1
|
Zhao H, Zhou Y, Gu Q, Lin Y, Lan M. An explore method for quick screening biomarkers based on effective enrichment capacity and data mining. J Chromatogr A 2024; 1736:465413. [PMID: 39368193 DOI: 10.1016/j.chroma.2024.465413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 10/07/2024]
Abstract
Protein glycosylation acts as a crucial role in regulating protein function and maintaining cellular homeostasis. Efficient peptide enrichment can be utilized to effectively solve the inherent challenges of protein glycosylation analysis to search unknown cancer biomarkers. In this research, a low dimensional porous hydrophilic nanosheets with a multi-level porous structure (Co-MOF-SiO2@HA) was synthetized via an easy one-pot method for the efficient enrichment of the N-glycopeptides in the digests of complex biosamples. The synthetized nanosheets Co-MOF-SiO2@HA demonstrated excellent enriching performances including a high enrichment capacity (300 mg g-1 calculated), a spectacular selectivity (IgG digests and BSA digests at the molar ratio of 1/1200), and an excellent spatial confinement ability (IgG digests, IgG and BSA at the molar ratio of 1/1000/1000). As an explore result, after the enrichment of human colorectal cancer tissue and human healthy tissue by the nanosheets, several proteins related to cancers and one protein directly related to well-known human colorectal cancer were identified by detecting the corresponding glycopeptides. It presented the potential value of the feasibility of this analysis mode by nanosheets Co-MOF-SiO2@HA in proteomic analysis.
Collapse
Affiliation(s)
- Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China.
| | - Yifan Zhou
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Qinying Gu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Yunfan Lin
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, PR China; Research Center of Analysis and Test, East China University of Science and Technology, Shanghai, 200237, PR China.
| |
Collapse
|
2
|
Hao R, Deng Y, Fang J, Zhao D. Three-Dimensionally Nanometallic Superstructure Synthesized via a Single-Particle Soft-Enveloping Strategy. NANO LETTERS 2024; 24:4554-4561. [PMID: 38573122 DOI: 10.1021/acs.nanolett.4c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Three-dimensionally (3D) integrated metallic nanomaterials composed of two or more different types of nanostructures make up a class of advanced materials due to the multidimensional and synergistic effects between different components. However, designing and synthesizing intricate, well-defined metallic 3D nanomaterials remain great challenges. Here, a novel single-particle soft-enveloping strategy using a core-shell Au NP@mSiO2 particle as a template was proposed to synthesize 3D nanomaterials, namely, a Au nanoparticle@center-radial nanorod-Au-Pt nanoparticle (Au NP@NR-NP-Pt NP) superstructure. Taking advantage of the excellent plasmonic properties of Au NP@NR-NP by the synergistic plasmonic coupling of the outer Au NPs and inner Au nanorods, we can enhance the catalytic performance for 4-nitrophenol hydrogenation using Au NP@NR-NP-Pt NP as a photocatalyst with plasmon-excited hot electrons from Au NP@NR-NP under light irradiation, which is 2.76 times higher than in the dark. This process opens a door for the design of a new generation of 3D metallic nanomaterials for different fields.
Collapse
Affiliation(s)
- Rui Hao
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yonghui Deng
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| | - Jixiang Fang
- Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China
| |
Collapse
|
3
|
Shen X, Zhang Y, Wang D, Huang Y, Song Y, Wang S. Mediator Monomer Regulated Emulsion Interfacial Polymerization to Synthesize Nanofractal Magnetic Particles for Nucleic Acid Separation. SMALL METHODS 2024; 8:e2300531. [PMID: 37491768 DOI: 10.1002/smtd.202300531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 07/14/2023] [Indexed: 07/27/2023]
Abstract
Polymer-based magnetic particles have been widely used for the separation of biological samples including nucleic acids, proteins, virus, and cells. Existing magnetic particles are almost prepared by coating polymers on magnetic nanoparticles (NPs). However, this strategy usually encounters the problem of poor magnetic NPs loading capacity. Here, a series of nanofractal magnetic particles (nanoFMPs) synthesized by a strategy of mediator monomer regulated emulsion interfacial polymerization is presented, which allows effective magnetic NPs loading and show efficient nucleic acid separation performance. The mediator monomers facilitate the dispersion of magnetic NPs in internal phase to achieve higher loading, and the hydrophilic monomers use electrostatic interactions to form surface nanofractal structures with functional groups. Compared with magnetic particles without nanofractal structure, nanoFMPs exhibit a higher nucleic acid extraction capability. This strategy offers an effective and versatile way for the synthesis of nanoFMPs toward efficient separation in various fields from clinical diagnosis to food safety and environmental monitoring.
Collapse
Affiliation(s)
- Xinyi Shen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yue Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Duanda Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yanling Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou City, Shandong Province, 256606, P. R. China
| |
Collapse
|
4
|
Naderi N, Ganjali F, Eivazzadeh-Keihan R, Maleki A, Sillanpää M. Applications of hollow nanostructures in water treatment considering organic, inorganic, and bacterial pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 356:120670. [PMID: 38531142 DOI: 10.1016/j.jenvman.2024.120670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
One of the major issues of modern society is water contamination with different organic, inorganic, and contaminants bacteria. Finding cost-effective and efficient materials and methods for water treatment and environment remediation is among the scientists' most important considerations. Hollow-structured nanomaterials, including hollow fiber membranes, hollow spheres, hollow nanoboxes, etc., have shown an exciting capability for wastewater refinement approaches, including membrane technology, adsorption, and photocatalytic procedure due to their extremely high specific surface area, high porosity, unique morphology, and low density. Diverse hollow nanostructures could potentially eliminate organic contaminants, including dyes, antibiotics, oil/water emulsions, pesticides, and other phenolic compounds, inorganic pollutants, such as heavy metal ions, salts, phosphate, bromate, and other ions, and bacteria contaminations. Here, a comprehensive overview of hollow nanostructures' fabrication and modification, water contaminant classification, and recent studies in the water treatment field using hollow-structured nanomaterials with a comparative attitude have been provided, indicating the privilege abd detriments of this class of nanomaterials. Eventually, the future outlook of employing hollow nanomaterials in water refinery systems and the upcoming challenges arising in scaling up are also propounded.
Collapse
Affiliation(s)
- Nooshin Naderi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Fatemeh Ganjali
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P. O. Box 17011, Doornfontein, 2028, South Africa; International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan, 173212, Himachal Pradesh, India; Department of Biological and Chemical Engineering, Aarhus University, Nørrebrogade 44, 8000, Aarhus C, Denmark; Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali, Punjab, India.
| |
Collapse
|
5
|
Chen L, Zhang S, Duan Y, Song X, Chang M, Feng W, Chen Y. Silicon-containing nanomedicine and biomaterials: materials chemistry, multi-dimensional design, and biomedical application. Chem Soc Rev 2024; 53:1167-1315. [PMID: 38168612 DOI: 10.1039/d1cs01022k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The invention of silica-based bioactive glass in the late 1960s has sparked significant interest in exploring a wide range of silicon-containing biomaterials from the macroscale to the nanoscale. Over the past few decades, these biomaterials have been extensively explored for their potential in diverse biomedical applications, considering their remarkable bioactivity, excellent biocompatibility, facile surface functionalization, controllable synthesis, etc. However, to expedite the clinical translation and the unexpected utilization of silicon-composed nanomedicine and biomaterials, it is highly desirable to achieve a thorough comprehension of their characteristics and biological effects from an overall perspective. In this review, we provide a comprehensive discussion on the state-of-the-art progress of silicon-composed biomaterials, including their classification, characteristics, fabrication methods, and versatile biomedical applications. Additionally, we highlight the multi-dimensional design of both pure and hybrid silicon-composed nanomedicine and biomaterials and their intrinsic biological effects and interactions with biological systems. Their extensive biomedical applications span from drug delivery and bioimaging to therapeutic interventions and regenerative medicine, showcasing the significance of their rational design and fabrication to meet specific requirements and optimize their theranostic performance. Additionally, we offer insights into the future prospects and potential challenges regarding silicon-composed nanomedicine and biomaterials. By shedding light on these exciting research advances, we aspire to foster further progress in the biomedical field and drive the development of innovative silicon-composed nanomedicine and biomaterials with transformative applications in biomedicine.
Collapse
Affiliation(s)
- Liang Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Shanshan Zhang
- Department of Ultrasound Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025, P. R. China
| | - Yanqiu Duan
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Xinran Song
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Meiqi Chang
- Laboratory Center, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 200071, P. R. China.
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| |
Collapse
|
6
|
Chan A, Tsourkas A. Intracellular Protein Delivery: Approaches, Challenges, and Clinical Applications. BME FRONTIERS 2024; 5:0035. [PMID: 38282957 PMCID: PMC10809898 DOI: 10.34133/bmef.0035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 12/14/2023] [Indexed: 01/30/2024] Open
Abstract
Protein biologics are powerful therapeutic agents with diverse inhibitory and enzymatic functions. However, their clinical use has been limited to extracellular applications due to their inability to cross plasma membranes. Overcoming this physiological barrier would unlock the potential of protein drugs for the treatment of many intractable diseases. In this review, we highlight progress made toward achieving cytosolic delivery of recombinant proteins. We start by first considering intracellular protein delivery as a drug modality compared to existing Food and Drug Administration-approved drug modalities. Then, we summarize strategies that have been reported to achieve protein internalization. These techniques can be broadly classified into 3 categories: physical methods, direct protein engineering, and nanocarrier-mediated delivery. Finally, we highlight existing challenges for cytosolic protein delivery and offer an outlook for future advances.
