1
|
Zhang J, Sun T, Wang J, Xu AJ, Xue B. Cyano-determined mercury (II) ion selective fluorescence assay over polymeric carbon nitride. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 325:125129. [PMID: 39288603 DOI: 10.1016/j.saa.2024.125129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 09/08/2024] [Accepted: 09/10/2024] [Indexed: 09/19/2024]
Abstract
Selective response is the key index to evaluate the performance of polymeric carbon nitride (PCN)-based heavy metal ion fluorescence sensors. Herein, to explore the role of cyano groups on selectivity, four kinds of PCN, including PCN-Cl, PCN-Ac, PCN-B and PCN-K were prepared by the molten salt method of sodium chloride and sodium acetate, the reduction method of sodium borohydride and the etching method of potassium hydroxide, respectively. These PCNs exhibited different surface cyano characteristics, but all of them had significant blue emission under ultraviolet excitation. It is proved that the assistant of sodium chloride or potassium hydroxide is an effective method to prepare PCNs with abundant surface cyano group. A series of fluorescence quenching experiments of metal ions showed that the cyano-rich degree of PCN is closely related to its selective response to mercury (II) ions. PCN-Cl and PCN-K emerged good selective quenching of mercury (II) ions, which may be related to the soft acid-soft base strong interaction between mercury (II) ions and cyano groups. Both PCN-Cl and PCN-K fluorescent probes for mercury (II) ions had a linear range of 5 ∼ 50 μmol L-1, and PCN-Cl exhibited a lower detection limit of 0.38 μmol L-1. This work confirmed the selective fluorescence response of cyano-rich PCN to mercury (II) ions, proposed the mechanism of selective fluorescence quenching response of mercury (II) ions, and provided a new idea for the design of efficient and accurate PCN-based fluorescence probes.
Collapse
Affiliation(s)
- Jing Zhang
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Tao Sun
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China
| | - Jiang Wang
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Ai-Ju Xu
- College of Chemistry and Environmental Science, Inner Mongolia Key Laboratory of Green Catalysis, Inner Mongolia Normal University, Hohhot 010022, China
| | - Bin Xue
- Department of Chemistry, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China; Laboratory of Quality and Safety Risk Assessment for Aquatic Product on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China; National Experimental Teaching Demonstration Center for Food Science and Engineering (Shanghai Ocean University), Shanghai 201306, China; Marine Biomedical Science and Technology Innovation Platform of Lingang Special Area, Shanghai 201306, China.
| |
Collapse
|
2
|
Nemati SS, Dehghan G. Photoelectrochemical biosensors: Prospects of graphite carbon nitride-based sensors in prostate-specific antigen diagnosis. Anal Biochem 2025; 696:115686. [PMID: 39393750 DOI: 10.1016/j.ab.2024.115686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 10/07/2024] [Accepted: 10/07/2024] [Indexed: 10/13/2024]
Abstract
Prostate cancer (PC) is very common in old age and causes many deaths. Early diagnosis and monitoring of the progress of the disease and the effectiveness of PC treatment are critical. On the other hand, choosing a specific biomarker for PCs is essential. Prostate-specific antigen (PSA) is a specific biomarker secreted in the prostate epithelial cells, which increases in cancer cells. Between all employed sensing mechanism, electrochemical sensors based on nanomaterials have created many hopes. Meanwhile, graphite carbon nitride (g-C3N4) is interested in developing photoelectrochemical sensors due to its large surface area, stability, easy modification, and good photoelectronic properties. In this review, electrochemical sensors based on nanocomposites containing g-C3N4 have been investigated in PSA detection. After providing an overview of the characteristics of g-C3N4 and cancer biomarkers, it reviews the strategies and mechanisms involved in identifying PSA. Different approaches to photoelectrochemistry, impedimetric immunosensors, photocatalysis, and luminescence have been used in diagnostic mechanisms. Then, challenges and prospects for electrochemical sensors based on nanocomposites containing g-C3N4 in PSA detection have been analyzed. The recent review generally opens an efficient view in PSA diagnosis and the application of g-C3N4-based electrochemical sensors in personalized medicine diagnosis and treatment.
Collapse
Affiliation(s)
- Seyed Saman Nemati
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| | - Gholamreza Dehghan
- Laboratory of Biochemistry and Molecular Biology, Department of Biology, Faculty of Natural Science, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
3
|
Li P, Xu D, Gao Y, Liu P, Liu Z, Ding J, Zhu J, Liang H. Nano-confined catalysis with Co nanoparticles-encapsulated carbon nanotubes for enhanced peroxymonosulfate oxidation in secondary effluent treatment: Water quality improvement and membrane fouling alleviation. WATER RESEARCH 2024; 266:122357. [PMID: 39241381 DOI: 10.1016/j.watres.2024.122357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/09/2024]
Abstract
Despite widespread deployment and investigation of ultrafiltration (UF) for secondary effluent purification, the challenge of membrane fouling due to effluent organic matter (EfOM) remains formidable. This study introduced a novel pretreatment method utilizing Co nanoparticles-encapsulated carbon nanotubes activated peroxymonosulfate (Co@CNT/PMS) to degrade EfOM and mitigate membrane fouling. Characterization of Co@CNT revealed the efficient encapsulation of Co nanoparticles within nanotubes, which notably enhanced the catalytic degradation of bisphenol A and typical organics. The tube-encapsulated structure increased the concentration of reactive species within the confined nanoscopic space, thereby improving the probability of collisions with pollutants and promoting their degradation. The Co@CNT/PMS pretreatment led to substantial reductions in aromatic compounds, fluorescent components, and both high and middle molecular weight substances. These changes proved crucial in diminishing the fouling potential in subsequent UF processes, where reversible and irreversible fouling resistances decreased by 97.1 % and 72.8 %, respectively. The transition volume from pore blocking to cake filtration markedly increased, prolonging the formation of a dense fouling layer. Surface properties analysis indicated a significant reduction of pollutants on membrane surfaces after the Co@CNT/PMS pretreatment. This study underscored the efficacy of confinement-based advanced oxidization pretreatment in enhancing UF performance, presenting a viable resolution to membrane fouling.
Collapse
Affiliation(s)
- Peijie Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Daliang Xu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Yunfei Gao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Peng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Zihan Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junwen Ding
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Junyong Zhu
- School of Chemical Engineering, Zhengzhou University, Zhengzhou, 450001, China
| | - Heng Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
4
|
Xing J, Wang H, Yan F. Carbon Nitride Nanosheets as an Adhesive Layer for Stable Growth of Vertically-Ordered Mesoporous Silica Film on a Glassy Carbon Electrode and Their Application for CA15-3 Immunosensor. Molecules 2024; 29:4334. [PMID: 39339328 PMCID: PMC11434449 DOI: 10.3390/molecules29184334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Vertically ordered mesoporous silica films (VMSF) are a class of porous materials composed of ultrasmall pores and ultrathin perpendicular nanochannels, which are attractive in the areas of electroanalytical sensors and molecular separation. However, VMSF easily falls off from the carbonaceous electrodes and thereby impacts their broad applications. Herein, carbon nitride nanosheets (CNNS) were served as an adhesive layer for stable growth of VMSF on the glassy carbon electrode (GCE). CNNS bearing plentiful oxygen-containing groups can covalently bind with silanol groups of VMSF, effectively promoting the stability of VMSF on the GCE surface. Benefiting from numerous open nanopores of VMSF, modification of VMSF's external surface with carbohydrate antigen 15-3 (CA15-3)-specific antibody allows the target-controlled transport of electrochemical probes through the internal silica nanochannels, yielding sensitive quantitative detection of CA15-3 with a broad detection range of 1 mU/mL to 1000 U/mL and a low limit of detection of 0.47 mU/mL. Furthermore, the proposed VMSF/CNNS/GCE immunosensor is capable of highly selective and accurate determination of CA15-3 in spiked serum samples, which offers a simple and effective electrochemical strategy for detection of various practical biomarkers in complicated biological specimens.
