jitao Ling
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Yuting Wu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Zicheng Zhu
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yixuan Chen
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ao Shi
- School of Medicine, St. George University of London, London, UK
| | - Xiao Liu
- Cardiology Department, The Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jing Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Peng Yu
- Department of Endocrinology and Metabolism, The Second Affiliated Hospital of Nanchang University, Nanchang, China
- Institute for the Study of Endocrinology and Metabolism in Jiangxi Province, Nanchang, China
- Branch of Nationlal Clinical Research Center for Metabolic Diseases, Nanchang, China
| | - Deju Zhang
- The Second Clinical Medical College, The Second Affiliated Hospital of Nanchang University, Nanchang University, Jiangxi, China
- Food and Nutritional Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong
| |
Collapse
|
7
|
Srivastava N, Chudasama B, Baranwal M. Advancement in magnetic hyperthermia-based targeted therapy for cancer treatment. Biointerphases 2023; 18:060801. [PMID: 38078795 DOI: 10.1116/6.0003079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023] Open
Abstract
Magnetic hyperthermia utilizing magnetic nanoparticles (MNPs) and an alternating magnetic field (AMF) represents a promising approach in the field of cancer treatment. Active targeting has emerged as a valuable strategy to enhance the effectiveness and specificity of drug delivery. Active targeting utilizes specific biomarkers that are predominantly found in abundance on cancer cells while being minimally expressed on healthy cells. Current comprehensive review provides an overview of several cancer-specific biomarkers, including human epidermal growth factor, transferrin, folate, luteinizing hormone-releasing hormone, integrin, cluster of differentiation (CD) receptors such as CD90, CD95, CD133, CD20, and CD44 also CXCR4 and vascular endothelial growth factor, these biomarkers bind to ligands present on the surface of MNPs, enabling precise targeting. Additionally, this review touches various combination therapies employed to combat cancer. Magnetic hyperthermia synergistically enhances the efficacy of conventional cancer treatments such as targeted chemotherapy, radiation therapy, gene therapy, and immunotherapy.
Collapse
Affiliation(s)
- Neha Srivastava
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Bhupendra Chudasama
- School of Physics and Materials Science, Thapar Institute of Engineering and Technology, Patiala 147004, India
| | - Manoj Baranwal
- Department of Biotechnology, Thapar Institute of Engineering and Technology, Patiala 147004, India
| |
Collapse
|
8
|
Peralta ME, Parisi JC, Castrogiovanni DC, Jadhav SA, Carlos L, Bosio GN, Mártire DO. Effective intracellular release of ibuprofen triggered by thermosensitive magnetic nanocarriers. Colloids Surf B Biointerfaces 2023; 230:113508. [PMID: 37562121 DOI: 10.1016/j.colsurfb.2023.113508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/12/2023]
Abstract
Stimuli-responsive nanocarriers are being widely applied in the development of new strategies for the diagnosis and treatment of diseases. An inherent difficulty in general drug therapy is the lack of precision with respect to a specific pathological site, which can lead to toxicity, excessive drug consumption, or premature degradation. In this work, the controlled drug delivery is achieved by using magnetite nanoparticles coated with mesoporous silica with core-shell structure (MMS) and grafted with the thermoresponsive polymer poly [N-isopropylacrylamide-co-3-(trimethoxysilyl)propyl methacrylate] (MMS-P). The efficiency of MMS-P as a temperature-controlled drug delivery system was evaluated by in vitro release experiments using ibuprofen (IBU) in various mammalian cell models. Further, the effects of IBU as a photoprotectant in cells exposed to photodynamic therapy (PDT) in a carbaryl-induced neurodegenerative model were evaluated. The results showed that MMS-P nanocarriers do not exhibit cytotoxicity in HepG2 cells at high doses such as 7600 µg mL-1. Pre-incubation of MMS-P charged with IBU showed no effect on the PDT in N2A cells; however, it produced a further decrease in the viability of HepG2 cells, leading to a reduction to PDT resistance. On the other hand, a cytoprotective effect against carbaryl toxicity in N2A cells was observed in IBU administrated by MMS-P, which confirms the effective intracellular IBU uptake by means of MMS-P. These results encourage the potential application of MMS-P as a drug delivery system and confirm the effect of IBU as a cytoprotective agent in a neurodegenerative model.
Collapse
Affiliation(s)
- Marcos E Peralta
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina
| | - Julieta C Parisi
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Daniel C Castrogiovanni
- Instituto Multidisciplinario de Biología Celular (IMBICE), CICPBA - CONICET, UNLP, La Plata 1900, Argentina
| | - Sushilkumar A Jadhav
- School of Nanoscience and Technology, Shivaji University Kolhapur, Vidyanagar, 416004 Kolhapur, Maharashtra, India
| | - Luciano Carlos
- Instituto de Investigación y Desarrollo en Ingeniería de Procesos, Biotecnología y Energías Alternativas, PROBIEN (CONICET-UNCo), Universidad Nacional Del Comahue, Neuquén 8300, Argentina.
| | - Gabriela N Bosio
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina.
| | - Daniel O Mártire
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA), CCT-La Plata-CONICET, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
9
|
Tian Z, Li H, Liu Z, Yang L, Zhang C, He J, Ai W, Liu Y. Enhanced Photodynamic Therapy by Improved Light Energy Capture Efficiency of Porphyrin Photosensitizers. Curr Treat Options Oncol 2023; 24:1274-1292. [PMID: 37407889 DOI: 10.1007/s11864-023-01120-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2023] [Indexed: 07/07/2023]
Abstract
OPINION STATEMENT Photodynamic therapy (PDT) has garnered increasing attention in cancer treatment because of its advantages such as minimal invasiveness and selective destruction. With the development of PDT, impressive progress has been made in the preparation of photosensitizers, particularly porphyrin photosensitizers. However, the limited tissue penetration of the activating light wavelengths and relatively low light energy capture efficiency of porphyrin photosensitizers are two major disadvantages in conventional photosensitizers. Therefore, tissue penetration needs to be enhanced and the light energy capture efficiency of porphyrin photosensitizers improved through structural modifications. The indirect excitation of porphyrin photosensitizers using fluorescent donors (fluorescence resonance energy transfer) has been successfully used to address these issues. In this review, the enhancement of the light energy capture efficiency of porphyrins is discussed.
Collapse
Affiliation(s)
- Zejie Tian
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Hui Li
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Zhenhua Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Lingyan Yang
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China
| | - Chaoyang Zhang
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Jun He
- Institute of Chemistry & Chemical Engineering, University of South China, Hengyang City, Hunan Province, 421001, China
| | - Wenbin Ai
- The Second Affiliated Hospital of University of South China, Hengyang City, Hunan Province, 421001, China
| | - Yunmei Liu
- Institute of Pharmacy & Pharmacology, Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, University of South China, 28 Changsheng Road, Hengyang City, Hunan Province, 421001, China.
- Hunan Provincial Key Laboratory of Tumor Microenvironment Responsive Drug Research, Changsheng Road, Hengyang City, Hunan Province, 421001, China.
| |
Collapse
|
10
|
Ladhari S, Vu NN, Boisvert C, Saidi A, Nguyen-Tri P. Recent Development of Polyhydroxyalkanoates (PHA)-Based Materials for Antibacterial Applications: A Review. ACS APPLIED BIO MATERIALS 2023; 6:1398-1430. [PMID: 36912908 DOI: 10.1021/acsabm.3c00078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/14/2023]
Abstract
The diseases caused by microorganisms are innumerable existing on this planet. Nevertheless, increasing antimicrobial resistance has become an urgent global challenge. Thus, in recent decades, bactericidal materials have been considered promising candidates to combat bacterial pathogens. Recently, polyhydroxyalkanoates (PHAs) have been used as green and biodegradable materials in various promising alternative applications, especially in healthcare for antiviral or antiviral purposes. However, it lacks a systematic review of the recent application of this emerging material for antibacterial applications. Therefore, the ultimate goal of this review is to provide a critical review of the state of the art recent development of PHA biopolymers in terms of cutting-edge production technologies as well as promising application fields. In addition, special attention was given to collecting scientific information on antibacterial agents that can potentially be incorporated into PHA materials for biological and durable antimicrobial protection. Furthermore, the current research gaps are declared, and future research perspectives are proposed to better understand the properties of these biopolymers as well as their possible applications.