Collapse
Affiliation(s)
| | - Andrew Tsourkas
- Department of Bioengineering,
University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
7
|
Zhang Q, Xuan Q, Wang C, Shi C, Wang X, Ma T, Zhang W, Li H, Wang P, Chen C. Bioengineered "Molecular Glue"-Mediated Tumor-Specific Cascade Nanoreactors with Self-Destruction Ability for Enhanced Precise Starvation/Chemosynergistic Tumor Therapy. ACS APPLIED MATERIALS & INTERFACES 2023; 15:41271-41286. [PMID: 37622208 DOI: 10.1021/acsami.3c06871] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
The ordered and directed functionalization of targeting elements on the surface of nanomaterials for precise tumor therapy remains a challenge. To address the above problem, herein, we adopted a materials-based synthetic biotechnology strategy to fabricate a bioengineered fusion protein of materials-binding peptides and targeting elements, which can serve as a "molecular glue" to achieve a directional and organized assembly of targeting biological macromolecules on the surface of nanocarriers. The hypoxia microenvironment of solid tumors inspired the rapid development of starvation/chemosynergistic therapy; however, the unsatisfied spatiotemporal specific performance hindered its further development in precise tumor therapy. As a proof of concept, a bioengineered fusion protein containing a dendritic mesoporous silicon (DMSN)-binding peptide, and a tumor-targeted and acidity-decomposable ferritin heavy chain 1 (FTH1), was constructed by fusion expression and further assembled on the surface of DMSN companying with the insertion of hypoxia-activated prodrug tirapazamine (TPZ) and glucose oxidase (GOX) to establish a nanoreactor for precise starvation/chemosynergistic tumor therapy. In this context, the as-prepared therapeutic nanoreactors revealed obvious tumor-specific accumulation and an endocytosis effect. Next, the acidic tumor microenvironment triggered the structural collapse of FTH1 and the subsequent release of GOX and TPZ, in which GOX-mediated catalysis cut off the nutrition supply to realize starvation therapy based on the consumption of endogenous glucose and further provided an exacerbated hypoxia environment for TPZ in situ activation to initiate tumor chemotherapy. More significantly, the presence of "molecular glue" elevated the tumor-targeting capacity of nanoreactors and further enhanced the starvation/chemosynergistic therapeutic effect remarkably, suggesting that such a strategy provided a solution for the functionality of nanomaterials and facilitated the design of novel targeting nanomedicines. Overall, this study highlights materials-binding peptides as a new type of "molecular glue" and opens new avenues for designing and exploring active biological materials for biological functions and applications.
Collapse
Affiliation(s)
- Qi Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Qize Xuan
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Chen Wang
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Chongli Shi
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Xiaoli Wang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Tonghao Ma
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Wei Zhang
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Hui Li
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| | - Ping Wang
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, St Paul, Minnesota 55108, United States
| | - Chao Chen
- State Key Laboratory of Bioreactor Engineering, Biomedical Nanotechnology Centre, School of Biotechnology, East China University of Science and Technology, Shanghai 200237, People's Republic of China
- Institute for Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, People's Republic of China
| |
Collapse
|
8
|
Yang C, Nguyen DD, Lai J. Poly(l-Histidine)-Mediated On-Demand Therapeutic Delivery of Roughened Ceria Nanocages for Treatment of Chemical Eye Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302174. [PMID: 37430140 PMCID: PMC10502830 DOI: 10.1002/advs.202302174] [Citation(s) in RCA: 51] [Impact Index Per Article: 51.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/10/2023] [Indexed: 07/12/2023]
Abstract
Development of topical bioactive formulations capable of overcoming the low bioavailability of conventional eye drops is critically important for efficient management of ocular chemical burns. Herein, a nanomedicine strategy is presented to harness the surface roughness-controlled ceria nanocages (SRCNs) and poly(l-histidine) surface coatings for triggering multiple bioactive roles of intrinsically therapeutic nanocarriers and promoting transport across corneal epithelial barriers as well as achieving on-demand release of dual drugs [acetylcholine chloride (ACh) and SB431542] at the lesion site. Specifically, the high surface roughness helps improve cellular uptake and therapeutic activity of SRCNs while exerting a negligible impact on good ocular biocompatibility of the nanomaterials. Moreover, the high poly(l-histidine) coating amount can endow the SRCNs with an ≈24-fold enhancement in corneal penetration and an effective smart release of ACh and SB431542 in response to endogenous pH changes caused by tissue injury/inflammation. In a rat model of alkali burn, topical single-dose nanoformulation can efficaciously reduce corneal wound areas (19-fold improvement as compared to a marketed eye drops), attenuate ≈93% abnormal blood vessels, and restore corneal transparency to almost normal at 4 days post-administration, suggesting great promise for designing multifunctional metallic nanotherapeutics for ocular pharmacology and tissue regenerative medicine.
Collapse
Affiliation(s)
- Chia‐Jung Yang
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Duc Dung Nguyen
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
| | - Jui‐Yang Lai
- Department of Biomedical EngineeringChang Gung UniversityTaoyuan33302Taiwan
- Department of OphthalmologyChang Gung Memorial Hospital, LinkouTaoyuan33305Taiwan
- Department of Materials EngineeringMing Chi University of TechnologyNew Taipei City24301Taiwan
- Research Center for Chinese Herbal MedicineCollege of Human EcologyChang Gung University of Science and TechnologyTaoyuan33303Taiwan
| |
Collapse
|
9
|
Li X, Ren X, Zhang Y, Ding L, Huo M, Li Q. Fabry disease: Mechanism and therapeutics strategies. Front Pharmacol 2022; 13:1025740. [PMID: 36386210 PMCID: PMC9643830 DOI: 10.3389/fphar.2022.1025740] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/10/2022] [Indexed: 12/04/2022] Open
Abstract
Fabry disease is a monogenic disease characterized by a deficiency or loss of the α-galactosidase A (GLA). The resulting impairment in lysosomal GLA enzymatic activity leads to the pathogenic accumulation of enzymatic substrate and, consequently, the progressive appearance of clinical symptoms in target organs, including the heart, kidney, and brain. However, the mechanisms involved in Fabry disease-mediated organ damage are largely ambiguous and poorly understood, which hinders the development of therapeutic strategies for the treatment of this disorder. Although currently available clinical approaches have shown some efficiency in the treatment of Fabry disease, they all exhibit limitations that need to be overcome. In this review, we first introduce current mechanistic knowledge of Fabry disease and discuss potential therapeutic strategies for its treatment. We then systemically summarize and discuss advances in research on therapeutic approaches, including enzyme replacement therapy (ERT), gene therapy, and chaperone therapy, as well as strategies targeting subcellular compartments, such as lysosomes, the endoplasmic reticulum, and the nucleus. Finally, the future development of potential therapeutic strategies is discussed based on the results of mechanistic studies and the limitations associated with these therapeutic approaches.
Collapse
Affiliation(s)
- Xi Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Xiangyi Ren
- Core Facilities of West China Hospital, Sichuan University, Chengdu, China
| | - Yabing Zhang
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Lin Ding
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
| | - Minfeng Huo
- Shanghai Tenth People’s Hospital, Shanghai Frontiers Science Center of Nanocatalytic Medicine, School of Medicine, Tongji University, Shanghai, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| | - Qian Li
- Department of Anesthesiology, West China Hospital of Sichuan University, Chengdu, China
- *Correspondence: Qian Li, ; Minfeng Huo,
| |
Collapse
|
10
|
Xu C, Lei C, Wang Y, Yu C. Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202112752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Chun Xu
- School of Dentistry The University of Queensland Brisbane Queensland 4066 Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 P. R. China
| |
Collapse
|
11
|
Wang H, Liu X, Saliy O, Hu W, Wang J. Robust Amino-Functionalized Mesoporous Silica Hollow Spheres Templated by CO 2 Bubbles. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010053. [PMID: 35011284 PMCID: PMC8746618 DOI: 10.3390/molecules27010053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/14/2021] [Accepted: 12/20/2021] [Indexed: 11/16/2022]
Abstract
Hollow-structured mesoporous silica has wide applications in catalysis and drug delivery due to its high surface area, large hollow space, and short diffusion mesochannels. However, the synthesis of hollow structures usually requires sacrificial templates, leading to increased production costs and environmental problems. Here, for the first time, amino-functionalized mesoporous silica hollow spheres were synthesized by using CO2 gaseous bubbles as templates. The assembly of anionic surfactants, co-structure directing agents, and inorganic silica precursors around CO2 bubbles formed the mesoporous silica shells. The hollow silica spheres, 200–400 nm in size with 20–30 nm spherical shell thickness, had abundant amine groups on the surface of the mesopores, indicating excellent applications for CO2 capture, Knoevenagel condensation reaction, and the controlled release of Drugs.