Collapse
Affiliation(s)
- Jun Xing
- Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan 030032, China;
| | - Hongxin Wang
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| | - Fei Yan
- Department of Chemistry, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China;
| |
Collapse
|
5
|
Yang M, Chen T, Chen X, Pan H, Zhao G, Chen Z, Zhao N, Ye Q, Chen M, Zhang S, Gao R, Meek KM, Hayes S, Ma X, Li X, Wu Y, Zhang Y, Kong N, Tao W, Zhou X, Huang J. Development of graphitic carbon nitride quantum dots-based oxygen self-sufficient platforms for enhanced corneal crosslinking. Nat Commun 2024; 15:5508. [PMID: 38951161 PMCID: PMC11217369 DOI: 10.1038/s41467-024-49645-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Accepted: 06/13/2024] [Indexed: 07/03/2024] Open
Abstract
Keratoconus, a disorder characterized by corneal thinning and weakening, results in vision loss. Corneal crosslinking (CXL) can halt the progression of keratoconus. The development of accelerated corneal crosslinking (A-CXL) protocols to shorten the treatment time has been hampered by the rapid depletion of stromal oxygen when higher UVA intensities are used, resulting in a reduced cross-linking effect. It is therefore imperative to develop better methods to increase the oxygen concentration within the corneal stroma during the A-CXL process. Photocatalytic oxygen-generating nanomaterials are promising candidates to solve the hypoxia problem during A-CXL. Biocompatible graphitic carbon nitride (g-C3N4) quantum dots (QDs)-based oxygen self-sufficient platforms including g-C3N4 QDs and riboflavin/g-C3N4 QDs composites (RF@g-C3N4 QDs) have been developed in this study. Both display excellent photocatalytic oxygen generation ability, high reactive oxygen species (ROS) yield, and excellent biosafety. More importantly, the A-CXL effect of the g-C3N4 QDs or RF@g-C3N4 QDs composite on male New Zealand white rabbits is better than that of the riboflavin 5'-phosphate sodium (RF) A-CXL protocol under the same conditions, indicating excellent strengthening of the cornea after A-CXL treatments. These lead us to suggest the potential application of g-C3N4 QDs in A-CXL for corneal ectasias and other corneal diseases.
Collapse
Affiliation(s)
- Mei Yang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China.
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China.
| | - Tingting Chen
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Xin Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Hongxian Pan
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Guoli Zhao
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Zhongxing Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Nan Zhao
- School of Chemical Engineering, Northeast Electric Power University, Jilin, 132000, China
| | - Qianfang Ye
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Ming Chen
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Shenrong Zhang
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Rongrong Gao
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Keith M Meek
- School of Optometry and Vision Sciences, Cardiff University; Cardiff Institute for Tissue Engineering and Repair School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Sally Hayes
- School of Optometry and Vision Sciences, Cardiff University; Cardiff Institute for Tissue Engineering and Repair School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Redwood Building, King Edward VII Avenue, Cardiff, CF10 3NB, UK
| | - Xiaowei Ma
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Li
- School of Ophthalmology and Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325027, China
| | - Yue Wu
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Xingtao Zhou
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China.
| | - Jinhai Huang
- Eye Institute and Department of Ophthalmology, Eye & ENT Hospital, Fudan University, NHC Key Laboratory of Myopia and Related Eye Diseases; Key Laboratory of Myopia and Related Eye Diseases, Chinese Academy of Medical Sciences; Shanghai Research Center of Ophthalmology and Optometry, Shanghai, 200030, China.
| |
Collapse
|
6
|
Ghosh A, Mukhopadhyay TK, Datta A. Computational Assessment of the Biocompatibility of Two-Dimensional g-C 3N 3 Toward Lipid Membranes. ACS APPLIED MATERIALS & INTERFACES 2024; 16:8213-8227. [PMID: 38334725 DOI: 10.1021/acsami.3c14463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/10/2024]
Abstract
One of the most recent additions to the family of two-dimensional (2D) materials, graphitic C3N3 (g-C3N3), has been considered a viable contender for biomedical applications, although its potential toxicity remains elusive. We perform all-atom molecular dynamics simulations to decipher the interactions between model lipid membranes and g-C3N3 as a first step toward exploring the cytotoxicity induced at the nanoscale. We show that g-C3N3 can easily insert into the cellular membranes following a multistage mechanism consisting of simultaneous desolvation of the 2D material along with enrichment of nanomaterial-lipid interactions. Free energy calculations indicate that g-C3N3 is more stable in a membrane-bound state compared to an aqueous solution; however, the insertion of the material does not disturb the structural integrity of lipid membranes. After being inserted into a membrane, g-C3N3 is unlikely to be released into the cellular environment and is incapable of extracting lipid molecules from the membrane. The nature of interaction between the 2D material and membranes is found to be independent of the nanomaterial size. Also, the performance of g-C3N3 toward biomolecular delivery is shown to be significantly improved compared to the state-of-the-art 2D materials graphene and hexagonal boron nitride (h-BN). It is revealed that, the affinity of g-C3N3 toward lipid membranes is weaker compared to the nanotoxic graphene and h-BN, while being marginally higher than h2D-C2N, which in turn, increases the biocompatibility of the material, thereby brightening its future as a noncytotoxic material for forthcoming biomedical applications.
Collapse
Affiliation(s)
- Anupam Ghosh
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Jadavpur, Kolkata, West Bengal 700032, India
| |
Collapse
|
7
|
Shahini E, Chaulagain N, Shankar K, Tang T. Predicting Free Energies of Exfoliation and Solvation for Graphitic Carbon Nitrides Using Machine Learning. ACS APPLIED MATERIALS & INTERFACES 2023; 15:53786-53801. [PMID: 37938813 DOI: 10.1021/acsami.3c09347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
As a metal-free and visible-light-responsive photocatalyst, graphitic carbon nitride (g-C3N4) has emerged as a new research hotspot and has attracted broad attention in the field of solar energy conversion and thin-film transistors. Liquid-phase exfoliation (LPE) is the best-known method for the synthesis of 2D g-C3N4 nanosheets. In LPE, bulk g-C3N4 is exfoliated in a solvent via high-shear mixing or sonication in order to produce a stable suspension of individual nanosheets. Two parameters of importance in gauging the performance of a solvent in LPE are the free energy required to exfoliate a unit area of layered materials into individual sheets in the solvent (ΔGexf) and the solvation free energy per unit area of a nanosheet (ΔGsol). While approximations for the free energies exist, they are shown in our previous work to be inaccurate and incapable of capturing the experimentally observed efficacy of LPE. Molecular dynamics (MD) simulations can provide accurate free-energy calculations, but doing so for every single solvent is time- and resource-consuming. Herein, machine learning (ML) algorithms are used to predict ΔGexf and ΔGsol for g-C3N4. First, a database for ΔGexf and ΔGsol is created based on a series of MD simulations involving 49 different solvents with distinct chemical structures and properties. The data set also includes values of critical descriptors for the solvents, including density, surface tension, dielectric constant, etc. Different ML methods are compared, accompanied by descriptor selection, to develop the most accurate model for predicting ΔGexf and ΔGsol. The extra tree regressor is shown to be the best performer among the six ML methods studied. Experimental validation of the model is conducted by performing dispersibility tests in several solvents for which the free energies are predicted. Finally, the influence of the selected descriptors on the free energies is analyzed, and strategies for solvent selection in LPE are proposed.
Collapse
Affiliation(s)
- Ehsan Shahini
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Narendra Chaulagain
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Karthik Shankar
- Department of Electrical and Computer Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| | - Tian Tang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB T6G 1H9, Canada
| |
Collapse
|
8
|
Barrio J, Li J, Shalom M. Carbon Nitrides from Supramolecular Crystals: From Single Atoms to Heterojunctions and Advanced Photoelectrodes. Chemistry 2023; 29:e202302377. [PMID: 37605638 DOI: 10.1002/chem.202302377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/17/2023] [Accepted: 08/22/2023] [Indexed: 08/23/2023]
Abstract
Carbon nitride materials (CN) have become one of the most studied photocatalysts within the last 15 years. While CN absorbs visible light, its low porosity and fast electron-hole recombination hinder its photoelectric performance and have motivated the research in the modification of its physical and chemical properties (such as energy band structure, porosity, or chemical composition) by different means. In this Concept we review the utilization of supramolecular crystals as CN precursors to tailor its properties. We elaborate on the features needed in a supramolecular crystal to serve as CN precursor, we delve on the influence of metal-free crystals in the morphology and porosity of the resulting materials and then discuss the formation of single atoms and heterojunctions when employing a metal-organic crystal. We finally discuss the performance of CN photoanodes derived from crystals and highlight the current standing challenges in the field.
Collapse
Affiliation(s)
- Jesús Barrio
- Department of Chemical Engineering, Imperial College London, London, SW72AZ, England, UK
| | - Junyi Li
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| |
Collapse
|
9
|
Qi F, Li H, Chen G, Peng S, Luo X, Xiong S, Zhu H, Shuai C. A CuS@g-C 3N 4 heterojunction endows scaffold with synergetic antibacterial effect. Colloids Surf B Biointerfaces 2023; 230:113512. [PMID: 37595378 DOI: 10.1016/j.colsurfb.2023.113512] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 06/26/2023] [Accepted: 08/07/2023] [Indexed: 08/20/2023]
Abstract
Graphitic carbon nitride (g-C3N4) had aroused tremendous attention in photodynamic antibacterial therapy due to its excellent energy band structure and appealing optical performance. Nevertheless, the superfast electron-hole recombination and dense biofilm formation abated its photodynamic antibacterial effect. To this end, a nanoheterojunction was synthesized via in-situ growing copper sulfide (CuS) on g-C3N4 (CuS@g-C3N4). On the one hand, CuS could form Fermi level difference with g-C3N4 to accelerate carrier transfer and thus facilitate electron-hole separation. On the other hand, CuS could respond near-infrared light to generate localized thermal to disrupt biofilm. Then the CuS@g-C3N4 nanoparticle was introduced into the poly-l-lactide (PLLA) scaffold. The photoelectrochemistry results demonstrated that the electron-hole separation efficiency was apparently enhanced and thereby brought an approximate sevenfold increase in reactive oxygen species (ROS) production. The thermal imaging indicated that the scaffold possesses a superior photothermal effect, which effectively eradicated the biofilm by disrupting its extracellular DNA and thereby facilitated to the entry of ROS. The entered ROS could effectively kill the bacteria by causing protein, K+, and nucleic acid leakage and glutathione consumption. As a consequence, the scaffold displayed an antibacterial rate of 97.2% and 98.5% against E. coli and S. aureus, respectively.