Collapse
Affiliation(s)
- Safa Ladhari
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Nhu-Nang Vu
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Cédrik Boisvert
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| | - Alireza Saidi
- Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Institut de Recherche Robert-Sauvé en Santé et Sécurité du Travail (IRSST), 505 Boulevard de Maisonneuve Ouest, Montréal, Québec H3A 3C2, Canada
| | - Phuong Nguyen-Tri
- Department of Chemistry, Biochemistry and Physics, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada.,Laboratory of Advanced Materials for Energy and Environment, Université du Québec à Trois-Rivières (UQTR), 3351 Boulevard des Forges, Trois-Rivières, Québec G8Z 4M3, Canada
| |
Collapse
|
11
|
Huang HJ, Huang SY, Wang TH, Lin TY, Huang NC, Shih O, Jeng US, Chu CY, Chiang WH. Clay nanosheets simultaneously intercalated and stabilized by PEGylated chitosan as drug delivery vehicles for cancer chemotherapy. Carbohydr Polym 2023; 302:120390. [PMID: 36604068 DOI: 10.1016/j.carbpol.2022.120390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/16/2022] [Accepted: 11/20/2022] [Indexed: 11/27/2022]
Abstract
Montmorillonite (MMT) has been frequently utilized as drug vehicles due to its high specific surface area, excellent cation exchange capacity and biocompatibility. However, the significant flocculation of MMT under physiological condition restricted its application to drug delivery. To conquer this problem, the graft-type PEGylated chitosan (PEG-CS) adducts were synthesized as intercalator to stabilize MMT dispersion. Through electrostatic attraction between the chitosan and MMT, the PEG-CS adducts were adsorbed on MMT surfaces and intercalated into MMT. The resulting PEG-CS/MMT nanosheets possessed PEG-rich surfaces, thus showing outstanding dispersion in serum-containing environment. Moreover, the physicochemical characterization revealed that the increased mass ratio of PEG-CS to MMT led to the microstructure transition of PEG-CS/MMT nanosheets from multilayered to exfoliated structure. Interestingly, the PEG-CS/MMT nanosheets with mass ratio of 8.0 in freeze-dried state exhibited a hierarchical lamellar structure organized by the intercalated MMT bundles and unintercalated PEG-CS domains. Notably, the multilayered PEG-CS/MMT nanosheets showed the capability of loading doxorubicin (DOX) superior to the exfoliated counterparts. Importantly, the DOX@PEG-CS/MMT nanosheets endocytosed by TRAMP-C1 cells liberated the drug progressively within acidic organelles, thereby eliciting cell apoptosis. This work provides a new strategy of achieving the controllable dispersion stability of MMT nanoclays towards application potentials in drug delivery.
Collapse
Affiliation(s)
- Hsuan-Jung Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Shih-Yu Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Hao Wang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Tzu-Yun Lin
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Nan-Ching Huang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| | - Orion Shih
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - U-Ser Jeng
- National Synchrotron Radiation Research Center, Hsinchu 30076, Taiwan
| | - Che-Yi Chu
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| | - Wen-Hsuan Chiang
- Department of Chemical Engineering, National Chung Hsing University, Taichung 402, Taiwan.
| |
Collapse
|
12
|
Functionally modified halloysite nanotubes for personalized bioapplications. Adv Colloid Interface Sci 2023; 311:102812. [PMID: 36427464 DOI: 10.1016/j.cis.2022.102812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/05/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022]
Abstract
Halloysite nanotubes (HNTs) are naturally aluminosilicate clay minerals that have the benefits of large surface areas, high mechanical properties, easy functionalization, and high biocompatibility, HNTs have been developed as multifunctional nanoplatforms for various bioapplications. Although some reviews have summarized the properties and bioapplications of HNTs, it remains unclear how to functionalize the modifications of HNTs for their personalized bioapplications. In this review, based on the physicochemical properties of HNTs, we summarized the methods of functionalized modifications (surface modification and structure modification) on HNTs. Also, we highlighted their personalized bioapplications (anti-bacterial, anti-inflammatory, wound healing, cancer theranostics, bone regenerative, and biosensing) by stressing on the main roles of HNTs. Finally, we provide perspectives on the future of functionalized modifications of HNTs for docking specific biological applications.
Collapse
|
13
|
Li Y, Lin X, Li Z, Liu J. Highly-Efficient and Visible Light Photocatalytical Degradation of Organic Pollutants Using TiO 2-Loaded on Low-Cost Biomass Husk. MATERIALS (BASEL, SWITZERLAND) 2022; 15:8671. [PMID: 36500169 PMCID: PMC9739637 DOI: 10.3390/ma15238671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/26/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
A composite composing of TiO2 nanoparticles load on biomass rice husk (RH) is developed by directly growing TiO2 nanoparticles on RH. The in-situ growth of the nanocrystals on RH is achieved by a low-cost and one-step homogeneous precipitation. Rapid hydrolysis proceeds at 90 °C by using ammonium fluotitanate and urea to facilitate the selective growth of TiO2. The method provides an easy access to the TiO2-RH composite with a strong interaction between TiO2 nanoparticles and the underlying RH. The structure and composition of TiO2-RH are characterized by using X-ray diffraction, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and UV-vis absorption spectroscopy. TiO2 nanoparticles-RH exhibits a good photocatalytic degradation of methyl orange. The results show that 92% of methyl orange (20 mg L-1) can be degraded within three hours in visible light. The catalytic activity of the composite is not reduced after 6 cycles, and it still reaches 81% after 6 cycles. The enhanced performance is ascribed to the suitable particle size the good dispersibility. It is expected that the high photocatalytical performance and the cost-effective composite presented here will inspire the development of other high-performance photocatalysts.
Collapse
Affiliation(s)
- Yuan Li
- Sichuan Vocational and Technical College, Suining 629000, China
| | - Xirong Lin
- National Key Laboratory of Science and Technology on Micro/Nano Fabrication, Department of Micro/Nano-Electronics, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhanpeng Li
- Nanjing Noland Environmental Engineering Technology Co., Ltd., Nanjing 211215, China
| | - Jinyun Liu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
- Anhui Key Laboratory of Molecule-Based Materials, College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241002, China
| |
Collapse
|
14
|
Chauhan PS, Yadav D, Jin JO. The Therapeutic Potential of Algal Nanoparticles: A Brief Review. Comb Chem High Throughput Screen 2022; 25:2443-2451. [PMID: 34477514 DOI: 10.2174/1386207324666210903143832] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/21/2021] [Accepted: 07/24/2021] [Indexed: 01/27/2023]
Abstract
Recently, the green synthesis of metallic nanoparticles (NPs) has received tremendous attention as a simple approach. The green pathway of biogenic synthesis of metallic NPs through microbes may provide a sustainable and environmentally friendly protocol. Green technology is the most innovative technology for various biological activities and lacks toxic effects. Reports have shown the algae-mediated synthesis of metal NPs. Algae are widely used for biosynthesis as they grow fast; they produce biomass on average ten times that of plants and are easily utilized experimentally. In the future, the production of metal NPs by different microalgae and their biological activity can be explored in diverse areas such as catalysis, medical diagnosis, and anti-biofilm applications.
Collapse
Affiliation(s)
| | - Dhananjay Yadav
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea
| | - Jun O Jin
- Department of Medical Biotechnology, Yeungnam University, Gyeongsan 38541, South Korea.,Research Institute of Cell Culture, Yeungnam University, Gyeongsan 38541, Korea
| |
Collapse
|
15
|
Sharma AR, Lee YH, Bat-Ulzii A, Bhattacharya M, Chakraborty C, Lee SS. Recent advances of metal-based nanoparticles in nucleic acid delivery for therapeutic applications. J Nanobiotechnology 2022; 20:501. [PMID: 36434667 PMCID: PMC9700905 DOI: 10.1186/s12951-022-01650-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/27/2022] [Indexed: 11/26/2022] Open
Abstract
Recent efforts in designing nanomaterials to deliver potential therapeutics to the targeted site are overwhelming and palpable. Engineering nanomaterials to deliver biological molecules to exert desirable physiological changes, with minimized side effects and optimal dose, has revolutionized the next-generation therapy for several diseases. The rapid progress of nucleic acids as biopharmaceutics is going to alter the traditional pharmaceutics practices in modern medicine. However, enzymatic instability, large size, dense negative charge (hydrophilic for cell uptake), and unintentional adverse biological responses-such as prolongation of the blood coagulation and immune system activation-hamper the potential use of nucleic acids for therapeutic purposes. Moreover, the safe delivery of nucleic acids into the clinical setting is an uphill task, and several efforts are being put forward to deliver them to targeted cells. Advances in Metal-based NanoParticles (MNPs) are drawing attention due to the unique properties offered by them for drug delivery, such as large surface-area-to-volume ratio for surface modification, increased therapeutic index of drugs through site-specific delivery, increased stability, enhanced half-life of the drug in circulation, and efficient biodistribution to the desired targeted site. Here, the potential of nanoparticles delivery systems for the delivery of nucleic acids, specially MNPs, and their ability and advantages over other nano delivery systems are reviewed.