Collapse
Affiliation(s)
- Hongjuan Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (X.L.)
- Kyiv College, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
| | - Xuefei Liu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (X.L.)
| | - Olena Saliy
- Kyiv College, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Department of Industrial Pharmacy, Faculty of Chemical and Biopharmaceutical Technologies, Kyiv National University of Technologies and Design, 01011 Kyiv, Ukraine
| | - Wei Hu
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (X.L.)
- Kyiv College, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China;
- Correspondence: (W.H.); (J.W.)
| | - Jingui Wang
- School of Chemistry and Chemical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China; (H.W.); (X.L.)
- Correspondence: (W.H.); (J.W.)
| |
Collapse
|
12
|
Xu C, Lei C, Wang Y, Yu C. Dendritic Mesoporous Nanoparticles: Structure, Synthesis and Properties. Angew Chem Int Ed Engl 2021; 61:e202112752. [PMID: 34837444 DOI: 10.1002/anie.202112752] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Indexed: 11/10/2022]
Abstract
Recently, a new family of "dendritic" mesoporous silica nanoparticles has attracted great interest with widespread applications. Despite a large number of publications (>800), the terminology of "dendritic" is ambiguous. Understanding what possible "dendritic structures" are, their formation mechanisms and the underlying structure-property relationship is fundamentally important. With the advance of characterization techniques such as electron tomography, two types of tree branch-like and flower-like structures can be distinguished, both described as "dendritic" in literature. In this review, we start with the definition of "dendritic", then provide critical analysis of reported dendritic silica nanoparticles according to their structural classification. We also update the understandings of the formation mechanisms of two types of "dendritic" nanoparticles, with a focus on how to control different structural parameters. Various applications of dendritic mesoporous nanoparticles are also reviewed with a focus in biomedical field, providing new insights into the structure-property relationship in this family of nanomaterials.
Collapse
Affiliation(s)
- Chun Xu
- The University of Queensland, School of Dentistry, AUSTRALIA
| | - Chang Lei
- The University of Queensland - Saint Lucia Campus: The University of Queensland, AIBN, AUSTRALIA
| | - Yue Wang
- The University of Queensland, AIBN, AUSTRALIA
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Australian Institute for Bioengineering and Nanotechnology, the University of Queensland, Building 75,Cnr College Rd & Cooper Rd, 4067, Brisbane, AUSTRALIA
| |
Collapse
|
13
|
Zheng L, Zhao F, Ru J, Liu L, Wang Z, Wang N, Shu X, Wei Z, Guo H. Evaluation of the Effect of Inactivated Transmissible Gastroenteritis Virus Vaccine with Nano Silicon on the Phenotype and Function of Porcine Dendritic Cells. Viruses 2021; 13:v13112158. [PMID: 34834964 PMCID: PMC8620756 DOI: 10.3390/v13112158] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/18/2021] [Accepted: 10/23/2021] [Indexed: 02/06/2023] Open
Abstract
A transmissible gastroenteritis virus (TGEV) is a porcine enteropathogenic coronavirus, causing acute swine enteric disease especially in suckling piglets. Mesoporous silica nanoparticles (MSNs) are safe vaccine adjuvant, which could enhance immune responses. Our previous research confirmed that nano silicon had immune-enhancing effects with inactivated TGEV vaccine. In this study, we further clarified the immune-enhancing mechanism of the inactivated TGEV vaccine with MSNs on porcine dendritic cells (DCs). Our results indicated that the inactivated TGEV vaccine with MSNs strongly enhanced the activation of the DCs. Expressions of TLR3, TLR5, TLR7, TLR9, and TLR10, cytokines IFN-α, IL-1β, IL-6, IL-12, and TNF-α, cytokine receptor CCR-7 of immature DCs were characterized and showed themselves to be significantly higher in the inactivated TGEV vaccine with the MSN group. In summary, the inactivated TGEV vaccine with MSNs has effects on the phenotype and function of porcine DCs, which helps to better understand the immune-enhancing mechanism.
Collapse
Affiliation(s)
- Lanlan Zheng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Fujie Zhao
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
| | - Lintao Liu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Zi Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Nianxiang Wang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Xiangli Shu
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
| | - Zhanyong Wei
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, China; (L.Z.); (F.Z.); (L.L.); (Z.W.); (N.W.); (X.S.)
- Correspondence: (Z.W.); (H.G.)
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730046, China;
- Correspondence: (Z.W.); (H.G.)
| |
Collapse
|
14
|
Janjua TI, Ahmed-Cox A, Meka AK, Mansfeld FM, Forgham H, Ignacio RMC, Cao Y, McCarroll JA, Mazzieri R, Kavallaris M, Popat A. Facile synthesis of lactoferrin conjugated ultra small large pore silica nanoparticles for the treatment of glioblastoma. NANOSCALE 2021; 13:16909-16922. [PMID: 34533167 DOI: 10.1039/d1nr03553c] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The blood brain barrier (BBB) and blood tumour barrier (BTB) remain a major roadblock for delivering therapies to treat brain cancer. Amongst brain cancers, glioblastoma (GBM) is notoriously difficult to treat due to the challenge of delivering chemotherapeutic drugs across the BBB and into the tumour microenvironment. Consequently, GBM has high rates of tumour recurrence. Currently, limited numbers of chemotherapies are available that can cross the BBB to treat GBM. Nanomedicine is an attractive solution for treating GBM as it can augment drug penetration across the BBB and into the heterogeneous tumour site. However, very few nanomedicines exist that can easily overcome both the BBB and BTB owing to difficulty in synthesizing nanoparticles that meet the small size and surface functionality restrictions. In this study, we have developed for the first-time, a room temperature protocol to synthesise ultra-small size with large pore silica nanoparticles (USLP, size ∼30 nm, pore size >7 nm) with the ability to load high concentrations of chemotherapeutic drugs and conjugate a targeting moiety to their surface. The nanoparticles were conjugated with lactoferrin (>80 kDa), whose receptors are overexpressed by both the BBB and GBM, to achieve additional active targeting. Lactoferrin conjugated USLP (USLP-Lf) were loaded with doxorubicin - a chemotherapy agent that is known to be highly effective against GBM in vitro but cannot permeate the BBB. USLP-Lf were able to selectively permeate the BBB in vitro, and were effectively taken up by glioblastoma U87 cells. When compared to the uncoated USLP-NPs, the coating with lactoferrin significantly improved penetration of USLP into U87 tumour spheroids (after 12 hours at 100 μm distance, RFU value 19.58 vs. 49.16 respectively). Moreover, this USLP-Lf based delivery platform improved the efficacy of doxorubicin-mediated apoptosis of GBM cells in both 2D and 3D models. Collectively, our new nano-platform has the potential to overcome both the BBB and BTB to treat GBM more effectively.
Collapse
Affiliation(s)
- Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Aria Ahmed-Cox
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Friederike M Mansfeld
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, Melbourne, VIC 3052, Australia
| | - Helen Forgham
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Rosa Mistica C Ignacio
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Yuxue Cao
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
| | - Joshua A McCarroll
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Roberta Mazzieri
- Diamantina Institute, Translational Research Institute, The University of Queensland Brisbane QLD, 4102, Australia.
- Peter MacCallum Cancer Centre, Melbourne, VIC, 3000, Australia
- Sir Peter MacCallum Department of Oncology, The University of Melbourne, Melbourne, VIC 3010, Australia
| | - Maria Kavallaris
- Children's Cancer Institute, Lowy Cancer Research Centre, UNSW Sydney, Sydney, NSW, 2031, Australia.
- School of Women's and Children's Health, Faculty of Medicine and Health, UNSW Sydney, Sydney, NSW, 2052, Australia
- ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, Australian Centre for Nanomedicine, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD, 4102, Australia.
- Mater Research Institute - The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| |
Collapse
|
15
|
Ren D, Chen N, Xu J, Ye Z, Li X, Chen Q, Ma S. Resorcinol-formaldehyde-assisted dissolution-regrowth strategy for synthesis of hollow silica nanoparticles with tunable morphology. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Qiao M, Guo PF, Zhang CY, Sun XY, Chen ML, Wang JH. Titanium dioxide-functionalized dendritic mesoporous silica nanoparticles for highly selective isolation of phosphoproteins. J Sep Sci 2021; 44:3618-3625. [PMID: 34365723 DOI: 10.1002/jssc.202100523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 08/02/2021] [Accepted: 08/03/2021] [Indexed: 01/08/2023]
Abstract
Selective isolation of phosphoproteins is of great significance in biological applications. Herein, titanium dioxide-functionalized dendritic mesoporous silica nanoparticles are prepared via a post-grafting method for selective capture of phosphoproteins. The fabricated nanoparticles possess a unique central-radial pore structure with a surface area of 666.66 m2 /g and a pore size of 22.2 nm. The high-binding affinity of TiO2 with the phosphate groups facilitates the selective adsorption of phosphoproteins. Moreover, the open central-radial pore structure endows the dendritic mesoporous nanoparticles with better adsorption performance toward phosphoproteins with respect to the commercial titanium dioxide nanoparticles and titanium dioxide-functionalized conventional mesoporous silica nanoparticles by providing more accessible affinity sites. At pH 2, an adsorption capacity of 157.2 mg/g is derived for β-casein. The feasibility of the as-prepared dendritic material in real biological sample assay is demonstrated by the selective isolation of phosphoproteins from defatted milk, as illustrated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis assay.