Collapse
Affiliation(s)
- Fangwei Qi
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Huixing Li
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Gang Chen
- School of Materials Science and Engineering, Xihua University, Chengdu, Sichuan 610039, China
| | - Shuping Peng
- NHC Key Laboratory of Carcinogenesis of Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China
| | - Xingrui Luo
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Shiyu Xiong
- Faculty of Materials Metallurgy and Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Hua Zhu
- School of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
| | - Cijun Shuai
- Institute of Bioadditive Manufacturing, Jiangxi University of Science and Technology, Nanchang 330013, China; State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; College of Mechanical Engineering, Xinjiang University, Urumqi 830017, China.
| |
Collapse
|
10
|
Zhou Y, Zhou Y, Gou J, Bai Q, Xiao X, Liu H. Europium-Functionalized Graphitic Carbon Nitride for Efficient Chemiluminescence Detection of Singlet Oxygen. ACS Sens 2023; 8:3349-3359. [PMID: 37596990 DOI: 10.1021/acssensors.3c00294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2023]
Abstract
Enhancing the sensitivity and selectivity of chemiluminescence (CL) sensors for detecting chemical species in complex samples poses a significant challenge in nanoparticle surface engineering. Graphitic carbon nitride (CN) shows promise but suffers from weak CL intensity and unknown luminescence mechanisms. In this study, we propose a nitrogen defect strategy to enhance the CL efficiency of europium-functionalized graphitic carbon nitride (Eu-CNNPs). By controlling the dosage of the europium modification, we can adjust the nitrogen defect content to reduce the energy gap and improve the CL performance. Remarkably, Eu-CNNPs with rich nitrogen defects exhibit strong chemiluminescence emission specifically for singlet oxygen (1O2) without responding to other reactive oxygen species (ROS). Building upon this finding, we developed a direct, selective, and sensitive CL sensing platform for 1O2 in PM2.5 and monitored 1O2 production in photosensitizers without interference from metal ions. Through extensive experiments, we attribute the 1O2-driven CL response to the presence of abundant nitrogen defects in the CN material, accelerating electron transfer and yielding a high generation of 1O2. Furthermore, chemiluminescence resonance energy transfer (CRET) between (1O2)2* (1O2 dimeric aggregate) and Eu-CNNPs contributes to strong CL emission. This work provides insights into enhancing the CL performance of CN and offers new possibilities for advancing the practical analysis of nanomaterials using the intriguing mechanism of nitrogen defects.
Collapse
Affiliation(s)
- Yuxian Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Yu Zhou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Jing Gou
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Qinghong Bai
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| | - Houjing Liu
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang 550025, China
| |
Collapse
|
11
|
Li Y, Du H. Engineering graphitic carbon nitride for next-generation photodetectors: a mini review. RSC Adv 2023; 13:25968-25977. [PMID: 37664204 PMCID: PMC10472343 DOI: 10.1039/d3ra04051h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/22/2023] [Indexed: 09/05/2023] Open
Abstract
Semiconductor photodetectors, as photoelectric devices using optical-electrical signal conversion for detection, are widely used in various fields such as optical communication, medical imaging, environmental monitoring, military tracking, remote sensing, etc. Compared to the conventional photodetector materials including silicon, III-V semiconductors and metal sulfides, graphitic carbon nitride (g-C3N4) as a metal-free polymeric semiconductor, has many advantages such as low-price, easy preparation, efficient visible light response, and relatively good thermal stability. In the meantime, the polymer characteristics also endow the g-C3N4 with good mechanical properties. Apart from being used for photo(electro)catalysts during the past decades, the potential use of g-C3N4 in photodetectors has attracted great research interests very recently. In this review, we first briefly introduce the structure and properties of g-C3N4 and the key performance parameters of photodetectors. Then, combining the very recent progress, the review focuses on the active materials, fabrication methods and performance enhancement strategies for g-C3N4 based photodetectors. The existing challenges are discussed and the future development of g-C3N4 based photodetectors is also forecasted.
Collapse
Affiliation(s)
- Yuan Li
- School of Telecommunications Engineering, Hubei Science and Technology College Wuhan 430074 China
- National Engineering Research Center of Fiber Optic Sensing Technology and Networks, Wuhan University of Technology Wuhan 430074 China
| | - Haiwei Du
- School of Materials Science and Engineering, Anhui University Hefei 230601 China
| |
Collapse
|
12
|
Ping J, Du J, Ouyang R, Miao Y, Li Y. Recent advances in stimuli-responsive nano-heterojunctions for tumor therapy. Colloids Surf B Biointerfaces 2023; 226:113303. [PMID: 37086684 DOI: 10.1016/j.colsurfb.2023.113303] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/29/2023] [Accepted: 04/07/2023] [Indexed: 04/24/2023]
Abstract
Stimuli-responsive catalytic therapy based on nano-catalysts has attracted much attention in the field of biomedicine for tumor therapy, due to its excellent and unique properties. However, the complex tumor microenvironment conditions and the rapid charge recombination in the catalyst limit catalytic therapy's effectiveness and further development. Effective heterojunction nanomaterials are constructed to address these problems to improve catalytic performance. Specifically, on the one hand, the band gap of the material is adjusted through the heterojunction structure to promote the charge separation efficiency under exogenous stimulation and further improve the catalytic capacity. On the other hand, the construction of a heterojunction structure can not only preserve the function of the original catalyst but also achieve significantly enhanced synergistic therapy ability. This review summarized the construction and functions of stimuli-responsive heterojunction nanomaterials under the excitation of X-rays, visible-near infrared light, and ultrasound in recent years, and further introduces their application in cancer therapy. Hopefully, the summary of stimuli-responsive heterojunction nanomaterials' applications will help researchers promote the development of nanomaterials in cancer therapy.
Collapse
Affiliation(s)
- Jing Ping
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Ruizhuo Ouyang
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry & Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
13
|
Deshmukh S, Pawar K, Koli V, Pachfule P. Emerging Graphitic Carbon Nitride-based Nanobiomaterials for Biological Applications. ACS APPLIED BIO MATERIALS 2023; 6:1339-1367. [PMID: 37011107 DOI: 10.1021/acsabm.2c01016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023]
Abstract
Graphitic carbon nitride (g-CN) based nanostructures are distinctive materials with unique compositional, structural, optical, and electronic properties with exceptional band structure, moderate surface area, and exceptional thermal and chemical stability. Because of these properties, g-CN based nanomaterials have shown promising applications and higher performance in the biological avenue. This review covers the state-of-the-art synthetic strategies used for the preparation of the materials, the basic structure, and a panorama of different optimization strategies leading to improved physicochemical properties responsible for the biological application. The following sections include the recent progress in the use of g-CN based nanobiomaterials for biosensors, bioimaging, photodynamic therapy, drug delivery, chemotherapy, and the antimicrobial segment. Furthermore, we have summarized the role and evaluation of biosafety and biocompatibility of the material. Finally, the unresolved issues, plausible challenges, current status, and future perspectives for the development and design of g-CN have been summarized and are expected to promote a clinical path for the medical sector and human well-being.