Collapse
Affiliation(s)
- Ashish Ranjan Sharma
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Yeon-Hee Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Altanzul Bat-Ulzii
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| | - Manojit Bhattacharya
- grid.444315.30000 0000 9013 5080Department of Zoology, Fakir Mohan University, Vyasa Vihar, Balasore, Odisha 756020 India
| | - Chiranjib Chakraborty
- grid.502979.00000 0004 6087 8632Department of Biotechnology, School of Life Science and Biotechnology, Adamas University, Ba-rasat-Barrackpore Rd, Kolkata, West Bengal 700126 India
| | - Sang-Soo Lee
- grid.464534.40000 0004 0647 1735Institute for Skeletal Aging and Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252 Gangwon-do Republic of Korea
| |
Collapse
|
16
|
Yang Z, Li Z, Zhao Y, Zhao Y, Li X, He L, Zvyagin AV, Yang B, Lin Q, Ma X. Lotus Seedpod-Inspired Crosslinking-Assembled Hydrogels Based on Gold Nanoclusters for Synergistic Osteosarcoma Multimode Imaging and Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:34377-34387. [PMID: 35878314 DOI: 10.1021/acsami.2c06890] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Osteosarcoma is difficult to be resected through surgical operations without damage to the bone matrix, while chemotherapy and radiotherapy induce inevitable systemic injury. It is still a major challenge to develop a novel treatment suitable for the complex anatomical structure of the bone. Herein, inspired by lotus seedpods, injectable hydrogels with long-term retention for synergistic osteosarcoma treatment were developed. Gold nanoclusters (GNCs) with strong fluorescence (FL) and computed tomography (CT) imaging effects represented the lotus seeds. The oxidized hyaluronic acid (HA-ALD) chain resembled the stem. HA-ALD and GNCs form crosslinking-assembled hydrogels abbreviated as HG-CAHs through dynamic amide bonds. Compared with DNA-, pH-, and light-mediated assembly, this in situ method induces enhanced photothermal therapy (PTT) ability, ensures high biocompatibility, and retains the imaging function of GNCs, which contribute to lighting up osteosarcoma persistently for further diagnosis and treatment. In addition, the HG-CAHs with outstanding mechanical properties are similar to the lotus seedpods with supportive force and a typical porous structure. They are favorable for the local pH- and near-infrared (NIR)-responsive release of doxorubicin (Dox) owing to the acidic osteosarcoma microenvironment and the Brownian movement. The HG-CAHs ablate osteosarcoma efficiently and reduce metabolic toxicity significantly, which will aid in the development of a new generation of osteosarcoma treatments.
Collapse
Affiliation(s)
- Zhe Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Zuhao Li
- Orthopaedic Medical Center, The Second Hospital of Jilin University, Changchun 130041, China
| | - Yue Zhao
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Yueqi Zhao
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xingchen Li
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Liang He
- Department of Urology, The First Hospital of Jilin University, Changchun, Jilin 130021, China
| | - Andrei V Zvyagin
- Australian Research Council Centre of Excellence for Nanoscale Biophotonics, Macquarie University, Sydney, NSW 2109, Australia
| | - Bai Yang
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Material, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaojun Ma
- Department of Orthopedics, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200080, China
| |
Collapse
|
17
|
Mehta S, Suresh A, Nayak Y, Narayan R, Nayak UY. Hybrid nanostructures: Versatile systems for biomedical applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214482] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
18
|
Kurian AG, Singh RK, Patel KD, Lee JH, Kim HW. Multifunctional GelMA platforms with nanomaterials for advanced tissue therapeutics. Bioact Mater 2022; 8:267-295. [PMID: 34541401 PMCID: PMC8424393 DOI: 10.1016/j.bioactmat.2021.06.027] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/17/2021] [Accepted: 06/22/2021] [Indexed: 02/06/2023] Open
Abstract
Polymeric hydrogels are fascinating platforms as 3D scaffolds for tissue repair and delivery systems of therapeutic molecules and cells. Among others, methacrylated gelatin (GelMA) has become a representative hydrogel formulation, finding various biomedical applications. Recent efforts on GelMA-based hydrogels have been devoted to combining them with bioactive and functional nanomaterials, aiming to provide enhanced physicochemical and biological properties to GelMA. The benefits of this approach are multiple: i) reinforcing mechanical properties, ii) modulating viscoelastic property to allow 3D printability of bio-inks, iii) rendering electrical/magnetic property to produce electro-/magneto-active hydrogels for the repair of specific tissues (e.g., muscle, nerve), iv) providing stimuli-responsiveness to actively deliver therapeutic molecules, and v) endowing therapeutic capacity in tissue repair process (e.g., antioxidant effects). The nanomaterial-combined GelMA systems have shown significantly enhanced and extraordinary behaviors in various tissues (bone, skin, cardiac, and nerve) that are rarely observable with GelMA. Here we systematically review these recent efforts in nanomaterials-combined GelMA hydrogels that are considered as next-generation multifunctional platforms for tissue therapeutics. The approaches used in GelMA can also apply to other existing polymeric hydrogel systems.
Collapse
Affiliation(s)
- Amal George Kurian
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Rajendra K. Singh
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
| | - Kapil D. Patel
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, WC1X8LD, UK
| | - Jung-Hwan Lee
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
| | - Hae-Won Kim
- Institute of Tissue Regeneration Engineering (ITREN), Dankook University, Cheonan, 31116, Republic of Korea
- Department of Nanobiomedical Science & BK21 NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Biomaterials Science, School of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- UCL Eastman-Korea Dental Medicine Innovation Centre, Dankook University, Cheonan, 31116, Republic of Korea
- Cell & Matter Institute, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Regenerative Dental Medicine, College of Dentistry, Dankook University, Cheonan, 31116, Republic of Korea
- Mechanobiology Dental Medicine Research Center, Dankook University, Cheonan, 31116, Republic of Korea
| |
Collapse
|
19
|
Li Y, Zhang R, Xu Z, Wang Z. Advances in Nanoliposomes for the Diagnosis and Treatment of Liver Cancer. Int J Nanomedicine 2022; 17:909-925. [PMID: 35250267 PMCID: PMC8893038 DOI: 10.2147/ijn.s349426] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
The mortality rate of liver cancer is gradually increasing worldwide due to the increasing risk factors such as fatty liver, diabetes, and alcoholic cirrhosis. The diagnostic methods of liver cancer include ultrasound (US), computed tomography (CT), and magnetic resonance imaging (MRI), among others. The treatment of liver cancer includes surgical resection, transplantation, ablation, and chemoembolization; however, treatment still faces multiple challenges due to its insidious development, high rate of recurrence after surgical resection, and high failure rate of transplantation. The emergence of liposomes has provided new insights into the treatment of liver cancer. Due to their excellent carrier properties and maneuverability, liposomes can be used to perform a variety of functions such as aiding in imaging diagnoses, combinatorial therapies, and integrating disease diagnosis and treatment. In this paper, we further discuss such advantages.