Collapse
Affiliation(s)
- Min Qiao
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Chun-Yu Zhang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Xiao-Yan Sun
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences, Northeastern University, Shenyang, P. R. China
| |
Collapse
|
17
|
Wu Y, Jiang L, Dong Z, Chen S, Yu XY, Tang S. Intracellular Delivery of Proteins into Living Cells by Low-Molecular-Weight Polyethyleneimine. Int J Nanomedicine 2021; 16:4197-4208. [PMID: 34188469 PMCID: PMC8232877 DOI: 10.2147/ijn.s315444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/01/2021] [Indexed: 11/23/2022] Open
Abstract
Introduction Intracellular protein delivery is emerging as a potential strategy to revolutionize therapeutics in the field of biomedicine, aiming at treating a wide range of diseases including cancer, inflammatory diseases and other oxidative stress-related disorders with high specificity. However, the current challenges and limitations are addressed to either synthetically or biologically through multipotency of engineering, such as protein modification, insufficient delivery of large-size proteins, deficiency or mutation of proteins, and high cytotoxicity. Methods We prepared the nanocomposites by mixing protein with PEI1200 at a certain molar ratio and demonstrated that it can deliver proteins into living cells in high efficiency and safety through the following experiments, such as dynamic light scattering, fluorescent detection, agarose gel electrophoresis, ß-Galactosidase activity detection, immunofluorescence staining, digital fluorescent detection, cell viability assay and flow cytometry. Results The self-assembly of PEI1200/protein nanocomposites with appropriate molar ratio (4:1 and 8:1) could provide efficiently delivery of active proteins to a variety of cell types in the presence of serum. The nanocomposites could continuously release protein up to 96 h in their desired intracellular locations. In addition, these nanocomposites were able to preserve protein activity while maintain low cytotoxicity (when final concentration <1 μg/mL). Conclusion Collectively, PEI1200-based delivery system provided an alternative strategy to direct protein delivery in high efficiency and safety, offering increased potential applications in clinical biomedicine.
Collapse
Affiliation(s)
- Yueheng Wu
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Biomedical Engineering Institute, Jinan University, Guangzhou, 510632, People's Republic of China.,Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Lin Jiang
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Zixuan Dong
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Biomedical Engineering Institute, Jinan University, Guangzhou, 510632, People's Republic of China
| | - Shaoxian Chen
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Xi-Yong Yu
- Department of Cardiovascular Surgery, Guangdong Cardiovascular Institute, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, School of Medicine, South China University of Technology, Guangzhou, 510080, People's Republic of China
| | - Shunqing Tang
- National Engineering Research Center for Healthcare Devices, Guangdong Institute of Medical Instruments, Biomedical Engineering Institute, Jinan University, Guangzhou, 510632, People's Republic of China
| |
Collapse
|
18
|
Heidari Nia M, Koshani R, Munguia-Lopez JG, Kiasat AR, Kinsella JM, van de Ven TGM. Biotemplated Hollow Mesoporous Silica Particles as Efficient Carriers for Drug Delivery. ACS APPLIED BIO MATERIALS 2021; 4:4201-4214. [PMID: 35006833 DOI: 10.1021/acsabm.0c01671] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
We designed three types of hollow-shaped porous silica materials via a three-step biotemplate-directed method: porous hollow silica nanorods, hollow dendritic fibrous nanostructured silica (DFNS), and ultraporous sponge-like DFNS. The first step was making a biotemplate, for which we used cellulose nanocrystals (CNCs), consisting of rod-shaped nanoparticles synthesized by conventional acid hydrolysis of cellulose fibers. In a second step, core-shell samples were prepared using CNC particles as hard template by two procedures. In the first one, core-shell CNC-silica nanoparticles were synthesized by a polycondensation reaction, which exclusively took place at the surface of the CNCs. In the second procedure, a typical synthesis of DFNS was conducted in a bicontinuous microemulsion with the assistance of additives. DFNS was assembled on the surface of the CNCs, giving rise to core-shell CNC-DFNS structures. Finally, all of the silica-coated CNC composites were calcined, during which the CNC was removed from the core and hollow structures were formed. These materials are very lightweight and highly porous. All three structures were tested as nanocarriers for drug delivery and absorbents for dye removal applications. Dye removal results showed that they can adsorb methylene blue efficiently, with ultraporous sponge-like DFNS showing the highest adsorption capacity, followed by hollow DFNS and hollow silica nanorods. Furthermore, breast cancer cells show a lower cell viability when exposed to doxorubicin-loaded hollow silica nanorods compared with control or doxorubicin cultures, suggesting that the loaded nanorod has a greater anticancer effect than free doxorubicin.
Collapse
Affiliation(s)
- Marzieh Heidari Nia
- Department of Chemistry, College of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran.,Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| | - Roya Koshani
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| | - Jose G Munguia-Lopez
- Faculty of Dentistry, McGill University, 3640 University Street, Montreal, Quebec H3A 0C7, Canada.,Department of Bioengineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Ali Reza Kiasat
- Department of Chemistry, College of Science, Shahid Chamran University of Ahvaz, Ahvaz 6135783151, Iran
| | - Joseph M Kinsella
- Department of Bioengineering, McGill University, 3480 University Street, Montreal, Quebec H3A 0E9, Canada
| | - Theo G M van de Ven
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada.,Quebec Centre for Advanced Materials (QCAM) and Pulp and Paper Research Centre, McGill University, 3420 University Street, Montreal, Quebec H3A 2A7, Canada
| |
Collapse
|
19
|
Le Saux S, Aubert‐Pouëssel A, Ouchait L, Mohamed KE, Martineau P, Guglielmi L, Devoisselle J, Legrand P, Chopineau J, Morille M. Nanotechnologies for Intracellular Protein Delivery: Recent Progress in Inorganic and Organic Nanocarriers. ADVANCED THERAPEUTICS 2021. [DOI: 10.1002/adtp.202100009] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sarah Le Saux
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | - Lyria Ouchait
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | | | | | | | | | | | - Joël Chopineau
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| | - Marie Morille
- ICGM Universite Montpellier ENSCM, CNRS Montpellier France
| |
Collapse
|
20
|
Salekdeh PR, Ma'mani L, Tavakkoly-Bazzaz J, Mousavi H, Modarressi MH, Salekdeh GH. Bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica nanoparticles: a promising nanocarrier for delivery of Cas9-sgRNA ribonucleoproteine. J Nanobiotechnology 2021; 19:95. [PMID: 33789675 PMCID: PMC8011395 DOI: 10.1186/s12951-021-00838-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 03/18/2021] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND There is a great interest in the efficient intracellular delivery of Cas9-sgRNA ribonucleoprotein complex (RNP) and its possible applications for in vivo CRISPR-based gene editing. In this study, a nanoporous mediated gene-editing approach has been successfully performed using a bi-functionalized aminoguanidine-PEGylated periodic mesoporous organosilica (PMO) nanoparticles (RNP@AGu@PEG1500-PMO) as a potent and biocompatible nanocarrier for RNP delivery. RESULTS The bi-functionalized MSN-based nanomaterials have been fully characterized using electron microscopy (TEM and SEM), nitrogen adsorption measurements, thermogravimetric analysis (TGA), X-ray powder diffraction (XRD), Attenuated Total Reflectance-Fourier Transform Infrared Spectroscopy (ATR-FTIR), and dynamic light scattering (DLS). The results confirm that AGu@PEG1500-PMO can be applied for gene-editing with an efficiency of about 40% as measured by GFP gene knockdown of HT1080-GFP cells with no notable change in the morphology of the cells. CONCLUSIONS Due to the high stability and biocompatibility, simple synthesis, and cost-effectiveness, the developed bi-functionalized PMO-based nano-network introduces a tailored nanocarrier that has remarkable potential as a promising trajectory for biomedical and RNP delivery applications.
Collapse
Affiliation(s)
- Pardis Rahimi Salekdeh
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Leila Ma'mani
- Department of Nanotechnology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
| | - Javad Tavakkoly-Bazzaz
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hossein Mousavi
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Ghasem Hosseini Salekdeh
- Department of Systems and Synthetic Biology, Agricultural Biotechnology Research Institute of Iran (ABRII), Agricultural Research Education and Extension Organization (AREEO), Karaj, Iran.