Collapse
Affiliation(s)
- Shamkumar Deshmukh
- Department of Chemistry, Damani Bhairuratan Fatechand, Dayanand College of Arts and Science, Solapur 413002, India
| | - Krishna Pawar
- School of Nanoscience and Technology, Shivaji University, Kolhapur 416004, India
| | - Valmiki Koli
- Department of Physics, National Dong Hwa University, Shou-Feng, Hualien 97401, Taiwan
| | - Pradip Pachfule
- Department of Chemical and Biological Sciences, S. N. Bose National Centre for Basic Sciences, Kolkata 700106, India
| |
Collapse
|
14
|
Guan X, Li Z, Geng X, Lei Z, Karakoti A, Wu T, Kumar P, Yi J, Vinu A. Emerging Trends of Carbon-Based Quantum Dots: Nanoarchitectonics and Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207181. [PMID: 36693792 DOI: 10.1002/smll.202207181] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/09/2022] [Indexed: 06/17/2023]
Abstract
Carbon-based quantum dots (QDs) have emerged as a fascinating class of advanced materials with a unique combination of optoelectronic, biocompatible, and catalytic characteristics, apt for a plethora of applications ranging from electronic to photoelectrochemical devices. Recent research works have established carbon-based QDs for those frontline applications through improvements in materials design, processing, and device stability. This review broadly presents the recent progress in the synthesis of carbon-based QDs, including carbon QDs, graphene QDs, graphitic carbon nitride QDs and their heterostructures, as well as their salient applications. The synthesis methods of carbon-based QDs are first introduced, followed by an extensive discussion of the dependence of the device performance on the intrinsic properties and nanostructures of carbon-based QDs, aiming to present the general strategies for device designing with optimal performance. Furthermore, diverse applications of carbon-based QDs are presented, with an emphasis on the relationship between band alignment, charge transfer, and performance improvement. Among the applications discussed in this review, much focus is given to photo and electrocatalytic, energy storage and conversion, and bioapplications, which pose a grand challenge for rational materials and device designs. Finally, a summary is presented, and existing challenges and future directions are elaborated.
Collapse
Affiliation(s)
- Xinwei Guan
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Zhixuan Li
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Xun Geng
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Zhihao Lei
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajay Karakoti
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Hung Hom, Hong Kong, 999077, P. R. China
| | - Prashant Kumar
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Jiabao Yi
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| | - Ajayan Vinu
- Global Innovative Centre for Advanced Nanomaterials, School of Engineering, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW, 2308, Australia
| |
Collapse
|
15
|
Maluangnont T, Pulphol P, Pongampai S, Kobkeatthawin T, Smith SM, Vittayakorn N. TiO 2/graphitic carbon nitride nanosheet composite with enhanced sensitivity to atmospheric water. RSC Adv 2023; 13:6143-6152. [PMID: 36814882 PMCID: PMC9940629 DOI: 10.1039/d3ra00045a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/10/2023] [Indexed: 02/22/2023] Open
Abstract
Understanding the fundamentals of transport properties in two-dimensional (2D) materials is essential for their applications in devices, sensors, and so on. Herein, we report the impedance spectroscopic study of carbon nitride nanosheets (CNNS) and the composite with anatase (TiO2/CNNS, 20 atom% Ti), including their interaction with atmospheric water. The samples were characterized by X-ray diffraction, N2 adsorption/desorption, solid state 1H nuclear magnetic resonance spectroscopy, thermogravimetric analysis, and transmission electron microscopy. It is found that CNNS is highly insulating (resistivity ρ ∼ 1010 Ω cm) and its impedance barely changes during a 20 min-measurement at room temperature and 70% relative humidity. Meanwhile, incorporating the semiconducting TiO2 nanoparticles (∼10 nm) reduces ρ by one order of magnitude, and the decreased ρ is proportional to the exposure time to atmospheric water. Sorbed water shows up at low frequency (<102 Hz) with relaxation time in milliseconds, but the response intrinsic to CNNS and TiO2/CNNS is evident at higher frequency (>104 Hz) with relaxation time in microseconds. These two signals apparently correlate to the endothermic peak at ≤110 °C and >250 °C, respectively, in differential scanning calorimetry experiments. Universal power law analysis suggests charge hopping across the 3D conduction pathways, consistent with the capacitance in picofarad typical of grain response. Our work demonstrates that the use of various formalisms (i.e., impedance, permittivity, conductivity, and modulus) combined with a simple universal power law analysis provides insights into water-induced transport of the TiO2/CNNS composite without complicated curve fitting procedure or dedicated humidity control.
Collapse
Affiliation(s)
- Tosapol Maluangnont
- Electroceramics Research Laboratory, College of Materials Innovation and Technology, King Mongkut's Institute of Technology Ladkrabang Bangkok 10520 Thailand
| | - Phieraya Pulphol
- Department of Materials Science, Faculty of Science, Srinakharinwirot UniversityBangkok 10110Thailand
| | - Satana Pongampai
- Advanced Materials Research Unit and Department of Chemistry, School of Science, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand
| | - Thawanrat Kobkeatthawin
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol UniversityNakhon Pathom 73170Thailand
| | - Siwaporn Meejoo Smith
- Center of Sustainable Energy and Green Materials and Department of Chemistry, Faculty of Science, Mahidol UniversityNakhon Pathom 73170Thailand
| | - Naratip Vittayakorn
- Advanced Materials Research Unit and Department of Chemistry, School of Science, King Mongkut's Institute of Technology LadkrabangBangkok 10520Thailand
| |
Collapse
|
16
|
Graphitic carbon nitride (g-C3N4) based materials: current application trends in health and other multidisciplinary fields. INTERNATIONAL NANO LETTERS 2023. [DOI: 10.1007/s40089-023-00395-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Praus P. Photocatalytic Nitrogen Fixation using Graphitic Carbon Nitride: A Review. ChemistrySelect 2023. [DOI: 10.1002/slct.202204511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Petr Praus
- Department of Chemistry and Physico-Chemical Processes VSB-Technical University of Ostrava 17. listopadu 15 708 00 Ostrava-Poruba Czech Republic
- Institute of Environmental Technology CEET VSB-Technical University of Ostrava 17. listopadu 15 708 00 Ostrava-Poruba Czech Republic
| |
Collapse
|
18
|
Shahini E, Shankar K, Tang T. Liquid-phase exfoliation of graphitic carbon nitrides studied by molecular dynamics simulation. J Colloid Interface Sci 2023; 630:900-910. [DOI: 10.1016/j.jcis.2022.10.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 10/11/2022] [Accepted: 10/29/2022] [Indexed: 11/09/2022]
|
19
|
Qin Y, Huang R, Ye GJ. An “on-off-on” fluorescence probe for glyphosate detection based on Cu2+ modulated g-C3N4 nanosheets. Front Chem 2022; 10:1036683. [PMID: 36247672 PMCID: PMC9561094 DOI: 10.3389/fchem.2022.1036683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of glyphosate is essential to agricultural production, environment protection and public health. Herein, we proposed a fast and convenient “on-off-on” fluorescence platform for sensitive detection of glyphosate via Cu2+ modulated g-C3N4 nanosheets. The fluorescence of the system was quenched by Cu2+. With the presence of glyphosate, the fluorescence could be restored due to the formation of Cu2+- glyphosate complex. The proposed method was cost-effective with label-free and enzyme-free. Moreover, it exhibits high sensitivity with a low detection limit of 0.01 μg/ml. Furthermore, the proposed method has been successfully monitored glyphosate in real samples.
Collapse
|
20
|
Ruthenium and Nickel Molybdate-Decorated 2D Porous Graphitic Carbon Nitrides for Highly Sensitive Cardiac Troponin Biosensor. BIOSENSORS 2022; 12:bios12100783. [PMID: 36290921 PMCID: PMC9599711 DOI: 10.3390/bios12100783] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 09/13/2022] [Accepted: 09/19/2022] [Indexed: 12/14/2022]
Abstract
Two-dimensional (2D) layered materials functionalized with monometallic or bimetallic dopants are excellent materials to fabricate clinically useful biosensors. Herein, we report the synthesis of ruthenium nanoparticles (RuNPs) and nickel molybdate nanorods (NiMoO4 NRs) functionalized porous graphitic carbon nitrides (PCN) for the fabrication of sensitive and selective biosensors for cardiac troponin I (cTn-I). A wet chemical synthesis route was designed to synthesize PCN-RuNPs and PCN-NiMoO4 NRs. Morphological, elemental, spectroscopic, and electrochemical investigations confirmed the successful formation of these materials. PCN-RuNPs and PCN-NiMoO4 NRs interfaces showed significantly enhanced electrochemically active surface areas, abundant sites for immobilizing bioreceptors, porosity, and excellent aptamer capturing capacity. Both PCN-RuNPs and PCN-NiMoO4 NRs materials were used to develop cTn-I sensitive biosensors, which showed a working range of 0.1–10,000 ng/mL and LODs of 70.0 pg/mL and 50.0 pg/mL, respectively. In addition, the biosensors were highly selective and practically applicable. The functionalized 2D PCN materials are thus potential candidates to develop biosensors for detecting acute myocardial infractions.