Collapse
Affiliation(s)
- Yitong Li
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People’s Republic of China
| | - Ruihang Zhang
- Second Clinical Medical College, Henan University of Traditional Chinese Medicine, Zhengzhou, 450052, Henan, People’s Republic of China
| | - Zhen Xu
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People’s Republic of China
| | - Zhicheng Wang
- NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, Changchun, 130021, Jilin, People’s Republic of China
- Correspondence: Zhicheng Wang, NHC Key Laboratory of Radiobiology (Jilin University), School of Public Health, Jilin University, 1163 Xinmin Street, Changchun, 130021, Jilin, People’s Republic of China, Tel +86 13843131059, Fax +86 431185619443, Email
| |
Collapse
|
20
|
Yadav S, Ramesh K, Kumar P, Jo SH, Yoo SII, Gal YS, Park SH, Lim KT. Near-Infrared Light-Responsive Shell-Crosslinked Micelles of Poly(d,l-lactide)- b-poly((furfuryl methacrylate)- co-( N-acryloylmorpholine)) Prepared by Diels-Alder Reaction for the Triggered Release of Doxorubicin. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7913. [PMID: 34947507 PMCID: PMC8705764 DOI: 10.3390/ma14247913] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/15/2021] [Accepted: 12/15/2021] [Indexed: 01/05/2023]
Abstract
In the present study, we developed near-infrared (NIR)-responsive shell-crosslinked (SCL) micelles using the Diels-Alder (DA) click reaction between an amphiphilic copolymer poly(d,l-lactide)20-b-poly((furfuryl methacrylate)10-co-(N-acryloylmorpholine)78) (PLA20-b-P(FMA10-co-NAM78)) and a diselenide-containing crosslinker, bis(maleimidoethyl) 3,3'-diselanediyldipropionoate (BMEDSeDP). The PLA20-b-P(FMA10-co-NAM78) copolymer was synthesized by RAFT polymerization of FMA and NAM using a PLA20-macro-chain transfer agent (PLA20-CTA). The DA reaction between BMEDSeDP and the furfuryl moieties in the copolymeric micelles in water resulted in the formation of SCL micelles. The SCL micelles were analyzed by 1H-NMR, FE-SEM, and DLS. An anticancer drug, doxorubicin (DOX), and an NIR sensitizer, indocyanine green (ICG), were effectively incorporated into the SCL micelles during the crosslinking reaction. The DOX/ICG-loaded SCL micelles showed pH- and NIR-responsive drug release, where burst release was observed under NIR laser irradiation. The in vitro cytotoxicity analysis demonstrated that the SCL was not cytotoxic against normal HFF-1 cells, while DOX/ICG-loaded SCL micelles exhibited significant antitumor activity toward HeLa cells. Thus, the SCL micelles of PLA20-b-P(FMA10-co-NAM78) can be used as a potential delivery vehicle for the controlled drug release in cancer therapy.
Collapse
Affiliation(s)
- Sonyabapu Yadav
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| | - Kalyan Ramesh
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
- Department of Chemistry, University of Massachusetts Lowell, Lowell, MA 01854, USA
| | - Parveen Kumar
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| | - Sung-Han Jo
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; (S.-H.J.); (S.-H.P.)
| | - Seong II Yoo
- Department of Polymer Engineering, Pukyong National University, Busan 48513, Korea;
| | - Yeong-Soon Gal
- Department of Fire Safety, Kyungil University, Gyeongsan 38428, Korea;
| | - Sang-Hyug Park
- Department of Biomedical Engineering, Pukyong National University, Busan 48513, Korea; (S.-H.J.); (S.-H.P.)
| | - Kwon Taek Lim
- Department of Display Engineering, Pukyong National University, Busan 48513, Korea; (S.Y.); (K.R.); (P.K.)
| |
Collapse
|
21
|
Dong Z, Wu D, Engqvist H, Luo J, Persson C. Silk fibroin hydrogels induced and reinforced by acidic calcium phosphate - A simple way of producing bioactive and drug-loadable composites for biomedical applications. Int J Biol Macromol 2021; 193:433-440. [PMID: 34715202 DOI: 10.1016/j.ijbiomac.2021.10.160] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/29/2022]
Abstract
Silk fibroin (SF) hydrogels have attracted extensive interest in biomedical applications due to their biocompatibility and wide availability. However, their generally poor mechanical properties limit their utility. Here, injectable, ready-to-use SF-based composites, simultaneously induced and reinforced by acidic calcium phosphates, were prepared via a dual-paste system requiring no complex chemical/physical treatment. The composite was formed by mixing a monocalcium phosphate monohydrate paste with a β-tricalcium phosphate/SF paste. The conformational transition of SF in an acidic environment forms continuous networks, and the acidic calcium phosphate, brushite and monetite, formed simultaneously in the networks during mixing. The composites displayed a partly elastomeric compression behavior, with mechanical properties increasing with an increasing calcium phosphate and β-sheet content at the lower calcium phosphate contents evaluated (22.2-36.4 wt%). While the stiffness was still relatively low, the materials presented a high elasticity and ductility, and no failure at stresses in the range of failure stresses of trabecular bone. Furthermore, the calcium phosphate confers bioactivity to the material, and the composites with a promising in vitro cell response also showed potential as drug vehicles, using vancomycin as a model drug. These dual-paste systems exhibit potential utility in biomedical applications, such as bone void fillers and drug vehicles.
Collapse
Affiliation(s)
- Zhiyun Dong
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Dan Wu
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Box 534, 751 21, Sweden
| | - Håkan Engqvist
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Box 534, 751 21, Sweden
| | - Jun Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China; Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Box 534, 751 21, Sweden.
| | - Cecilia Persson
- Division of Applied Materials Science, Department of Materials Science and Engineering, Uppsala University, Uppsala, Box 534, 751 21, Sweden; Division of Biomedical Engineering, Department of Materials Science and Engineering, Uppsala University, Uppsala, Box 534, 751 21, Sweden.
| |
Collapse
|
22
|
Tang R, Li R, Li H, Ma XL, Du P, Yu XY, Ren L, Wang LL, Zheng WS. Design of Hepatic Targeted Drug Delivery Systems for Natural Products: Insights into Nomenclature Revision of Nonalcoholic Fatty Liver Disease. ACS NANO 2021; 15:17016-17046. [PMID: 34705426 DOI: 10.1021/acsnano.1c02158] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), recently renamed metabolic-dysfunction-associated fatty liver disease (MAFLD), affects a quarter of the worldwide population. Natural products have been extensively utilized in treating NAFLD because of their distinctive advantages over chemotherapeutic drugs, despite the fact that there are no approved drugs for therapy. Notably, the limitations of many natural products, such as poor water solubility, low bioavailability in vivo, low hepatic distribution, and lack of targeted effects, have severely restricted their clinical application. These issues could be resolved via hepatic targeted drug delivery systems (HTDDS) that boost clinical efficacy in treating NAFLD and decrease the adverse effects on other organs. Herein an overview of natural products comprising formulas, single medicinal plants, and their crude extracts has been presented to treat NAFLD. Also, the clinical efficacy and molecular mechanism of active monomer compounds against NAFLD are systematically discussed. The targeted delivery of natural products via HTDDS has been explored to provide a different nanotechnology-based NAFLD treatment strategy and to make suggestions for natural-product-based targeted nanocarrier design. Finally, the challenges and opportunities put forth by the nomenclature update of NAFLD are outlined along with insights into how to improve the NAFLD therapy and how to design more rigorous nanocarriers for the HTDDS. In brief, we summarize the up-to-date developments of the NAFLD-HTDDS based on natural products and provide viewpoints for the establishment of more stringent anti-NAFLD natural-product-targeted nanoformulations.
Collapse
Affiliation(s)
- Rou Tang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Rui Li
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - He Li
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Lei Ma
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Peng Du
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-You Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ling Ren
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Lu-Lu Wang
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Wen-Sheng Zheng
- Beijing City Key Laboratory of Drug Delivery Technology and Novel Formulation, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
23
|
Chen Y, Wu H, Yang T, Zhou G, Chen Y, Wang J, Mao C, Yang M. Biomimetic Nucleation of Metal-Organic Frameworks on Silk Fibroin Nanoparticles for Designing Core-Shell-Structured pH-Responsive Anticancer Drug Carriers. ACS APPLIED MATERIALS & INTERFACES 2021; 13:47371-47381. [PMID: 34582680 DOI: 10.1021/acsami.1c13405] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Silk fibroin (SF) is a biomacromolecule that can be assembled into nanostructures and induce biomimetic nucleation of inorganic materials. Zeolitic imidazolate framework-8 (ZIF-8), a metal-organic framework (MOF), can be dissolved selectively under acidic pH. Here, we integrated SF and ZIF-8 to develop novel drug carriers that selectively release drug in the acidic intracellular environment of cancer cells. Specifically, SF was assembled into nanoparticles (SF-NPs), which were then loaded with an antitumor drug, doxorubicin (DOX), to form DSF-NPs. Due to the SF-mediated organization of ZIF-8 precursors such as zinc ions, the DSF-NPs further templated the nucleation of ZIF-8 onto their surface to generate core-shell-structured NPs (termed DSF@Z-NPs) with ZIF-8 as a shell and DSF-NP as a core. We found that the DSF@Z-NPs, highly stable under neutral conditions, could be uptaken by breast cancer cells, release DOX selectively owing to dissolution of ZIF-8 shells in the acidic intracellular environment in a controlled manner, and induce cell apoptosis. We also confirmed that the DSF@Z-NPs could inhibit tumor growth more efficiently to reach a higher survival rate than their controls by inducing cell apoptosis in vivo. Our study suggests that SF and MOF could be combined to design a new type of cancer therapeutics.