- Department of Molecular Sciences, Macquarie University, Sydney, NSW, Australia.
| |
Collapse
|
21
|
Ren D, Xu J, Chen N, Ye Z, Li X, Chen Q, Ma S. Controlled synthesis of mesoporous silica nanoparticles with tunable architectures via oil-water microemulsion assembly process. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.125773] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non-Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2021; 60:1821-1830. [PMID: 33034131 PMCID: PMC7855684 DOI: 10.1002/anie.202010412] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 08/23/2020] [Indexed: 01/29/2023]
Abstract
The primary impediments in developing large antibodies as drugs against intracellular targets involve their low transfection efficiency and suitable reversible encapsulation strategies for intracellular delivery with retention of biological activity. To address this, we outline an electrostatics-enhanced covalent self-assembly strategy to generate polymer-protein/antibody nanoassemblies. Through structure-activity studies, we down-select the best performing self-immolative pentafluorophenyl containing activated carbonate polymer for bioconjugation. With the help of an electrostatics-aided covalent self-assembly approach, we demonstrate efficient encapsulation of medium to large proteins (HRP, 44 kDa and β-gal, 465 kDa) and antibodies (ca. 150 kDa). The designed polymeric nanoassemblies are shown to successfully traffic functional antibodies (anti-NPC and anti-pAkt) to cytosol to elicit their bioactivity towards binding intracellular protein epitopes and inducing apoptosis.
Collapse
Affiliation(s)
| | | | - Ritam Das
- University of Massachusetts, Amherst, MA, 01003, USA
| | - Sankaran Thayumanavan
- Department of Chemistry, Molecular and Cellular Biology Program, and The Center for Bioactive Delivery-Institute for Applied Life Sciences, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
23
|
Küçüktürkmen B, Rosenholm JM. Mesoporous Silica Nanoparticles as Carriers for Biomolecules in Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1295:99-120. [PMID: 33543457 DOI: 10.1007/978-3-030-58174-9_5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mesoporous silica nanoparticles (MSNs) offer many advantageous properties for applications in the field of nanobiotechnology. Loading of small molecules into MSNs is straightforward and widely applied, but with the upswing of both research and commercial interest in biological drugs in recent years, also biomacromolecules have been loaded into MSNs for delivery purposes. MSNs possess many critical properties making them a promising and versatile carrier for biomacromolecular delivery. In this chapter, we review the effects of the various structural parameters of MSNs on the effective loading of biomacromolecular therapeutics, with focus on maintaining stability and drug delivery performance. We also emphasize recent studies involving the use of MSNs in the delivery of biomacromolecular drugs, especially for cancer treatment.
Collapse
Affiliation(s)
- Berrin Küçüktürkmen
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.,Department of Pharmaceutical Technology, Faculty of Pharmacy, Ankara University, Ankara, Turkey
| | - Jessica M Rosenholm
- Pharmaceutical Sciences Laboratory, Faculty of Science and Engineering, Åbo Akademi University, Turku, Finland.
| |
Collapse
|
24
|
Dutta K, Kanjilal P, Das R, Thayumanavan S. Synergistic Interplay of Covalent and Non‐Covalent Interactions in Reactive Polymer Nanoassembly Facilitates Intracellular Delivery of Antibodies. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010412] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Ritam Das
- University of Massachusetts Amherst MA 01003 USA
| | - Sankaran Thayumanavan
- Department of Chemistry, Molecular and Cellular Biology Program, and The Center for Bioactive Delivery-Institute for Applied Life Sciences University of Massachusetts Amherst MA 01003 USA
| |
Collapse
|
25
|
Mesa M. Chitosan and silica as dietary carriers: Potential application for β-galactosidase, silicon and calcium supplementation. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.106067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
26
|
Tang J, Meka AK, Theivendran S, Wang Y, Yang Y, Song H, Fu J, Ban W, Gu Z, Lei C, Li S, Yu C. Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angew Chem Int Ed Engl 2020; 59:22054-22062. [PMID: 32705778 DOI: 10.1002/anie.202001469] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 06/21/2020] [Indexed: 12/13/2022]
Abstract
The direct depletion of lactate accumulated in the tumor microenvironment holds promise for cancer therapy but remains challenging. Herein, we report a one-pot synthesis of openwork@ dendritic mesoporous silica nanoparticles (ODMSNs) to address this problem. ODMSNs self-assembled through a time-resolved lamellar growth mechanism feature an openworked core and a dendritic shell, both constructed by silica nanosheets of ≈3 nm. With a large pore size, high surface area and pore volume, ODMSNs exhibited a high loading capacity (>0.7 g g-1 ) of lactate oxidase (LOX) and enabled intratumoral lactate depletion by >99.9 %, leading to anti-angiogenesis, down-regulation of vascular endothelial growth factor, and increased tumor hypoxia. The latter event facilitates the activation of a co-delivered prodrug for enhancing anti-tumor and anti-metastasis efficacy. This study provides an innovative nano-delivery system and demonstrates the first example of direct lactate-depletion-enabled chemotherapy.
Collapse
Affiliation(s)
- Jie Tang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Anand Kumar Meka
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Wenhuang Ban
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia
| | - Shumin Li
- School of Chemistry and Molecular Engineering East China Normal University, Shanghai, 200241, China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, Brisbane, QLD, 4072, Australia.,School of Chemistry and Molecular Engineering East China Normal University, Shanghai, 200241, China
| |
Collapse
|
27
|
Tang J, Meka AK, Theivendran S, Wang Y, Yang Y, Song H, Fu J, Ban W, Gu Z, Lei C, Li S, Yu C. Openwork@Dendritic Mesoporous Silica Nanoparticles for Lactate Depletion and Tumor Microenvironment Regulation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202001469] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Jie Tang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Anand Kumar Meka
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Shevanuja Theivendran
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yue Wang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Jianye Fu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Wenhuang Ban
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
| | - Shumin Li
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology The University of Queensland St Lucia Brisbane QLD 4072 Australia
- School of Chemistry and Molecular Engineering East China Normal University Shanghai 200241 China
| |
Collapse
|
28
|
Li Y, Li P, Li R, Xu Q. Intracellular Antibody Delivery Mediated by Lipids, Polymers, and Inorganic Nanomaterials for Therapeutic Applications. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000178] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yamin Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Peixuan Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Raissa Li
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| | - Qiaobing Xu
- Department of Biomedical Engineering Tufts University Medford MA 02155 USA
| |
Collapse
|
29
|
Yang Y, Zhang M, Song H, Yu C. Silica-Based Nanoparticles for Biomedical Applications: From Nanocarriers to Biomodulators. Acc Chem Res 2020; 53:1545-1556. [PMID: 32667182 DOI: 10.1021/acs.accounts.0c00280] [Citation(s) in RCA: 90] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Silica-based nanoparticles (SNPs) are a classic type of material employed in biomedical applications because of their excellent biocompatibility and tailorable physiochemical properties. Typically, SNPs are designed as nanocarriers for therapeutics delivery, which can address a number of intrinsic drawbacks of therapeutics, including limited bioavailability, short circulation lifetime, and unfavorable biodistribution. To improve the delivery efficiency and spatiotemporal precision, tremendous efforts have been devoted to engineering the physiochemical properties of SNPs, including particle size, morphology, and mesostructure, as well as conjugating targeting ligands and/or "gatekeepers" to endow improved cell selectivity and on demand release profiles. Despite significant progress, the biologically inert nature of the bare silica framework has largely restricted the functionalities of SNPs, rendering conventional SNPs mainly as nanocarriers for targeted delivery and controlled release. To meet the requirements of next generation nanomedicines with improved efficacy and precision, new insights on the relationship between the physiochemical properties of SNPs and their biological behavior are highly valuable. Meanwhile, a conceptual shift from a simple spatiotemporal control mechanism to a more sophisticated biochemistry and signaling pathway modulation would be of great importance.In this Account, an overview of our recent contribution to the field is presented, wherein SNPs with rationally designed nanostructures and nanochemistry are applied as nanocarriers (defined as "nanomaterials being used as a transport module for another substance" according to Wikipedia) and/or biomodulators (defined as "any material that modifies a biological response" according to Wiktionary). This Account encompasses two main sections. In the first section, we focus on the conventional nanocarriers concept with new insights on the design principles of the nanostructures. We present examples to demonstrate the engineering of pore geometry, surface topology, and asymmetry of nanoparticles to achieve enhanced drug, gene, and protein delivery efficiency. The contribution of surface roughness of SNPs on improving the cellular uptake efficiency, adhesion property, and DNA transfection capacity is particularly highlighted. In the second section, we discuss novel SNPs designed as biomodulators to regulate intracellular microenvironment and cell signaling, such as the oxidative stress and glutathione levels for improving the anticancer efficacy of therapeutics and mRNA transfection in specific cell lines. The interplay between the nanoparticles, biological system, and drugs is discussed. We further discuss how to engineer the composition of SNPs to modulate metal hemostasis to realize inherent anticancer activity. Two typical examples, including modulating copper signaling for tumor vasculature targeted therapy and controlling iron signaling for macrophage polarization based immunotherapy, are presented to highlight the unique advantages of SNPs as nanosized therapeutics in comparison to molecular drugs. Moreover, utilizing these two examples, we showcase the possibility of designing SNPs with intrinsic pharmaceutical activity to indirectly control tumor growth without inducing significant cytotoxicity, thus alleviating the biosafety concerns of nanomedicines. At the end of this Account, we discuss our personal perspectives on the promises, opportunities, and issues in engineered SNPs as nanocarriers as well as their transition toward biomodulators. With a major focus on the latter scenario, the current status and possible future directions are outlined.