Collapse
|
21
|
Malik R, Joshi N, Tomer VK. Functional graphitic carbon (IV) nitride: A versatile sensing material. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214611] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Synthesis of vacant graphitic carbon nitride in argon atmosphere and its utilization for photocatalytic hydrogen generation. Sci Rep 2022; 12:13622. [PMID: 35948580 PMCID: PMC9365785 DOI: 10.1038/s41598-022-17940-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 08/03/2022] [Indexed: 11/08/2022] Open
Abstract
Graphitic carbon nitride (C3N4) was synthesised from melamine at 550 °C for 4 h in the argon atmosphere and then was reheated for 1–3 h at 500 °C in argon. Two band gaps of 2.04 eV and 2.47 eV were observed in all the synthetized materials. Based on the results of elemental and photoluminescence analyses, the lower band gap was found to be caused by the formation of vacancies. Specific surface areas of the synthetized materials were 15–18 m2g−1 indicating that no thermal exfoliation occurred. The photocatalytic activity of these materials was tested for hydrogen generation. The best photocatalyst showed 3 times higher performance (1547 μmol/g) than bulk C3N4 synthetized in the air (547 μmol/g). This higher activity was explained by the presence of carbon (VC) and nitrogen (VN) vacancies grouped in their big complexes 2VC + 2VN (observed by positron annihilation spectroscopy). The effect of an inert gas on the synthesis of C3N4 was demonstrated using Graham´s law of ammonia diffusion. This study showed that the synthesis of C3N4 from nitrogen-rich precursors in the argon atmosphere led to the formation of vacancy complexes beneficial for hydrogen generation, which was not referred so far.
Collapse
|
23
|
Song Z, Fang Z, Chen J, Zhang Y, Guo L, Fu F. Highly fluorescent carbon nitride oligomer with aggregation-induced emission characteristic for plastic staining. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 276:121238. [PMID: 35413529 DOI: 10.1016/j.saa.2022.121238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 03/15/2022] [Accepted: 04/02/2022] [Indexed: 06/14/2023]
Abstract
Polymeric carbon nitride often displays weak photoluminescence in solid state due to the aggregation-caused quenching effect. Herein, highly fluorescent carbon nitride oligomer (CNO) with aggregation-induced emission (AIE) characteristic was prepared via one-step solid-phase thermal condensation of 2,4-diamino-6-phenyl-1,3,5-triazine (DPT) at 350 °C. CNO is mainly composed of DPT dimer connected by rotatable imine groups, and exhibits weak fluorescence in the dispersed state and strong blue-green emission in the aggregated state and solid state. Density functional theory calculations indicate that the restriction of phenyl and triazine ring twisting motions is the main origin of the AIE phenomenon of CNO. Finally, CNO was preliminarily applied for fluorescent staining of plastic pellets. This work not only provides a solid-state strategy to synthesize fluorescent material with AIE characteristic but also extends the application of polymeric carbon nitride.
Collapse
Affiliation(s)
- Zhiping Song
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China; College of Chemistry and Environment, Fujian Provincial Key Laboratory of Modern Analytical Science and Separation Technology, Minnan Normal University, Zhangzhou 363000, China
| | - Zhongpu Fang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Jingru Chen
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| | - Yongfan Zhang
- College of Chemistry, Fuzhou University, Fuzhou 350116, China; Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, China.
| | - Liangqia Guo
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China.
| | - Fengfu Fu
- Ministry of Education Key Laboratory for Analytical Science of Food Safety and Biology, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350116, China
| |
Collapse
|
24
|
Liang S, Wang Z, Zhou Z, Liang G, Zhang Y. Polymeric carbon nitride-based materials: Rising stars in bioimaging. Biosens Bioelectron 2022; 211:114370. [PMID: 35597145 DOI: 10.1016/j.bios.2022.114370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/05/2022] [Accepted: 05/10/2022] [Indexed: 12/13/2022]
Abstract
Polymeric carbon nitrides (CN), due to their unique physicochemical properties, versatile surface functionalization, ultra-high surface area, and good biocompatibility, have attracted considerable interest in diverse biomedical applications, such as biosensors, drug delivery, bioimaging, and theranostics. In this review, the recent advances in bioimaging of CN-based nanomaterials are summarized according to the imaging modalities, including optical (fluorescence and Raman) imaging, magnetic resonance imaging (MRI), photoacoustic imaging (PAI), computed tomography (CT), and multimodal imaging. The pros and cons of CN bioimaging are comprehensively analyzed and compared with those in previous reports. In the end, the prospects and challenges of their future bioimaging applications are outlooked.
Collapse
Affiliation(s)
- Sicheng Liang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Zhixin Zhou
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China
| | - Gaolin Liang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device, Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research, School of Chemistry and Chemical Engineering, Southeast University, Nanjing, 211189, China.
| |
Collapse
|
25
|
Qu B, Sun J, Li P, Jing L. Current advances on g-C 3N 4-based fluorescence detection for environmental contaminants. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127990. [PMID: 34986565 DOI: 10.1016/j.jhazmat.2021.127990] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 11/16/2021] [Accepted: 12/02/2021] [Indexed: 06/14/2023]
Abstract
The development of highly-sensitive fluorescence detection systems for environmental contaminants has become high priority research in the past years. Special attention has been paid to graphitic carbon nitride (g-C3N4)-based nanomaterials, whose unique and superior optical property makes them promising and attractive candidates for this purpose. It is necessary to enhance the current understanding of the various classes of g-C3N4-based fluorescence detection systems and their mechanisms, as well as find suitable approaches to improve detection performance for environmental monitoring, protection, and management. In this review, the recent progresses on g-C3N4-based fluorescence detections for environmental contaminants, mainly including their basic principles, mechanisms, applications, modification strategies, and conclusions, are summarized. A particular emphasis is placed on the design and development of modification strategies for g-C3N4 with the objective of improving detection performance. High photoluminescence quantum yield, tunable fluorescence emission characteristics, and strong adsorption capacity of g-C3N4 could ensure the ultrasensitivity and selectivity of fluorescence detection of environmental contaminants. Concluding perspectives on the challenges and opportunities to design highly efficient g-C3N4-based fluorescence detection system are intensively put forward as well.
Collapse
Affiliation(s)
- Binhong Qu
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China
| | - Jianhui Sun
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China; College of Physical Science and Technology, Heilongjiang University, Harbin 150080, PR China
| | - Peng Li
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China; College of Physical Science and Technology, Heilongjiang University, Harbin 150080, PR China.
| | - Liqiang Jing
- Key Laboratory of Functional Inorganic Material Chemistry (Ministry of Education), International Joint Research Center for Catalytic Technology, School of Chemistry and Materials Science, Heilongjiang University, Harbin 150080, PR China.
| |
Collapse
|
26
|
Dosimetric analysis of graphitic carbon nitride quantum dots exposed to a gamma radiation for a low-dose applications. Appl Radiat Isot 2022; 184:110200. [DOI: 10.1016/j.apradiso.2022.110200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 02/19/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022]
|
27
|
Shaheen A, Taj A, Jameel F, Tahir MA, Mujahid A, Butt FK, Khan WS, Bajwa SZ. Synthesis of graphitic carbon nitride nanosheets-layered imprinted polymer system as a nanointerface for detection of chloramphenicol. APPLIED NANOSCIENCE 2022. [DOI: 10.1007/s13204-021-02220-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
28
|
Pachaiappan R, Rajendran S, Senthil Kumar P, Vo DVN, K.A. Hoang T. A review of recent progress on photocatalytic carbon dioxide reduction into sustainable energy products using carbon nitride. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2021.11.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
29
|
Kitte SA, Bushira FA, Xu C, Wang Y, Li H, Jin Y. Plasmon-Enhanced Nitrogen Vacancy-Rich Carbon Nitride Electrochemiluminescence Aptasensor for Highly Sensitive Detection of miRNA. Anal Chem 2021; 94:1406-1414. [PMID: 34927425 DOI: 10.1021/acs.analchem.1c04726] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The development of biosensors for biologically important substances with ultralow content such as microRNA is of great significance. Herein, a novel surface plasmon-enhanced electrogenerated chemiluminescence-based aptasensor was developed for ultrasensitive sensing of microRNA by using nitrogen vacancy-rich carbon nitride nanosheets as effective luminophores and gold nanoparticles as plasmonic sources. The introduction of nitrogen vacancies improved the electrochemiluminescence behavior due to improved conductance and electrogenerated chemiluminescence activity. The introduction of plasmonic gold nanoparticles increased the electrochemiluminescence signal intensity by more than eightfold. The developed surface plasmon-enhanced electrogenerated chemiluminescence aptasensor exhibited good selectivity, ultrasensitivity, excellent stability, and reproducibility for the determination of microRNA-133a, with a dynamic linear range of 1 aM to 100 pM and a limit of detection about 0.87 aM. Moreover, the surface plasmon-enhanced electrogenerated chemiluminescence sensor obtained a good recovery when detecting the content of microRNA in actual serum.