Collapse
Affiliation(s)
- Yuping Chen
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Hesong Wu
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Tao Yang
- College of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
| | - Guanshan Zhou
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Yuyin Chen
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Jie Wang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| | - Chuanbin Mao
- College of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang, P. R. China
- Department of Chemistry & Biochemistry, Stephenson Life Science Research Center, Institute for Biomedical Engineering, Science and Technology, University of Oklahoma, 101 Stephenson Parkway, Norman, Oklahoma 73019-5251, United States
| | - Mingying Yang
- Institute of Applied Bioresource Research, College of Animal Science, Zhejiang University, Yuhangtang Road 866, Hangzhou, 310058 Zhejiang, P. R. China
| |
Collapse
|
24
|
Sun X, Du JD, Hawley A, Tan A, Boyd BJ. Magnetically-stimulated transformations in the nanostructure of PEGylated phytantriol-based nanoparticles for on-demand drug release. Colloids Surf B Biointerfaces 2021; 207:112005. [PMID: 34339967 DOI: 10.1016/j.colsurfb.2021.112005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/17/2021] [Accepted: 07/22/2021] [Indexed: 11/15/2022]
Abstract
Lipid-based liquid crystalline (LLC) systems are formed by the self-assembly of lipid materials in aqueous environments. The internal nanostructures of LLC systems can be manipulated using remote stimuli and have the potential to serve as 'on-demand' drug delivery systems. In this study, a magnetically-responsive system that displayed a transition in nanostructure from liposomes to cubosomes/hexasomes under external alternating magnetic field (AMF) was established by the incorporation of iron oxide nanoparticles (IONPs) into a PEGylated phytantriol (PHYT)-based LLC system. Small angle X-ray scattering (SAXS) was utilized to assess the equilibrium phase behaviour of the systems with different compositions of the lipids to find the optimized formulation. Time-resolved SAXS was then used to determine the dynamic transformation of nanostructures of the IONP-containing systems with the activation of AMF. The formulation containing PHYT and DSPE-PEG2000 at a 95 to 5 molar percent ratio produced a transition from lamellar phase to bicontinuous cubic phase, showing a slow-to-fast drug release profile. Inclusion of either 5 nm or 15 nm IONPs imparted magnetic-responsiveness to the system. The magnetically-responsive system produced an 'on-demand' drug delivery system from which the drug release was able to be triggered externally by AMF-stimulation.
Collapse
Affiliation(s)
- Xiaohan Sun
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Joanne D Du
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Adrian Hawley
- Australian Synchrotron, ANSTO, 800 Blackburn Rd, Clayton, VIC, 3168, Australia
| | - Angel Tan
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia
| | - Ben J Boyd
- Drug Delivery, Disposition and Dynamics and ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University (Parkville Campus), 381 Royal Parade, Parkville, VIC, 3052, Australia.
| |
Collapse
|
25
|
He S, Wu L, Li X, Sun H, Xiong T, Liu J, Huang C, Xu H, Sun H, Chen W, Gref R, Zhang J. Metal-organic frameworks for advanced drug delivery. Acta Pharm Sin B 2021; 11:2362-2395. [PMID: 34522591 PMCID: PMC8424373 DOI: 10.1016/j.apsb.2021.03.019] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/25/2020] [Accepted: 01/15/2021] [Indexed: 12/11/2022] Open
Abstract
Metal-organic frameworks (MOFs), comprised of organic ligands and metal ions/metal clusters via coordinative bonds are highly porous, crystalline materials. Their tunable porosity, chemical composition, size and shape, and easy surface functionalization make this large family more and more popular for drug delivery. There is a growing interest over the last decades in the design of engineered MOFs with controlled sizes for a variety of biomedical applications. This article presents an overall review and perspectives of MOFs-based drug delivery systems (DDSs), starting with the MOFs classification adapted for DDSs based on the types of constituting metals and ligands. Then, the synthesis and characterization of MOFs for DDSs are developed, followed by the drug loading strategies, applications, biopharmaceutics and quality control. Importantly, a variety of representative applications of MOFs are detailed from a point of view of applications in pharmaceutics, diseases therapy and advanced DDSs. In particular, the biopharmaceutics and quality control of MOFs-based DDSs are summarized with critical issues to be addressed. Finally, challenges in MOFs development for DDSs are discussed, such as biostability, biosafety, biopharmaceutics and nomenclature.
Collapse
Affiliation(s)
- Siyu He
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Li Wu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xue Li
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Hongyu Sun
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ting Xiong
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Jie Liu
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Chengxi Huang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huipeng Xu
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Huimin Sun
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| | - Weidong Chen
- School of Pharmaceutical Sciences, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Ruxandra Gref
- Institut de Sciences Moléculaires D'Orsay, Université Paris-Saclay, Orsay Cedex 91400, France
| | - Jiwen Zhang
- Center for Drug Delivery Systems, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Key Laboratory of Modern Chinese Medicine Preparations, Ministry of Education, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
- NMPA Key Laboratory for Quality Research and Evaluation of Pharmaceutical Excipients, National Institutes for Food and Drug Control, Beijing 100050, China
| |
Collapse
|
26
|
Lee K, Wan Y, Li X, Cui X, Li S, Lee C. Recent Progress of Alkyl Radicals Generation-Based Agents for Biomedical Applications. Adv Healthc Mater 2021; 10:e2100055. [PMID: 33738983 DOI: 10.1002/adhm.202100055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/25/2021] [Indexed: 12/19/2022]
Abstract
Photodynamic therapy (PDT) is extensively explored for anticancer and antibacterial applications. It typically relies on oxygen-dependent generation of reactive oxygen species (ROS) to realize its killing effect. This type of therapy modality shows compromised therapeutic results for treating hypoxic tumors or bacteria-infected wounds. Recently, alkyl radicals attracted much attention as they can be generated from some azo-based initiators only under mild heat stimulus without oxygen participation. Many nanocarriers or hydrogel systems have been developed to load and deliver these radical initiators to lesion sites for theranostics. These systems show good anticancer or antimicrobial effect in hypoxic environment and some of them possess specific imaging abilities providing precise guidance for treatment. This review summarizes the developed materials that aim at treating hypoxic cancer and bacteria-infected wound by using this kind of oxygen-irrelevant alkyl radicals. Based on the carrier components, these agents are divided into three groups: inorganic, organic, as well as inorganic and organic hybrid carrier-based therapeutic systems. The construction of these agents and their specific advantages in biomedical field are highlighted. Finally, the existing problems and future promising development directions are discussed.