Collapse
Affiliation(s)
- Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Min Zhang
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| | - Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, Queensland 4072, Australia
- School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200241, P. R. China
| |
Collapse
|
30
|
Niamsuphap S, Fercher C, Kumble S, Huda P, Mahler SM, Howard CB. Targeting the undruggable: emerging technologies in antibody delivery against intracellular targets. Expert Opin Drug Deliv 2020; 17:1189-1211. [DOI: 10.1080/17425247.2020.1781088] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Suchada Niamsuphap
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Christian Fercher
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- ARC Centre of Excellence in Convergent BioNano Science and Technology, AIBN, University of Queensland, Brisbane, Australia
| | - Sumukh Kumble
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Pie Huda
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- Centre for Advanced Imaging (CAI), University of Queensland, Brisbane, Australia
| | - Stephen M Mahler
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
| | - Christopher B Howard
- ARC Training Centre for Biopharmaceutical Innovation, Australian Institute for Bioengineering and Nanotechnology (AIBN), University of Queensland, Brisbane, Australia
- Centre for Personalised Nanomedicine, AIBN, University of Queensland, Brisbane, Australia
| |
Collapse
|
31
|
Hong X, Zhong X, Du G, Hou Y, Zhang Y, Zhang Z, Gong T, Zhang L, Sun X. The pore size of mesoporous silica nanoparticles regulates their antigen delivery efficiency. SCIENCE ADVANCES 2020; 6:eaaz4462. [PMID: 32596445 PMCID: PMC7304990 DOI: 10.1126/sciadv.aaz4462] [Citation(s) in RCA: 136] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 05/08/2020] [Indexed: 05/19/2023]
Abstract
Subunit vaccines generally proceed through a 4-step in vivo cascade-the DUMP cascade-to generate potent cell-mediated immune responses: (1) drainage to lymph nodes; (2) uptake by dendritic cells (DCs); (3) maturation of DCs; and (4) Presentation of peptide-MHC I complexes to CD8+ T cells. How the physical properties of vaccine carriers such as mesoporous silica nanoparticles (MSNs) influence this cascade is unclear. We fabricated 80-nm MSNs with different pore sizes (7.8 nm, 10.3 nm, and 12.9 nm) and loaded them with ovalbumin antigen. Results demonstrated these MSNs with different pore sizes were equally effective in the first three steps of the DUMP cascade, but those with larger pores showed higher cross-presentation efficiency (step 4). Consistently, large-pore MSNs loaded with B16F10 tumor antigens yielded the strongest antitumor effects. These results demonstrate the promise of our lymph node-targeting large-pore MSNs as vaccine-delivery vehicles for immune activation and cancer vaccination.
Collapse
Affiliation(s)
- Xiaoyu Hong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Xiaofang Zhong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Guangsheng Du
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yingying Hou
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yunting Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Zhirong Zhang
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Tao Gong
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Ling Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Xun Sun
- Key Laboratory of Drug Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
32
|
Wang J, Pan M, Yuan J, Lin Q, Zhang X, Liu G, Zhu L. Hollow mesoporous silica with a hierarchical shell from in situ synergistic soft-hard double templates. NANOSCALE 2020; 12:10863-10871. [PMID: 32396932 DOI: 10.1039/d0nr01709d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Traditional methods for the construction of hollow particles with a hierarchical shell mainly rely on complicated chemical routes and removal of the templates. Herein, hollow mesoporous silica particles with a sphere-on-sphere (SOS) structure were successfully synthesized via a one-pot method using a novel "in situ synergistic soft-hard double template" strategy, that is, styrene (St) droplets as a soft template and in situ polymerized PS nano-domains as a hard template. The pre-hydrolysate derived from the silica precursor methyltriethoxysilane could anchor on the surface of the St droplets due to its amphiphilicity and then continue hydrolysis-condensation to form the mesoporous silica shell (MSS). Subsequently, MSS was used as a nanoreactor, and some of the in situ polymerized PS chains in the nanoreactor migrated to the outer surface of MSS due to the action of strong capillary force in the mesoporous channels, while some of the siloxane oligomers migrated to the surface due to their apparent interfacial activity, resulting in the hierarchical appearance of SOS. Furthermore, other intriguing hollow silica particles with a hollow sphere-on-sphere (HOS) structure were obtained by calcining the obtained SOS particles. The application of the as-prepared SOS and HOS particles showed their potential in the superhydrophobicity and detoxification fields, respectively.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Polymer Science and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, PR China
| | | | | | | | | | | | | |
Collapse
|
33
|
Hao P, Peng B, Shan BQ, Yang TQ, Zhang K. Comprehensive understanding of the synthesis and formation mechanism of dendritic mesoporous silica nanospheres. NANOSCALE ADVANCES 2020; 2:1792-1810. [PMID: 36132521 PMCID: PMC9416971 DOI: 10.1039/d0na00219d] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 04/16/2020] [Indexed: 05/24/2023]
Abstract
The interest in the design and controlled fabrication of dendritic mesoporous silica nanospheres (DMSNs) emanates from their widespread application in drug-delivery carriers, catalysis and nanodevices owing to their unique open three-dimensional dendritic superstructures with large pore channels and highly accessible internal surface areas. A variety of synthesis strategies have been reported, but there is no basic consensus on the elucidation of the pore structure and the underlying formation mechanism of DMSNs. Although all the DMSNs show a certain degree of similarity in structure, do they follow the same synthesis mechanism? What are the exact pore structures of DMSNs? How did the bimodal pore size distributions kinetically evolve in the self-assembly? Can the relative fractions of small mesopores and dendritic large pores be precisely adjusted? In this review, by carefully analysing the structures and deeply understanding the formation mechanism of each reported DMSN and coupling this with our research results on this topic, we conclude that all the DMSNs indeed have the same mesostructures and follow the same dynamic self-assembly mechanism using microemulsion droplets as super templates in the early reaction stage, even without the oil phase.
Collapse
Affiliation(s)
- Pan Hao
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Bo Peng
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Bing-Qian Shan
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Tai-Qun Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| | - Kun Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, College of Chemistry and Molecular Engineering, East China Normal University Shanghai P. R. China +86-21-62232753 +86-21-62232753
| |
Collapse
|
34
|
Liu B, Ejaz W, Gong S, Kurbanov M, Canakci M, Anson F, Thayumanavan S. Engineered Interactions with Mesoporous Silica Facilitate Intracellular Delivery of Proteins and Gene Editing. NANO LETTERS 2020; 20:4014-4021. [PMID: 32298126 PMCID: PMC7351089 DOI: 10.1021/acs.nanolett.0c01387] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Intracellular delivery of functional proteins is a promising, but challenging, strategy for many therapeutic applications. Here, we report a new methodology that overcomes drawbacks of traditional mesoporous silica (MSi) particles for protein delivery. We hypothesize that engineering enhancement in interactions between proteins and delivery vehicles can facilitate efficient encapsulation and intracellular delivery. In this strategy, surface lysines in proteins were modified with a self-immolative linker containing a terminal boronic acid for stimulus-induced reversibility in functionalization. The boronic acid moiety serves to efficiently interact with amine-functionalized MSi through dative and electrostatic interactions. We show that proteins of different sizes and isoelectric points can be quantitatively encapsulated into MSi, even at low protein concentrations. We also show that the proteins can be efficiently delivered into cells with retention of activity. Utility of this approach is further demonstrated with gene editing in cells, through the delivery of a CRISPR/Cas9 complex.
Collapse
Affiliation(s)
- Bin Liu
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Wardah Ejaz
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Shuai Gong
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Myrat Kurbanov
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Mine Canakci
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - Francesca Anson
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | - S. Thayumanavan
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Molecular and Cellular Biology Program, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Center for Bioactive Delivery, Institute for Applied Life Sciences, University of Massachusetts, Amherst, Massachusetts 01003, USA
- Corresponding Author:
| |
Collapse
|
35
|
Juère E, Caillard R, Marko D, Del Favero G, Kleitz F. Smart Protein-Based Formulation of Dendritic Mesoporous Silica Nanoparticles: Toward Oral Delivery of Insulin. Chemistry 2020; 26:5195-5199. [PMID: 32057143 PMCID: PMC7217061 DOI: 10.1002/chem.202000773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Indexed: 02/02/2023]
Abstract
Oral insulin administration still represents a paramount quest that almost a century of continuous research attempts did not suffice to fulfill. Before pre-clinical development, oral insulin products have first to be optimized in terms of encapsulation efficiency, protection against proteolysis, and intestinal permeation ability. With the use of dendritic mesoporous silica nanoparticles (DMSNs) as an insulin host and together with a protein-based excipient, succinylated β-lactoglobulin (BL), pH-responsive tablets permitted the shielding of insulin from early release/degradation in the stomach and mediated insulin permeation across the intestinal cellular membrane. Following an original in vitro cellular assay based on insulin starvation, direct cellular fluorescent visualization has evidenced how DMSNs could ensure the intestinal cellular transport of insulin.