Collapse
Affiliation(s)
- Shimeles Addisu Kitte
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia
| | - Fuad Abduro Bushira
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,Department of Chemistry, College of Natural Sciences, Jimma University, P.O. Box 378, Jimma 378, Ethiopia.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Chen Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yong Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Haijuan Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| | - Yongdong Jin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China.,University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
30
|
Design principle in biosensing: Critical analysis based on graphitic carbon nitride (G-C3N4) photoelectrochemical biosensor. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116454] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Li H, Zhang C, Wang J, Chong H, Zhang T, Wang C. Pristine Graphic Carbon Nitride Quantum Dots for the Visualized Detection of Latent Fingerprints. ANAL SCI 2021; 37:1497-1503. [PMID: 33867399 DOI: 10.2116/analsci.20p336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
User-friendly fingerprint powders, namely efficient, low-cost and nontoxic ones, are always desirable for the development of latent fingerprints (LFPs). Here, we described the use of pristine graphic carbon nitride quantum dots (g-C3N4 QDs) as a new kind of user-friendly fingerprint powder. The g-C3N4 QDs can be easily prepared from urea and sodium citrate precursors through low temperature solid-phase reaction. Due to their good optical properties and selective interactions with secretion residuals, the g-C3N4 QDs powders were exploited to develop LFPs on different substrates by the powder dusting technique. The LFP images on a plastic bag exhibited a high ridge and furrow contrast ratio, allowing for easy identification of level 1 - 3 details of LFPs. This work indicates that the g-C3N4 QD powders provide good performance for LFP visualization and is likely to be adopted for some applications in forensic investigations.
Collapse
Affiliation(s)
- Haidong Li
- School of Chemistry and Chemical Engineering, Yangzhou University
| | | | - Jun Wang
- School of Chemistry and Chemical Engineering, Yangzhou University
| | - Hui Chong
- School of Chemistry and Chemical Engineering, Yangzhou University
| | - Tian Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University
| | - Chengyin Wang
- School of Chemistry and Chemical Engineering, Yangzhou University
| |
Collapse
|
32
|
The role of guanidine hydrochloride in graphitic carbon nitride synthesis. Sci Rep 2021; 11:21600. [PMID: 34732765 PMCID: PMC8566454 DOI: 10.1038/s41598-021-01009-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 10/21/2021] [Indexed: 11/09/2022] Open
Abstract
Graphitic carbon nitride (CN) was synthesized from guanidine hydrochloride (G), melamine (M) and dicyandiamide (DCDA). The CN materials synthetized from the pure precursors and their mixtures were characterized by common methods, including thermal analysis, and their photocatalytic activities were tested by the degradation of selected organic pollutants, such as amoxicillin, phenol, Rhodamine B (RhB). Remarkable changes in their texture properties in terms of particle sizes, specific surface areas (SSA) and consequently their photocatalytic activity were explained by the role of guanidine hydrochloride in their synthesis. The SSA increased due to the release of NH3 and HCl and its complex reactions with melamine and DCDA forming structure imperfections and disruptions. The photocatalytic activity of the CN materials was found to be dependent on their SSA.
Collapse
|
33
|
Applications of two-dimensional layered nanomaterials in photoelectrochemical sensors: A comprehensive review. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214156] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Younis MR, He G, Qu J, Lin J, Huang P, Xia X. Inorganic Nanomaterials with Intrinsic Singlet Oxygen Generation for Photodynamic Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102587. [PMID: 34561971 PMCID: PMC8564446 DOI: 10.1002/advs.202102587] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/22/2021] [Indexed: 05/07/2023]
Abstract
Inorganic nanomaterials with intrinsic singlet oxygen (1 O2 ) generation capacity, are emerged yet dynamically developing materials as nano-photosensitizers (NPSs) for photodynamic therapy (PDT). Compared to previously reported nanomaterials that have been used as either carriers to load organic PSs or energy donors to excite the attached organic PSs through a Foster resonance energy transfer process, these NPSs possess intrinsic 1 O2 generation capacity with extremely high 1 O2 quantum yield (e.g., 1.56, 1.3, 1.26, and 1.09) than any classical organic PS reported to date, and thus are facilitating to make a revolution in PDT. In this review, the recent advances in the development of various inorganic nanomaterials as NPSs, including metal-based (gold, silver, and tungsten), metal oxide-based (titanium dioxide, tungsten oxide, and bismuth oxyhalide), metal sulfide-based (copper and molybdenum sulfide), carbon-based (graphene, fullerene, and graphitic carbon nitride), phosphorus-based, and others (hybrids and MXenes-based NPSs) are summarized, with an emphasis on the design principle and 1 O2 generation mechanism, and the photodynamic therapeutic performance against different types of cancers. Finally, the current challenges and an outlook of future research are also discussed. This review may provide a comprehensive account capable of explaining recent progress as well as future research of this emerging paradigm.
Collapse
Affiliation(s)
- Muhammad Rizwan Younis
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P.R. China
| | - Gang He
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Junle Qu
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong ProvinceCollege of Optoelectronic EngineeringShenzhen UniversityShenzhen518060China
| | - Jing Lin
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Peng Huang
- Marshall Laboratory of Biomedical EngineeringInternational Cancer CenterLaboratory of Evolutionary Theranostics (LET)School of Biomedical EngineeringShenzhen University Health Science CenterShenzhen518060China
| | - Xing‐Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life SciencesSchool of Chemistry and Chemical EngineeringNanjing UniversityNanjing210093P.R. China
| |
Collapse
|
35
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
36
|
Stroyuk O, Raievska O, Zahn DRT. Single-layer carbon nitride: synthesis, structure, photophysical/photochemical properties, and applications. Phys Chem Chem Phys 2021; 23:20745-20764. [PMID: 34542127 DOI: 10.1039/d1cp03457j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This Perspective provides a critical summary of the current state of the art in the synthesis and properties of polyheptazine single-layer carbon nitride (SLCN). The summary combines the authors' research and literature reports on SLCN concerning the synthesis of single-layer polyheptazine sheets, light absorption and emission by SLCN, photochemical and photocatalytic properties of SLCN as well as examples of applications of SLCN sheets as "building blocks" in heterostructures with nanocrystalline semiconductors and metals. The Perspective is concluded with an outlook discussing the most promising directions for further studies and applications of SLCN and related composites.
Collapse
Affiliation(s)
- Oleksandr Stroyuk
- Forschungszentrum Jülich GmbH, Helmholtz-Institut Erlangen Nürnberg für Erneuerbare Energien (HI ERN), Immerwahrstr. 2, 91058 Erlangen, Germany.
| | - Oleksandra Raievska
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| | - Dietrich R T Zahn
- Semiconductor Physics, Chemnitz University of Technology, D-09107 Chemnitz, Germany. .,Center for Materials, Architectures, and Integration of Nanomembranes (MAIN), Chemnitz University of Technology, D-09107 Chemnitz, Germany
| |
Collapse
|
37
|
Gowri VM, Ajith A, John SA. Systematic Study on Morphological, Electrochemical Impedance, and Electrocatalytic Activity of Graphitic Carbon Nitride Modified on a Glassy Carbon Substrate from Sequential Exfoliation in Water. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:10538-10546. [PMID: 34432473 DOI: 10.1021/acs.langmuir.1c01550] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Several researchers have synthesized graphitic carbon nitride (GCN) from various precursors and attached it to electrode substrates after exfoliation under different conditions and have reported inconsistent data on electrochemical impedance, electroactive surface areas, and electrocatalytic activity. Thus, the present study aims to study the same systematically in addition to morphology after modifying GCN on the GC substrate from different exfoliation times in water assisted by sonication. The GCN was prepared from urea by bulk condensation pyrolysis and then attached to the GC substrate by drop casting to study its morphology, electrochemical impedance, and electrocatalytic activity with respect to exfoliation. The SEM image of a GCN-modified GC plate after 15 and 30 min of exfoliation shows bulky structure whereas thin sheets of GCN were noticed after 120 min of exfoliation. On the other hand, broken sheets were observed when GCN was coated from beyond 120 min of exfoliation. The electrochemical impedance studies show that the charge transfer resistance (RCT) of GCN modified from 15 and 30 min of exfoliation was higher than that for the bare GC electrode. However, it started to decrease while increasing the exfoliation time, and 1.8 kΩ was obtained after 120 min of exfoliation. The RCT value was again increased to 3.2 and 5.0 kΩ for GCN coated after 150 and 180 min of exfoliation, respectively. The electroactive surface area (EASA) of GCN modified by 15 and 30 min of exfoliation was less than that of the bare GC electrode, whereas it was 3.8-fold higher for GCN coated from 120 min of exfoliation. The electrocatalytic activity of the GC electrodes modified with GCN was then tested by studying ascorbic acid (AA) and dopamine (DA) oxidation and reduction of hydrogen peroxide (HP). Among the different exfoliation times, GCN modified from 120 min of exfoliation displayed the highest electrocatalytic activity toward AA, DA, and HP. This was attributed to its higher EASA and lower charge-transfer resistance.