Collapse
Affiliation(s)
- Ka‐Wai Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Yingpeng Wan
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiaozhen Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Xiao Cui
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| | - Shengliang Li
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
- College of Pharmaceutical Sciences Soochow University Suzhou 215123 P. R. China
| | - Chun‐Sing Lee
- Center of Super‐Diamond and Advanced Films (COSDAF) and Department of Chemistry City University of Hong Kong 83 Tat Chee Avenue Kowloon Hong Kong SAR P. R. China
| |
Collapse
|
27
|
Trace level electrochemical detection of mesalazine in human urine sample using poly (N-Vinyl)-2-Pyrrolidone capped Bi-EDTA complex sheets incorporated with ultrasonically exfoliated graphene oxide. J Taiwan Inst Chem Eng 2021. [DOI: 10.1016/j.jtice.2021.04.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
28
|
Zhang Y, Cao J, Yuan Z. Strategies and challenges to improve the performance of tumor-associated active targeting. J Mater Chem B 2021; 8:3959-3971. [PMID: 32222756 DOI: 10.1039/d0tb00289e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Over the past decade, nanoparticle-based drug delivery systems have been extensively explored. However, the average tumour enrichment ratio of passive targeting systems corresponds to only 0.7% due to the nonspecific uptake by normal organs and poor selective retention in tumours. The therapeutic specificity and efficacy of nano-medicine can be enhanced by equipping it with active targeting ligands, although it is not possible to ignore the recognition and clearance of the reticuloendothelial system (RES) caused by targeting ligands. Given the complexity of the systemic circulation environment, it is necessary to carefully consider the hydrophobicity, immunogenicity, and electrical property of targeting ligands. Thus, for an active targeting system, the targeting ligands should be shielded in blood circulation and de-shielded in the tumour region for enhanced tumour accumulation. In this study, strategies for improving the performance of active targeting ligands are introduced. The strategies include irreversible shielding, reversible shielding, and methods of modulating the multivalent interactions between ligands and receptors. Furthermore, challenges and future developments in designing active ligand targeting systems are also discussed.
Collapse
Affiliation(s)
- Yahui Zhang
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Jing Cao
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| | - Zhi Yuan
- Key Laboratory of Functional Polymer Materials of the Ministry of Education, Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China. and Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
29
|
|
30
|
Al-Hussaini AS, Ossoss KM, Hassan MER. One-pot synthesis, characterization, and evaluation of novel Fe 2O 3@PANI-AA-o-PDA core-shell nanocomposites. POLYM-PLAST TECH MAT 2021. [DOI: 10.1080/25740881.2021.1888994] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ayman S. Al-Hussaini
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| | - Khaled M. Ossoss
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
- Physics and Engineering Mathematics Department, Faculty of Engineering, Port Said University, Port Said, Egypt
| | - Mohamed E. R. Hassan
- Chemistry Department, Faculty of Science, Port Said University, Port Said, Egypt
| |
Collapse
|
31
|
Power AJ, Remediakis IN, Harmandaris V. Interface and Interphase in Polymer Nanocomposites with Bare and Core-Shell Gold Nanoparticles. Polymers (Basel) 2021; 13:541. [PMID: 33673125 PMCID: PMC7918087 DOI: 10.3390/polym13040541] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 11/16/2022] Open
Abstract
Metal nanoparticles are used to modify/enhance the properties of a polymer matrix for a broad range of applications in bio-nanotechnology. Here, we study the properties of polymer/gold nanoparticle (NP) nanocomposites through atomistic molecular dynamics, MD, simulations. We probe the structural, conformational and dynamical properties of polymer chains at the vicinity of a gold (Au) NP and a functionalized (core/shell) Au NP, and compare them against the behavior of bulk polyethylene (PE). The bare Au NPs were constructed via a systematic methodology starting from ab-initio calculations and an atomistic Wulff construction algorithm resulting in the crystal shape with the minimum surface energy. For the functionalized NPs the interactions between gold atoms and chemically adsorbed functional groups change their shape. As a model polymer matrix we consider polyethylene of different molecular lengths, from the oligomer to unentangled Rouse like systems. The PE/Au interaction is parametrized via DFT calculations. By computing the different properties the concept of the interface, and the interphase as well, in polymer nanocomposites with metal NPs are critically examined. Results concerning polymer density profiles, bond order parameter, segmental and terminal dynamics show clearly that the size of the interface/interphase, depends on the actual property under study. In addition, the anchored polymeric chains change the behavior/properties, and especially the chain density profile and the dynamics, of the polymer chain at the vicinity of the Au NP.
Collapse
Affiliation(s)
- Albert J. Power
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Ioannis N. Remediakis
- Department of Materials Science and Technology, University of Crete, GR-71003 Heraklion, Crete, Greece;
- Institute of Electronic Structure and Laser, (IESL), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
| | - Vagelis Harmandaris
- Department of Mathematics and Applied Mathematics, University of Crete, GR-71409 Heraklion, Crete, Greece
- Institute of Applied and Computational Mathematics (IACM), Foundation for Research and Technology Hellas (FORTH), GR-71110 Heraklion, Crete, Greece
- Computation-Based Science and Technology Research Center, The Cyprus Institute, Nicosia 2121, Cyprus
| |
Collapse
|
32
|
Carrazzone RJ, Foster JC, Li Z, Matson JB. Tuning small molecule release from polymer micelles: Varying H 2S release through cross linking in the micelle core. Eur Polym J 2020; 141:110077. [PMID: 33162563 PMCID: PMC7643851 DOI: 10.1016/j.eurpolymj.2020.110077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Polymer micelles, used extensively as vehicles in the delivery of active pharmaceutical ingredients, represent a versatile polymer architecture in drug delivery systems. We hypothesized that degree of crosslinking in the hydrophobic core of amphiphilic block copolymer micelles could be used to tune the rate of release of the biological signaling gas (gasotransmitter) hydrogen sulfide (H2S), a potential therapeutic. To test this hypothesis, we first synthesized amphiphilic block copolymers of the structure PEG-b-P(FBEA) (PEG = poly(ethylene glycol), FBEA = 2-(4-formylbenzoyloxy)ethyl acrylate). Using a modified arm-first approach, we then varied the crosslinking percentage in the core-forming block via addition of a 'O,O'-alkanediyl bis(hydroxylamine) crosslinking agent. We followed incorporation of the crosslinker by 1H NMR spectroscopy, monitoring the appearance of the oxime signal resulting from reaction of pendant aryl aldehydes on the block copolymer with hydroxylamines on the crosslinker, which revealed crosslinking percentages of 5, 10, and 15%. We then installed H2S-releasing S-aroylthiooxime (SATO) groups on the crosslinked polymers, yielding micelles with SATO units in their hydrophobic cores after self-assembly in water. H2S release studies in water, using cysteine (Cys) as a trigger to induce H2S release from the SATO groups in the micelle core, revealed increasing half-lives of H2S release, from 117 ± 6 min to 210 ± 30 min, with increasing crosslinking density in the micelle core. This result was consistent with our hypothesis, and we speculate that core crosslinking limits the rate of Cys diffusion into the micelle core, decreasing the release rate. This method for tuning the release of covalently linked small molecules through modulation of micelle core crosslinking density may extend beyond H2S to other drug delivery systems where precise control of release rate is needed.
Collapse
Affiliation(s)
- Ryan J. Carrazzone
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Jeffrey C. Foster
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - Zhao Li
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| | - John B. Matson
- Department of Chemistry, Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, VA, 24061, United States
| |
Collapse
|
33
|
Nasr M, Hashem F, Abdelmoniem R, Tantawy N, Teiama M. In Vitro Cytotoxicity and Cellular Uptake of Tamoxifen Citrate-Loaded Polymeric Micelles. AAPS PharmSciTech 2020; 21:306. [PMID: 33151433 DOI: 10.1208/s12249-020-01850-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/12/2020] [Indexed: 11/30/2022] Open
Abstract
The main intent of this treatise was to encapsulate tamoxifen citrate (TMXC) into polymeric micellar delivery system and evaluate the influence of TMXC-loaded micelles as a promising carrier on the in vitro cytotoxicity and cellular uptake of TMXC in treatment of breast cancer. Different formulae of polymeric micelles loaded with TMXC using mixtures of different Pluronic polymers were fabricated by thin-film hydration method and evaluated for morphology, drug entrapment efficiency, particle size, surface charge, in vitro liberation of TMXC, uptake by cancer cell lines, and cytotoxic effect against breast cancer cell lines such as MCF-7. The optimal TMXC-loaded micelles exhibited nano-sized particles and entrapped about 89.09 ± 4.2% of TMXC. In vitro liberation study revealed an extended TMXC escape of about 70.23 ± 5.9% over a period of 36 h. The optimized TMXC-loaded micelles formula showed enhanced cellular uptake of TMXC by 2.28 folds and showed a significant cytotoxic effect with MCF-7 breast cancer cells compared to TMXC solution. The obtained yield proposed that Pluronic micelles could be a promising potential delivery system for anticancer moieties.