Collapse
Affiliation(s)
- Estelle Juère
- Department of Inorganic Chemistry—Functional MaterialsFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| | - Romain Caillard
- Aventus Innovations4820 rue de la Pascaline, Suite 230G6W 0L9Levis (QC)Canada
| | - Doris Marko
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWähringer Straße 38–401090ViennaAustria
| | - Giorgia Del Favero
- Department of Food Chemistry and ToxicologyFaculty of ChemistryUniversity of ViennaWähringer Straße 38–401090ViennaAustria
| | - Freddy Kleitz
- Department of Inorganic Chemistry—Functional MaterialsFaculty of ChemistryUniversity of ViennaWähringer Straße 421090ViennaAustria
| |
Collapse
|
36
|
Bisso S, Leroux JC. Nanopharmaceuticals: A focus on their clinical translatability. Int J Pharm 2020; 578:119098. [DOI: 10.1016/j.ijpharm.2020.119098] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/27/2020] [Accepted: 01/28/2020] [Indexed: 12/19/2022]
|
37
|
Peng SY, Zou MZ, Zhang CX, Ma JB, Zeng X, Xiao W. Fabrication of rapid-biodegradable nano-vectors for endosomal-triggered drug delivery. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2019.101450] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Abstract
This work provides a clearer picture for non-classical nucleation by revealing the presence of various intermediates using advanced characterization techniques.
Collapse
Affiliation(s)
- Biao Jin
- Physical Sciences Division
- Pacific Northwest National Laboratory
- Richland
- USA
- Department of Chemistry
| | - Zhaoming Liu
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| | - Ruikang Tang
- Department of Chemistry
- Zhejiang University
- Hangzhou
- China
| |
Collapse
|
39
|
Pu C, Zhao H, Hong Y, Zhan Q, Lan M. Facile Preparation of Hydrophilic Mesoporous Metal–Organic Framework via Synergistic Etching and Surface Functionalization for Glycopeptides Analysis. Anal Chem 2019; 92:1940-1947. [DOI: 10.1021/acs.analchem.9b04236] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Chenlu Pu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Hongli Zhao
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Yayun Hong
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Qiliang Zhan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai 200237, PR China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
40
|
Qin X, Yu C, Wei J, Li L, Zhang C, Wu Q, Liu J, Yao SQ, Huang W. Rational Design of Nanocarriers for Intracellular Protein Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1902791. [PMID: 31496027 DOI: 10.1002/adma.201902791] [Citation(s) in RCA: 141] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/04/2019] [Indexed: 06/10/2023]
Abstract
Protein/antibody therapeutics have exhibited the advantages of high specificity and activity even at an extremely low concentration compared to small molecule drugs. However, they are accompanied by unfavorable physicochemical properties such as fragile tertiary structure, large molecular size, and poor penetration of the membrane, and thus the clinical use of protein drugs is hindered by inefficient delivery of proteins into the host cells. To overcome the challenges associated with protein therapeutics and enhance their biopharmaceutical applications, various protein-loaded nanocarriers with desired functions, such as lipid nanocapsules, polymeric nanoparticles, inorganic nanoparticles, and peptides, are developed. In this review, the different strategies for intracellular delivery of proteins are comprehensively summarized. Their designed routes, mechanisms of action, and potential therapeutics in live cells or in vivo are discussed in detail. Furthermore, the perspective on the new generation of delivery systems toward the emerging area of protein-based therapeutics is presented as well.
Collapse
Affiliation(s)
- Xiaofei Qin
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Changmin Yu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jing Wei
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Lin Li
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Chengwu Zhang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Qiong Wu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Jinhua Liu
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
| | - Shao Q Yao
- Department of Chemistry, National University of Singapore, Singapore, 117543, Singapore
| | - Wei Huang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211800, P. R. China
- Shaanxi Institute of Flexible Electronics (SIFE), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi'an, 710072, P. R. China
| |
Collapse
|
41
|
Wang XM, Guo PF, Hu ZJ, Chen ML, Wang JH. DMSA-Functionalized Mesoporous Alumina with a High Capacity for Selective Isolation of Immunoglobulin G. ACS APPLIED MATERIALS & INTERFACES 2019; 11:36286-36295. [PMID: 31491081 DOI: 10.1021/acsami.9b13718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A novel dimercaptosuccinic acid-functionalized mesoporous alumina (DMSA-MA) is synthesized by the dicarboxylic acid groups of dimercaptosuccinic acid molecules coordinating to the Al3+ ions located in the mesostructure. The as-prepared DMSA-MA composites possess a large surface area of 91.17 m2/g as well as a uniform pore size and a high pore volume of 17.22 nm and 0.23 cm3/g, respectively. DMSA coating of mesostructures significantly enhanced their selectivity for glycoprotein adsorption through a powerful hydrophilic binding force, and the maximum adsorption capacity of immunoglobulin G (IgG) can reach 2298.6 mg g-1. The captured IgG could be lightly stripped from the DMSA-MA composites with an elution rate of 98.3% by using 0.5 wt % CTAB solution as the elution reagent. DMSA-MA is further employed as a sorbent for the enrichment of IgG heavy chain and light chain from human serum sample. SDS-PAGE assay results showed the obtained IgG with high purity compared to that of the standard solution of IgG.
Collapse
Affiliation(s)
- Xi-Ming Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Peng-Fei Guo
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Zheng-Jie Hu
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Ming-Li Chen
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| | - Jian-Hua Wang
- Research Center for Analytical Sciences, Department of Chemistry, College of Sciences , Northeastern University , Box 332, Shenyang 110819 , China
| |
Collapse
|
42
|
Song H, Yang Y, Geng J, Gu Z, Zou J, Yu C. Electron Tomography: A Unique Tool Solving Intricate Hollow Nanostructures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1801564. [PMID: 30160340 DOI: 10.1002/adma.201801564] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 06/05/2018] [Indexed: 06/08/2023]
Abstract
Innovations in nanofabrication have expedited advances in hollow-structured nanomaterials with increasing complexity, which, at the same time, set challenges for the precise determination of their intriguing and complicated 3D configurations. Conventional transmission electron microscopy (TEM) analysis typically yields 2D projections of 3D objects, which in some cases is insufficient to reflect the genuine architectures of these 3D nano-objects, providing misleading information. Advanced analytical approaches such as focused ion beam (FIB) and ultramicrotomy enable the real slicing of nanomaterials, realizing the direct observation of inner structures but with limited spatial discrimination. Electron tomography (ET) is a technique that retrieves spatial information from a series of 2D electron projections at different tilt angles. As a unique and powerful tool kit, this technique has experienced great advances in its application in materials science, resolving the intricate 3D nanostructures. Here, the exceptional capability of the ET technique in the structural, chemical, and quantitative analysis of hollow-structured nanomaterials is discussed in detail. The distinct information derived from ET analysis is highlighted and compared with conventional analysis methods. Along with the advances in microscopy technologies, the state-of-the-art ET technique offers great opportunities and promise in the development of hollow nanomaterials.
Collapse
Affiliation(s)
- Hao Song
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yannan Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jing Geng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhengying Gu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jin Zou
- Materials Engineering and Centre for Microscopy and Microanalysis, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
43
|
Abeer MM, Meka AK, Pujara N, Kumeria T, Strounina E, Nunes R, Costa A, Sarmento B, Hasnain SZ, Ross BP, Popat A. Rationally Designed Dendritic Silica Nanoparticles for Oral Delivery of Exenatide. Pharmaceutics 2019; 11:E418. [PMID: 31430872 PMCID: PMC6723263 DOI: 10.3390/pharmaceutics11080418] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 08/04/2019] [Accepted: 08/15/2019] [Indexed: 01/17/2023] Open
Abstract
Type 2 diabetes makes up approximately 85% of all diabetic cases and it is linked to approximately one-third of all hospitalisations. Newer therapies with long-acting biologics such as glucagon-like peptide-1 (GLP-1) analogues have been promising in managing the disease, but they cannot reverse the pathology of the disease. Additionally, their parenteral administration is often associated with high healthcare costs, risk of infections, and poor patient adherence associated with phobia of needles. Oral delivery of these compounds would significantly improve patient compliance; however, poor enzymatic stability and low permeability across the gastrointestinal tract makes this task challenging. In the present work, large pore dendritic silica nanoparticles (DSNPs) with a pore size of ~10 nm were prepared, functionalized, and optimized in order to achieve high peptide loading and improve intestinal permeation of exenatide, a GLP-1 analogue. Compared to the loading capacity of the most popular, Mobil Composition of Matter No. 41 (MCM-41) with small pores, DSNPs showed significantly high loading owing to their large and dendritic pore structure. Among the tested DSNPs, pristine and phosphonate-modified DSNPs (PDSNPs) displayed remarkable loading of 40 and 35% w/w, respectively. Furthermore, particles successfully coated with positively charged chitosan reduced the burst release of exenatide at both pH 1.2 and 6.8. Compared with free exenatide, both chitosan-coated and uncoated PDSNPs enhanced exenatide transport through the Caco-2 monolayer by 1.7 fold. Interestingly, when a triple co-culture model of intestinal permeation was used, chitosan-coated PDSNPs performed better compared to both PDSNPs and free exenatide, which corroborated our hypothesis behind using chitosan to interact with mucus and improve permeation. These results indicate the emerging role of large pore silica nanoparticles as promising platforms for oral delivery of biologics such as exenatide.