Collapse
Affiliation(s)
- Veeramani Mangala Gowri
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University) Gandhigram 624 302, Dindigul, Tamilnadu, India
| | - Ajay Ajith
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University) Gandhigram 624 302, Dindigul, Tamilnadu, India
| | - S Abraham John
- Centre for Nanoscience and Nanotechnology, Department of Chemistry, The Gandhigram Rural Institute (Deemed to be University) Gandhigram 624 302, Dindigul, Tamilnadu, India
| |
Collapse
|
38
|
Meng P, Han C, Scully AD, Xiao Q, Brock AJ, Hirai T, Skidmore M, McMurtrie JC, Chesman ASR, Xu J. Unconventional, Gram-Scale Synthesis of a Molecular Dimer Organic Luminogen with Aggregation-Induced Emission. ACS APPLIED MATERIALS & INTERFACES 2021; 13:40441-40450. [PMID: 34423640 DOI: 10.1021/acsami.1c05841] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic luminogens have been widely used in optoelectronic devices, bioimaging, and sensing. Conventionally, the synthesis of organic luminogens requires sophisticated, multistep design, reaction, and isolation procedures. Herein, the products of the melt-phase condensation of benzoguanamine (BG; 2,4-diamino-6-phenyl-1,3,5-triazine) at 370-410 °C display interesting reaction-condition-dependent luminescence properties, including photoluminescence (PL) at a variety of wavelengths in the visible spectrum and quantum efficiencies (PLQE) of up to 58% in the powder form. With a simple and straightforward solvent washing procedure, the prominent blue luminescent component BG dimer was obtained in gram scale with >93% purity (96.5% purity after fractional sublimation). The BG dimer exhibited distinct aggregation-induced emission (AIE) properties. PL measurements indicate that the electronically excited state of the BG dimer undergoes efficient intramolecular nonradiative deactivation in room-temperature solution, leading to a significantly reduced PLQE (<0.1%) in solution. These nonradiative processes are substantially inhibited when the dimer existed in the form of crystals, solid aggregates in solution or being fixed in a rigid polymer film, resulting in a significant increase in the PLQE and lifetime. This work not only provided a new understanding for PL properties of self-condensation luminescent products but also represented an unconventional strategy for large-scale preparation of organic luminogens with high purity.
Collapse
Affiliation(s)
- Peng Meng
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Chenhui Han
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Andrew D Scully
- Ian Wark Laboratories, CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Qi Xiao
- Ian Wark Laboratories, CSIRO Manufacturing, Clayton, VIC 3168, Australia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Aidan J Brock
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Tadahiko Hirai
- Ian Wark Laboratories, CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - Melissa Skidmore
- Ian Wark Laboratories, CSIRO Manufacturing, Clayton, VIC 3168, Australia
| | - John C McMurtrie
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | | | - Jingsan Xu
- School of Chemistry and Physics & Centre for Materials Science, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
39
|
Vinoth S, Shalini Devi K, Pandikumar A. A comprehensive review on graphitic carbon nitride based electrochemical and biosensors for environmental and healthcare applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116274] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
40
|
Jiao Y, Hu R, Wang Q, Fu F, Chen L, Dong Y, Lin Z. Tune the Fluorescence and Electrochemiluminescence of Graphitic Carbon Nitride Nanosheets by Controlling the Defect States. Chemistry 2021; 27:10925-10931. [PMID: 33998071 DOI: 10.1002/chem.202100731] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Indexed: 11/05/2022]
Abstract
The effects of defect states on the fluorescence (FL) and electrochemiluminescence (ECL) properties of graphite phase carbon nitride (g-CN) are systematically investigated for the first time. The g-CN nanosheets (CNNSs) obtained at different condensation temperatures are used as the study models. It can be found that all the CNNSs have two kinds of defect states, one is originated from the edge of CNNSs (labeled as CN-defect) and the other is attributed to the partially carbonization regions (labeled as C-defect). Both two kinds of defect states substantially affect the luminescent properties of CNNSs. Both the FL and ECL signals of CNNSs contain a band gap emission and two defect emissions. For the FL of CNNSs, decreasing the density of defect states can increase efficiently the FL quantum yield, while increasing the density of defect states can make the FL spectra red shift. For the ECL of CNNSs, increasing the density of CN-defect states and decreasing the density of C-defect states are greatly important to improve the ECL activity. This work provides a deep insight into the FL and ECL mechanisms of g-CN, and is of significance in tuning the FL and ECL properties of g-CN. Also, it will greatly promote the applications of CNNSs based on the FL and ECL properties.
Collapse
Affiliation(s)
- Yajie Jiao
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rongjing Hu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Qian Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Fengfu Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Lichan Chen
- College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yongqiang Dong
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Zhenyu Lin
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
41
|
Comparison of Graphitic Carbon Nitrides Synthetized from Melamine and Melamine-Cyanurate Complex: Characterization and Photocatalytic Decomposition of Ofloxacin and Ampicillin. MATERIALS 2021; 14:ma14081967. [PMID: 33919916 PMCID: PMC8070965 DOI: 10.3390/ma14081967] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 04/07/2021] [Accepted: 04/12/2021] [Indexed: 12/02/2022]
Abstract
Graphitic carbon nitride (g-C3N4, hereafter abbreviated as CN) was prepared by the heating of melamine (CN-M) and melamine-cyanurate complex (CN-MCA), respectively, in air at 550 °C for 4 h. The specific surface area (SSA) of CN-M and CN-MCA was 12 m2 g−1 and 225 m2g−1 and the content of oxygen was 0.62 wt.% and 1.88 wt.%, respectively. The band gap energy (Eg) of CN-M was 2.64 eV and Eg of CN-MCA was 2.73 eV. The photocatalytic activity of the CN materials was tested by means of the decomposition of antibiotics ofloxacin and ampicillin under LED irradiation of 420 nm. The activity of CN-MCA was higher due to its high SSA, which was determined based on the physisorption of nitrogen. Ofloxacin was decomposed more efficiently than ampicillin in the presence of both photocatalysts.
Collapse
|
42
|
Ratiometric fluorescence detection of anthrax biomarker based on terbium (III) functionalized graphitic carbon nitride nanosheets. Talanta 2021; 230:122311. [PMID: 33934776 DOI: 10.1016/j.talanta.2021.122311] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/10/2021] [Accepted: 03/12/2021] [Indexed: 01/20/2023]
Abstract
Detection of anthrax biomarker dipicolinic acid (DPA) is of great importance upon the crisis of bioterrorism. Development of fluorescent materials for DPA detection, particularly one that fully depends on single luminescent response, faces the challenge of being susceptible to interferences. The accompanying accuracy problems offer great opportunities for the establishment of more reliable ratiometric analysis method. Herein, a ratiometric fluorescent probe based on terbium functionalized graphitic carbon nitride nanosheets (Tb-g-C3N4NS) is attempted for quantitative detection of DPA to address the distinct function of g-C3N4NS as both carrier and reference fluorophore, which is a so-far unexplored option in fluorescent detection approaches. We achieve the incorporation of Tb3+ into framework of g-C3N4NS by using a simple synthetic strategy comprised of thermal pyrolysis and ultrasonic exfoliation. Combining the reference signal over g-C3N4NS at 440 nm (I440) with the response signal of Tb3+ at 546 nm (I546), concentration of DPA can be easily calculated via its linear correlation with the intensity ratio (I546/I440), giving a precise measurement towards DPA with a detection limit as low as 9.9 nM. Besides enabling an excellent self-calibrating detection of DPA, this work also inspires broader use of g-C3N4NS for relevant process.
Collapse
|
43
|
Li J, Karjule N, Qin J, Wang Y, Barrio J, Shalom M. Low-Temperature Synthesis of Solution Processable Carbon Nitride Polymers. Molecules 2021; 26:1646. [PMID: 33809488 PMCID: PMC8000294 DOI: 10.3390/molecules26061646] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/12/2021] [Accepted: 03/14/2021] [Indexed: 11/16/2022] Open
Abstract
Carbon nitride materials require high temperatures (>500 °C) for their preparation, which entails substantial energy consumption. Furthermore, the high reaction temperature limits the materials' processability and the control over their elemental composition. Therefore, alternative synthetic pathways that operate under milder conditions are still very much sought after. In this work, we prepared semiconductive carbon nitride (CN) polymers at low temperatures (300 °C) by carrying out the thermal condensation of triaminopyrimidine and acetoguanamine under a N2 atmosphere. These molecules are isomers: they display the same chemical formula but a different spatial distribution of their elements. X-ray photoelectron spectroscopy (XPS) experiments and electrochemical and photophysical characterization confirm that the initial spatial organization strongly determines the chemical composition and electronic structure of the materials, which, thanks to the preservation of functional groups in their surface, display excellent processability in liquid media.
Collapse
Affiliation(s)
- Junyi Li
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (J.L.); (N.K.); (J.Q.); (Y.W.)
| | - Neeta Karjule
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (J.L.); (N.K.); (J.Q.); (Y.W.)
| | - Jiani Qin
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (J.L.); (N.K.); (J.Q.); (Y.W.)
| | - Ying Wang
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (J.L.); (N.K.); (J.Q.); (Y.W.)
| | - Jesús Barrio
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (J.L.); (N.K.); (J.Q.); (Y.W.)