Collapse
|
34
|
Exploring the confinement of polymer nanolayers into ordered mesoporous silica using advanced gas physisorption. J Colloid Interface Sci 2020; 579:489-507. [PMID: 32622098 DOI: 10.1016/j.jcis.2020.05.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 05/25/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022]
Abstract
Over the last two decades, in parallel to the rise of ordered mesoporous silica, porous nanostructured polymer-silica composites have attracted the interest of material scientists due to their promising perspectives of application as sorbents, ion-exchangers, supports, and catalysts. While knowledge is available regarding their synthesis and applications, understanding and controlling their pore properties in order to rationalize their performances remain challenging tasks. Greater knowledge is therefore needed regarding their precise characterization, especially using gas adsorption. To this aim, mesoporous polymer-silica nanocomposites were synthesized from two ordered mesoporous silica materials using a pore-surface restricted polymerization technique. Hydrophobic polystyrene, PS, and hydrophilic poly(2-hydroxyethyl methacrylate), PHEMA, were specifically confined and polymerized in the pores of high-quality SBA-15 and KIT-6 silicas of different pore sizes. The physico-chemical characteristics of the resulting hybrid materials were probed in detail using gas physisorption at cryogenic temperatures (Ar at 87 K and N2 at 77 K). The polymer loadings and the interactions between the silica host and the polymer were investigated using thermogravimetric analysis coupled with differential thermal analysis (TGA-DTA) and attenuated total reflection infrared spectroscopy (ATR-FTIR). The effects of the pore structure, mode pore size and presence or absence of intra-wall pores in the silica hosts on the final composite characteristics were assessed as a function of the polymer type and loading. Two different polymer filling mechanisms were identified as a function of the polymer-silica interactions, resulting in important changes on the pore topology of the composites. The results of this study allow a better understanding of the nature of the confined interactions between hydrophilic and hydrophobic polymers and large pore mesoporous silicas and shed some light on fundamental aspects regarding the design of silica-based composites.
Collapse
|
35
|
Cao J, Li X, Tian H. Metal-Organic Framework (MOF)-Based Drug Delivery. Curr Med Chem 2020; 27:5949-5969. [DOI: 10.2174/0929867326666190618152518] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 04/05/2019] [Accepted: 05/30/2019] [Indexed: 01/03/2023]
Abstract
Background:
Developing a controllable drug delivery system is imperative and important
to reduce side effects and enhance the therapeutic efficacy of drugs. Metal-organic frameworks
(MOFs) an emerging class of hybrid porous materials built from metal ions or clusters bridged by
organic linkers have attracted increasing attention in the recent years owing to the unique physical
structures possessed, and the potential for vast applications. The superior properties of MOFs, such
as well-defined pore aperture, tailorable composition and structure, tunable size, versatile functionality,
high agent loading, and improved biocompatibility, have made them promising candidates as
drug delivery hosts. MOFs for drug delivery is of great interest and many very promising results
have been found, indicating that these porous solids exhibit several advantages over existing systems.
Objective:
This review highlights the latest advances in the synthesis, functionalization, and applications
of MOFs in drug delivery, and has classified them using drug loading strategies. Finally, challenges
and future perspectives in this research area are also outlined.
Collapse
Affiliation(s)
- Jian Cao
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Xuejiao Li
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| | - Hongqi Tian
- Tianjin Key Laboratory of Radiation Medicine and Molecular Nuclear Medicine, Institute of Radiation Medicine, Chinese Academy of Medical Science and Peking Union Medical College, Tianjin 300192, China
| |
Collapse
|
36
|
Towards Appraising Influence of New Economical Polymeric Core–Shell Nanocomposites. J Inorg Organomet Polym Mater 2020. [DOI: 10.1007/s10904-020-01755-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
37
|
pH-Sensitive Dendrimersomes of Hybrid Triazine-Carbosilane Dendritic Amphiphiles-Smart Vehicles for Drug Delivery. NANOMATERIALS 2020; 10:nano10101899. [PMID: 32977594 PMCID: PMC7598245 DOI: 10.3390/nano10101899] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/21/2020] [Accepted: 09/22/2020] [Indexed: 12/18/2022]
Abstract
Supramolecular constructions of amphiphilic dendritic molecules are promising vehicles for anti-cancer drug delivery due to the flexibility of their architecture, high drug loading capacity and avoiding off-target effects of a drug. Herein, we report a new class of amphiphilic dendritic species—triazine-carbosilane dendrons readily self-assembling into pH-sensitive dendrimersomes. The dendrimersomes efficiently encapsulate anticancer drugs doxorubicin and methotrexate. Chemodrug-loaded dendrimersomes have dose-related cytotoxic activity against leukaemia cell lines 1301 and K562. Our findings suggest that triazine-carbosilane dendrimersomes are prospective drug carriers for anti-cancer therapy.
Collapse
|
38
|
Understanding fundamentals of hepatocellular carcinoma to design next-generation chitosan nano-formulations: Beyond chemotherapy stride. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Jiménez-López J, García-Hevia L, Melguizo C, Prados J, Bañobre-López M, Gallo J. Evaluation of Novel Doxorubicin-Loaded Magnetic Wax Nanocomposite Vehicles as Cancer Combinatorial Therapy Agents. Pharmaceutics 2020; 12:E637. [PMID: 32645938 PMCID: PMC7407097 DOI: 10.3390/pharmaceutics12070637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 06/29/2020] [Accepted: 07/02/2020] [Indexed: 01/20/2023] Open
Abstract
The development of nanotechnology-based solutions for cancer at a preclinical level advances at an astounding pace. So far, clinical translation of these new developments has not been able to keep the pace due to a range of different reasons. One of them is the mismatch between in vitro and in vivo results coming from the expected difference in complexity. To overcome this problem, extensive characterisation using advanced in vitro models can lead to stronger preliminary data to face in vivo tests. Here, a comprehensive in vitro validation of a combinatorial therapy nanoformulation against solid tumours is presented. The information extracted from the different in vitro models highlights the importance of advanced 3D models to fully understand the potential of this type of complex drugs.
Collapse
Affiliation(s)
- Julia Jiménez-López
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
- The Scuola Superiore Sant’Anna, the BioRobotics Institute, Viale Rinaldo Piaggio 34, Pontedera, 56025 Pisa, Italy
| | - Consolación Melguizo
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Jose Prados
- Institute of Biopathology and Regenerative Medicine (IBIM9090325ER), Center of Biomedical Research (CIBM), University of Granada, 18014 Granada, Spain; (J.J.-L.); (C.M.); (J.P.)