Collapse
Affiliation(s)
| | - Anand Kumar Meka
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Naisarg Pujara
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Tushar Kumeria
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
| | - Ekaterina Strounina
- Center for Advanced Imaging, The University of Queensland, Brisbane QLD 4072, Australia
| | - Rute Nunes
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Ana Costa
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Bruno Sarmento
- Instituto de Investigação e Inovação em Saúde (I3S), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- Instituto de Engenharia Biomédica (INEB), University of Porto, Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
- CESPU, Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra, 1317, 4585-116 Gandra, Portugal
| | - Sumaira Z Hasnain
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia
- Australian Infectious Disease Research Centre-The University of Queensland Building 76 Room 155 Cooper Road, St. Lucia QLD 4067, Australia
| | - Benjamin P Ross
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane QLD 4072, Australia.
- Mater Research Institute-The University of Queensland, Translational Research Institute, Woolloongabba QLD 4102, Australia.
| |
Collapse
|
44
|
Dolinina E, Akimsheva E, Parfenyuk E. Silica microcapsules as containers for protein drugs: Direct and indirect encapsulation. J Mol Liq 2019. [DOI: 10.1016/j.molliq.2019.110938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
45
|
Bai G, Xu X, Dai Q, Zheng Q, Yao Y, Liu S, Yao C. An electrochemical enzymatic nanoreactor based on dendritic mesoporous silica nanoparticles for living cell H 2O 2 detection. Analyst 2019; 144:481-487. [PMID: 30457582 DOI: 10.1039/c8an01712c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The selective and quantitative detection of cellular H2O2 is essential for understanding its roles in physiology and pathology. A new electrochemical H2O2 biosensor, fabricated by immobilizing horseradish peroxidase onto dendritic mesoporous silica nanoparticles (HRP/DMSNs), is employed for living cell H2O2 detection. Taking advantage of the large pore volume and highly accessible internal surface areas of DMSNs, HRP/DMSNs display higher enzymatic loading, better stability and bioactivity in comparison with HRP on nonporous silica nanoparticles (NSNs). Therefore, a HRP/DMSN modified GCE (HRP/DMSNs/GCE) shows attractive electrochemical performance for sensitive and selective detection of H2O2 in 0.1 M pH 7.0 PBS, with a low Kappm value of 11.48 μM and a low detection limit of 0.11 μM. In addition, HRP/DMSNs/GCE is successfully applied to detect H2O2 released from a PC12 cell triggered by ascorbic acid (AA). The detected H2O2 amount is close to the reported values. The developed biosensor has potential in the dynamic detection of the flux of H2O2 from living cells for further evaluation of oxidative stress in cells.
Collapse
Affiliation(s)
- Guangmin Bai
- College of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
46
|
Hong Y, Zhan Q, Zheng Y, Pu C, Zhao H, Lan M. Hydrophilic phytic acid-functionalized magnetic dendritic mesoporous silica nanospheres with immobilized Ti4+: A dual-purpose affinity material for highly efficient enrichment of glycopeptides/phosphopeptides. Talanta 2019; 197:77-85. [DOI: 10.1016/j.talanta.2019.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/26/2018] [Accepted: 01/02/2019] [Indexed: 11/26/2022]
|
47
|
Xu C, Lei C, Yu C. Mesoporous Silica Nanoparticles for Protein Protection and Delivery. Front Chem 2019; 7:290. [PMID: 31119124 PMCID: PMC6504683 DOI: 10.3389/fchem.2019.00290] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/09/2019] [Indexed: 01/29/2023] Open
Abstract
Therapeutic proteins are widely used in clinic for numerous therapies such as cancer therapy, immune therapy, diabetes management and infectious diseases control. The low stability and large size of proteins generally compromise their therapeutic effects. Thus, it is a big challenge to deliver active forms of proteins into targeted place in a controlled manner. Nanoparticle based delivery systems offer a promising method to address the challenges. In particular, mesoporous silica nanoparticles (MSNs) are of special interest for protein delivery due to their excellent biocompatibility, high stability, rigid framework, well-defined pore structure, easily controllable morphology and tuneable surface chemistry. Therefore, enhanced stability, improved activity, responsive release, and intracellular delivery of proteins have been achieved using MSNs as delivery vehicles. Here, we systematically review the effects of various structural parameters of MSNs on protein loading, protection, and delivery performance. We also highlight the status of the most recent progress using MSNs for intracellular delivery, extracellular delivery, antibacterial proteins delivery, enzyme mobilization, and catalysis.
Collapse
Affiliation(s)
- Chun Xu
- School of Dentistry, The University of Queensland, Brisbane, QLD, Australia
| | - Chang Lei
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| | - Chengzhong Yu
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, Australia
| |
Collapse
|
48
|
Singh K, Ejaz W, Dutta K, Thayumanavan S. Antibody Delivery for Intracellular Targets: Emergent Therapeutic Potential. Bioconjug Chem 2019; 30:1028-1041. [PMID: 30830750 PMCID: PMC6470022 DOI: 10.1021/acs.bioconjchem.9b00025] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Proteins have sparked fast growing interest as biological therapeutic agents for several diseases. Antibodies, in particular, carry an enormous potential as drugs owing to their remarkable target specificity and low immunogenicity. Although the market has numerous antibodies directed toward extracellular targets, their use in targeting therapeutically important intracellular targets is limited by their inability to cross cellular membrane. Realizing the potential for antibody therapy in disease treatment, progress has been made in the development of methods to deliver antibodies intracellularly. In this review, we address various platforms for delivery of antibodies and their merits and drawbacks.
Collapse
|
49
|
Soares SF, Fernandes T, Daniel-da-Silva AL, Trindade T. The controlled synthesis of complex hollow nanostructures and prospective applications †. Proc Math Phys Eng Sci 2019; 475:20180677. [PMID: 31105450 PMCID: PMC6501658 DOI: 10.1098/rspa.2018.0677] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 02/26/2019] [Indexed: 12/12/2022] Open
Abstract
Functionality in nanoengineered materials has been usually explored on structural and chemical compositional aspects of matter that exist in such solid materials. It is well known that the absence of solid matter is also relevant and the existence of voids confined in the nanostructure of certain particles is no exception. Indeed, over the past decades, there has been great interest in exploring hollow nanostructured materials that besides the properties recognized in the dense particles also provide empty spaces, in the sense of condensed matter absence, as an additional functionality to be explored. As such, the chemical synthesis of hollow nanostructures has been driven not only for tailoring the size and shape of particles with well-defined chemical composition, but also to achieve control on the type of hollowness that characterize such materials. This review describes the state of the art on late developments concerning the chemical synthesis of hollow nanostructures, providing a number of examples of materials obtained by distinct strategies. It will be apparent by reading this progress report that the absence of solid matter determines the functionality of hollow nanomaterials for several technological applications.
Collapse
Affiliation(s)
- Sofia F Soares
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Tiago Fernandes
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Ana L Daniel-da-Silva
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| | - Tito Trindade
- Department of Chemistry and CICECO-Aveiro Institute of Materials, University of Aveiro, 3801-193 Aveiro, Portugal
| |
Collapse
|
50
|
Liu Z, Ru J, Sun S, Teng Z, Dong H, Song P, Yang Y, Guo H. Uniform dendrimer-like mesoporous silica nanoparticles as a nano-adjuvant for foot-and-mouth disease virus-like particle vaccine. J Mater Chem B 2019. [DOI: 10.1039/c8tb03315c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Dendrimer-like mesoporous silica nanoparticles (MSNs) with large center-radial mesopores have been prepared for macromolecular protein loading and delivery.
Collapse
Affiliation(s)
- Zhijun Liu
- School of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
- State Key Laboratory of Veterinary Etiological Biology
| | - Jiaxi Ru
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou
- P. R. China
| | - Shiqi Sun
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou
- P. R. China
| | - Zhidong Teng
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou
- P. R. China
| | - Hu Dong
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou
- P. R. China
| | - Pin Song
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou
- P. R. China
| | - Yunshang Yang
- School of Petrochemical Engineering
- Lanzhou University of Technology
- Lanzhou 730050
- P. R. China
| | - Huichen Guo
- State Key Laboratory of Veterinary Etiological Biology
- Lanzhou Veterinary Research Institute
- Chinese Academy of Agricultural Sciences
- Lanzhou
- P. R. China
| |
Collapse
|