- Department of Materials, Royal School of Mines, Imperial College London, London SW72AZ, UK
| | - Menny Shalom
- Department of Chemistry and Ilse Katz Institute for Nanoscale Science and Technology, Ben-Gurion University of the Negev, Beer-Sheva 8410501, Israel; (J.L.); (N.K.); (J.Q.); (Y.W.)
| |
Collapse
|
44
|
Hassanzadeh P. The capabilities of nanoelectronic 2-D materials for bio-inspired computing and drug delivery indicate their significance in modern drug design. Life Sci 2021; 279:119272. [PMID: 33631171 DOI: 10.1016/j.lfs.2021.119272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Revised: 02/10/2021] [Accepted: 02/19/2021] [Indexed: 12/13/2022]
Abstract
Remarkable advancements in the computational techniques and nanoelectronics have attracted considerable interests for development of highly-sophisticated materials (Ms) including the theranostics with optimal characteristics and innovative delivery systems. Analyzing the huge amounts of multivariate data and solving the newly-emerged complicated problems including the healthcare-related ones have created increasing demands for improving the computational speed and minimizing the consumption of energy. Shifting towards the non-von Neumann approaches enables performing specific computational tasks and optimizing the processing of signals. Besides usefulness for neuromorphic computing and increasing the efficiency of computation energy, 2-D electronic Ms are capable of optical sensing with ultra-fast and ultra-sensitive responses, mimicking the neurons, detection of pathogens or biomolecules, and prediction of the progression of diseases, assessment of the pharmacokinetics/pharmacodynamics of therapeutic candidates, mimicking the dynamics of the release of neurotransmitters or fluxes of ions that might provide a deeper knowledge about the computations and information flow in the brain, and development of more effective treatment protocols with improved outcomes. 2-D Ms appear as the major components of the next-generation electronically-enabled devices for highly-advanced computations, bio-imaging, diagnostics, tissue engineering, and designing smart systems for site-specific delivery of therapeutics that might result in the reduced adverse effects of drugs and improved patient compliance. This manuscript highlights the significance of 2-D Ms in the neuromorphic computing, optimizing the energy efficiency of the multi-step computations, providing novel architectures or multi-functional systems, improved performance of a variety of devices and bio-inspired functionalities, and delivery of theranostics.
Collapse
Affiliation(s)
- Parichehr Hassanzadeh
- Nanotechnology Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 13169-43551, Iran.
| |
Collapse
|
45
|
Mukhopadhyay TK, Leherte L, Datta A. Molecular Mechanism for the Self-Supported Synthesis of Graphitic Carbon Nitride from Urea Pyrolysis. J Phys Chem Lett 2021; 12:1396-1406. [PMID: 33508198 DOI: 10.1021/acs.jpclett.0c03559] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Quantum chemical calculations combined with kinetic Monte Carlo simulations are performed to decipher the kinetics for the one-pot synthesis of two-dimensional graphitic carbon nitride (g-C3N4) from urea pyrolysis. Two mechanisms are considered, one involving ammelide as the intermediate compound and the other considering cyanuric acid. Different grid growing patterns are investigated, and the size, shape, and density of the grids as well as the number and position of the defects are evaluated. We find that the mechanistic pathway involving ammelide is preferred. Larger g-C3N4 grids with lower density are achieved when the rate constant for melon growing is inversely proportional to the number of local reaction sites, while nearly filled smaller grids are obtained in the opposite scenario. Larger defects appear at the grid periphery while smaller holes appear throughout the grid. The synthesis of extended g-C3N4 structures is favored if the g-C3N4 growing propensity is directly proportional to the number of reaction sites.
Collapse
Affiliation(s)
- Titas Kumar Mukhopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| | - Laurence Leherte
- Unit of Theoretical and Structural Physical Chemistry, Namur Institute of Structured Matter (NISM), Namur Research Institute for Life Sciences (NARILIS), Namur Medicine & Drug Innovation Center (NAMEDIC), Department of Chemistry, Laboratory of Structural Biological Chemistry, University of Namur, Rue de Bruxelles 61, B-5000 Namur, Belgium
| | - Ayan Datta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S.C. Mullick Road, Jadavpur, Kolkata 700032, West Bengal, India
| |
Collapse
|
46
|
Molaei MJ. Two-dimensional (2D) materials beyond graphene in cancer drug delivery, photothermal and photodynamic therapy, recent advances and challenges ahead: A review. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2020.101830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Zhang W, Dang G, Dong J, Li Y, Jiao P, Yang M, Zou X, Cao Y, Ji H, Dong L. A multifunctional nanoplatform based on graphitic carbon nitride quantum dots for imaging-guided and tumor-targeted chemo-photodynamic combination therapy. Colloids Surf B Biointerfaces 2021; 199:111549. [PMID: 33388720 DOI: 10.1016/j.colsurfb.2020.111549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 12/29/2022]
Abstract
Graphitic carbon nitride quantum dots (g-CNQDs) have shown great potential in imaging, drug delivery and photodynamic therapy (PDT). However, relevant research on g-CNQDs for PDT or drug delivery has been conducted separately. Herein, we develop a g-CNQDs-based nanoplatform (g-CPFD) to achieve simultaneously imaging and chemo-photodynamic combination therapy in one system. A g-CNQDs-based nanocarrier (g-CPF) is first prepared by successively introducing carboxyamino-terminated oligomeric polyethylene glycol and folic acid onto the surface of g-CNQDs via two-step amidation. The resultant g-CPF possesses good physiological stability, strong blue fluorescence, desirable biocompatibility, and visible light-stimulated reactive oxygen species generating ability. Further non-covalently loaded doxorubicin enables the system with chemotherapy function. Compared with free doxorubicin, g-CPFD expresses more efficient chemotherapy to HeLa cells due to improved folate receptor-mediated cellular uptake and intracellular pH-triggered drug release. Furthermore, g-CPFD under visible light irradiation shows enhanced inhibition on the growth of cancer cells compared to sole chemotherapy or PDT. Thus, g-CPFD exhibits exceptional anti-tumor efficiency due to folate receptor-mediated targeting ability, intracellular pH-triggered drug release and a combined treatment effect arising from PDT and chemotherapy. Moreover, this nanoplatform benefits imaging-guided drug delivery because of inherent fluorescent properties of doxorubicin and g-CPF, hence achieving the goal of imaging-guided chemo-photodynamic combination treatments.
Collapse
Affiliation(s)
- Wenxian Zhang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Guangyao Dang
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Jian Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| | - Yanyan Li
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Peng Jiao
- Life Science Research Center, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Mingfeng Yang
- Key Laboratory of Cerebral Microcirculation in Universities of Shandong, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Xianwen Zou
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Yutao Cao
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Haiwei Ji
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China
| | - Lifeng Dong
- Institute of Optical Functional Materials for Biomedical Imaging, School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University & Shandong Academy of Medical Science, Taian, Shandong, 271016, PR China.
| |
Collapse
|
48
|
Ti M, Li Y, Li Z, Zhao D, Wu L, Yuan L, He Y. A ratiometric nanoprobe based on carboxylated graphitic carbon nitride nanosheets and Eu3+ for the detection of tetracyclines. Analyst 2021; 146:1065-1073. [DOI: 10.1039/d0an01826k] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A convenient and rapid method that combines a fluorescent nanoprobe based on C-g-C3N4-Eu3+ with a smartphone and test paper has been developed for the in situ detection of tetracyclines.
Collapse
Affiliation(s)
- Mengru Ti
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yasi Li
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Zhongqiu Li
- College of Chemical and Pharmaceutial Engineering (CCPE)
- Hebei University of Science and Technology
- Shijiazhuang 050000
- China
| | - Dongxu Zhao
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
| | - Li Wu
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| | - Longfei Yuan
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Integrated Management of Pest Insects and Rodents
| | - Yujian He
- School of Chemical Sciences
- University of Chinese Academy of Sciences
- Beijing 100049
- China
- State Key Laboratory of Natural and Biomimetic Drugs
| |
Collapse
|
49
|
Bai Y, Zheng Y, Wang Z, Hong Q, Liu S, Shen Y, Zhang Y. Metal-doped carbon nitrides: synthesis, structure and applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02148f] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This perspective provides a comprehensive overview of the latest progress of M–CN, which would promote further development, such as for single-atom catalysis and nanozymatic reactions.
Collapse
Affiliation(s)
- Yuhan Bai
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yongjun Zheng
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Zhuang Wang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Qing Hong
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Songqin Liu
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yanfei Shen
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| | - Yuanjian Zhang
- Jiangsu Engineering Laboratory of Smart Carbon-Rich Materials and Device
- Jiangsu Province Hi-Tech Key Laboratory for Bio-Medical Research
- School of Chemistry and Chemical Engineering, Medical School
- Southeast University
- Nanjing 211189
| |
Collapse
|
50
|
Gowri VM, John SA. Fabrication of electrically conducting graphitic carbon nitride film on glassy carbon electrode with the aid of amine groups for the determination of an organic pollutant. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114787] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|