- Department of Anatomy and Embryology, Faculty of Medicine, University of Granada, 18014 Granada, Spain
- Biosanitary Institute of Granada (ibs.GRANADA), University of Granada, 18014 Granada, Spain
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, Health Cluster, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330 Braga, Portugal;
| |
Collapse
|
40
|
Shi Y, Zhao Z, Gao Y, Pan DC, Salinas AK, Tanner EE, Guo J, Mitragotri S. Oral delivery of sorafenib through spontaneous formation of ionic liquid nanocomplexes. J Control Release 2020; 322:602-609. [DOI: 10.1016/j.jconrel.2020.03.018] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/11/2020] [Accepted: 03/13/2020] [Indexed: 12/16/2022]
|
41
|
Wang J, Wang X, Li Y, Si H, Chen C, Wang J, Long Z, Nandakumar K. Preparation and properties of magnetic polymer microspheres. POLYMER 2020. [DOI: 10.1016/j.polymer.2020.122569] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
42
|
Baradaran Eftekhari R, Maghsoudnia N, Dorkoosh FA. Art and drug delivery system design: dissonance or a harmony? Expert Opin Drug Deliv 2020; 17:735-739. [PMID: 32249618 DOI: 10.1080/17425247.2020.1752179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Reza Baradaran Eftekhari
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Niloufar Maghsoudnia
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| | - Farid Abedin Dorkoosh
- Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran.,Medical Biomaterial Research Center (MBRC), Faculty of Pharmacy, Tehran University of Medical Sciences , Tehran, Iran
| |
Collapse
|
43
|
Li Y, Wang S, Song FX, Zhang L, Yang W, Wang HX, Chen QL. A pH-sensitive drug delivery system based on folic acid-targeted HBP-modified mesoporous silica nanoparticles for cancer therapy. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.124470] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
44
|
Pinto MN, Mascharak PK. Light-assisted and remote delivery of carbon monoxide to malignant cells and tissues: Photochemotherapy in the spotlight. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C-PHOTOCHEMISTRY REVIEWS 2020. [DOI: 10.1016/j.jphotochemrev.2020.100341] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
45
|
de Moura CL, Gallo J, García-Hevia L, Pessoa ODL, Ricardo NMPS, Bañobre-López M. Magnetic Hybrid Wax Nanocomposites as Externally Controlled Theranostic Vehicles: High MRI Enhancement and Synergistic Magnetically Assisted Thermo/Chemo Therapy. Chemistry 2020; 26:4531-4538. [PMID: 31867807 DOI: 10.1002/chem.201904709] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Indexed: 12/17/2022]
Abstract
To fight against cancer, smarter drugs and drug delivery systems are required both to boost the efficiency of current treatments while reducing deleterious side effects, and combine diagnosis/monitoring with therapy (theranosis) in the search for the final goal of personalized medicine. This work presents the design, preparation, and proof-of-principle validation of a novel hybrid organic-inorganic nanocomposite joining together non-invasive imaging capabilities through magnetic resonance imaging and externally actuated therapeutic properties through a combination of chemo- and thermotherapy. The lipidic matrix of the nanocomposite was composed of carnauba wax, which was simultaneously dual loaded with magnetite nanoparticles and the anticancer drug Oncocalyxone A. Obtained formulations were fully characterized and showed outstanding performances as T2 -contrast agents in magnetic resonance imaging (r2 >800 mm-1 s-1 ), heat generating sources in magnetic hyperthermia (specific absorption rate, SAR>200 W g-1 Fe ), and magnetically responsive drug delivery vehicles. The potential of the designed formulations as theranostic agents was validated in vitro and results indicated a synergistic thermo/chemotherapeutic effect derived from heat generation and controlled drug delivery to cancer growth. Thereby, this external control over the drug delivery profile and the integrated imaging capability open the door to personalized cancer medicine and real-time monitoring of tumor progression.
Collapse
Affiliation(s)
- Carolina L de Moura
- Departamento de Química Orgánica e Inorgánica da UFC, CX 12200, Fortaleza, Ceará, Brazil
| | - Juan Gallo
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Lorena García-Hevia
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| | - Otília D L Pessoa
- Departamento de Química Orgánica e Inorgánica da UFC, CX 12200, Fortaleza, Ceará, Brazil
| | - Nágila M P S Ricardo
- Departamento de Química Orgánica e Inorgánica da UFC, CX 12200, Fortaleza, Ceará, Brazil
| | - Manuel Bañobre-López
- Advanced (Magnetic) Theranostic Nanostructures Lab, International Iberian Nanotechnology Laboratory, Av. Mestre José Veiga s/n, 4715-330, Braga, Portugal
| |
Collapse
|
46
|
Giannakopoulou N, Williams JB, Moody PR, Sayers EJ, Magnusson JP, Pope I, Payne L, Alexander C, Jones AT, Langbein W, Watson P, Borri P. Four-wave-mixing microscopy reveals non-colocalisation between gold nanoparticles and fluorophore conjugates inside cells. NANOSCALE 2020; 12:4622-4635. [PMID: 32044908 DOI: 10.1039/c9nr08512b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Gold nanoparticles have been researched for many biomedical applications in diagnostics, theranostics, and as drug delivery systems. When conjugated to fluorophores, their interaction with biological cells can be studied in situ and real time using fluorescence microscopy. However, an important question that has remained elusive to answer is whether the fluorophore is a faithful reporter of the nanoparticle location. Here, our recently developed four-wave-mixing optical microscopy is applied to image individual gold nanoparticles and in turn investigate their co-localisation with fluorophores inside cells. Nanoparticles from 10 nm to 40 nm diameter were conjugated to fluorescently-labeled transferrin, for internalisation via clathrin-mediated endocytosis, or to non-targeting fluorescently-labelled antibodies. Human (HeLa) and murine (3T3-L1) cells were imaged at different time points after incubation with these conjugates. Our technique identified that, in most cases, fluorescence originated from unbound fluorophores rather than from fluorophores attached to nanoparticles. Fluorescence detection was also severely limited by photobleaching, quenching and autofluorescence background. Notably, correlative extinction/fluorescence microscopy of individual particles on a glass surface indicated that commercial constructs contain large amounts of unbound fluorophores. These findings highlight the potential problems of data interpretation when reliance is solely placed on the detection of fluorescence within the cell, and are of significant importance in the context of correlative light electron microscopy.
Collapse
Affiliation(s)
- Naya Giannakopoulou
- School of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, UK.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Thermal properties of an exopolysaccharide produced by a marine thermotolerant Bacillus licheniformis by ATR-FTIR spectroscopy. Int J Biol Macromol 2020; 145:77-83. [DOI: 10.1016/j.ijbiomac.2019.12.163] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Accepted: 12/19/2019] [Indexed: 01/18/2023]
|
48
|
Vuilleumier J, Gaulier G, De Matos R, Mugnier Y, Campargue G, Wolf J, Bonacina L, Gerber‐Lemaire S. Photocontrolled Release of the Anticancer Drug Chlorambucil with Caged Harmonic Nanoparticles. Helv Chim Acta 2020. [DOI: 10.1002/hlca.201900251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Jérémy Vuilleumier
- Institute of Chemical Sciences and Engineering, Group for Functionalized BiomaterialsEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| | - Geoffrey Gaulier
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Raphaël De Matos
- Institute of Chemical Sciences and Engineering, Group for Functionalized BiomaterialsEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| | | | - Gabriel Campargue
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Jean‐Pierre Wolf
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Luigi Bonacina
- Department of Applied PhysicsUniversité de Genève 22 Chemin de Pinchat CH-1211 Genève 4 Switzerland
| | - Sandrine Gerber‐Lemaire
- Institute of Chemical Sciences and Engineering, Group for Functionalized BiomaterialsEcole Polytechnique Fédérale de Lausanne, EPFL SB ISIC SCI-SB-SG, Station 6 CH-1015 Lausanne Switzerland
| |
Collapse
|
49
|
Yu J, Loh XJ, Luo Y, Ge S, Fan X, Ruan J. Insights into the epigenetic effects of nanomaterials on cells. Biomater Sci 2019; 8:763-775. [PMID: 31808476 DOI: 10.1039/c9bm01526d] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
With the development of nanotechnology, nanomaterials are increasingly being applied in health fields, such as biomedicine, pharmaceuticals, and cosmetics. Concerns have therefore been raised over their toxicity and numerous studies have been carried out to assess their safety. Most studies on the toxicity and therapeutic mechanisms of nanomaterials have revealed the effects of nanomaterials on cells at the transcriptome and proteome levels. However, epigenetic modifications, for example DNA methylation, histone modification, and noncoding RNA expression induced by nanomaterials, which play an important role in the regulation of gene expression, have not received sufficient attention. In this review, we therefore state the importance of studying epigenetic effects induced by nanomaterials; then we review the progress of nanomaterial epigenetic research in the assessment of toxicity, therapeutic, and other mechanisms. We also clarify the possible study directions for future nanomaterial epigenetic research. Finally, we discuss the future development and challenges of nanomaterial epigenetics that must still be addressed. We hope to understand the potential toxicity of nanomaterials and clearly understand the therapeutic mechanism through a thorough investigation of nanomaterial epigenetics.
Collapse
Affiliation(s)
- Jie Yu
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Yifei Luo
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore
| | - Shengfang Ge
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Xianqun Fan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| | - Jing Ruan
- Department of Ophthalmology, Shanghai Ninth People's Hospital, Shanghai JiaoTong University School of Medicine, Shanghai 200011, China. and Shanghai Key Laboratory of Orbital Diseases and Ocular Oncology, Shanghai 200011, China
| |
Collapse
|
50
|
Hong E, Liu L, Bai L, Xia C, Gao L, Zhang L, Wang B. Control synthesis, subtle surface modification of rare-earth-doped upconversion nanoparticles and their applications in cancer diagnosis and treatment. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 105:110097. [DOI: 10.1016/j.msec.2019.110097] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2018] [Revised: 07/14/2019] [Accepted: 08/15/2019] [Indexed: 01/26/2023]
|