1
|
Tam SW, Cheung AKL, Qin P, Zhang S, Huang Z, Yung KKL. Extracellular Silica Nanomatrices Promote In Vitro Maturation of Anti-tumor Dendritic Cells via Activation of Focal Adhesion Kinase. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2314358. [PMID: 39268785 DOI: 10.1002/adma.202314358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 08/12/2024] [Indexed: 09/15/2024]
Abstract
The efficacy of dendritic cell (DC)-based cancer vaccines is critically determined by the functionalities of in vitro maturated DCs. The maturation of DCs typically relies on chemicals that are cytotoxic or hinder the ability of DCs to efficiently activate the antigen-specific cytotoxic T-lymphocytes (CTLs) against tumors. Herein, the maturation chemicals are replaced with extracellular silica nanomatrices, fabricated by glancing angle deposition, to promote in vitro maturation of murine bone marrow-derived DCs (mBMDCs). The extracellular nanomatrices composed of silica nanozigzags (NZs) enable the generation of mature mBMDCs with upregulated levels of co-stimulatory molecules, C-C chemokine receptor type-7, X-C motif chemokine recetpor-1, DC-specific ICAM-3 grabbing nonintegrin, and enhanced endocytic capacity. The in vitro maturation is partially governed by focal adhesion kinase (FAK) that is mechanically activated in the curved cell adhesions formed at the DC-NZ interfaces. The NZ-maturated mBMDCs can prime the antigen-specific CTLs into programmed cell death protein-1 (PD-1)lowCD44high memory phenotypes in vitro and suppress the growth of tumors in vivo. Meanwhile, the NZ-mediated beneficial effects are also observed in human monocyte-derived DCs. This work demonstrates that the silica NZs promote the anti-tumor capacity of in vitro maturated DCs via the mechanoactivation of FAK, supporting the potential of silica NZs being a promising biomaterial for cancer immunotherapy.
Collapse
Affiliation(s)
- Sze Wah Tam
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Allen Ka Loon Cheung
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Ping Qin
- Department of Biology, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
- Golden Meditech Center for NeuroRegeneration Sciences, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Shiqing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, Jinan University, Guangzhou, 510632, China
- JNU-HKUST Joint Laboratory for Neuroscience and Innovative Drug Research, College of Pharmacy, Jinan University, Guangzhou, 510632, China
| | - Zhifeng Huang
- Department of Chemistry, The Chinese University of Hong Kong (CUHK), Shatin, N.T., Hong Kong SAR, China
- Shenzhen Research Institute of CUHK, No. 10, 2nd Yuexing Road, Nanshan, Shenzhen, Guangdong, 518057, China
| | - Ken Kin Lam Yung
- Department of Science and Environmental Studies, the Education University of Hong Kong, N.T., Hong Kong SAR, China
| |
Collapse
|
2
|
Ma Y, Yang L, Chen Y, Bai X, Qu G, Yao T, Hu X, Wang J, Xu Z, Yu Y, Huang Z. Mesoporous alloy chiral nanoparticles with high production yield and strong optical activities. Chem Commun (Camb) 2023; 59:14551-14554. [PMID: 37990561 DOI: 10.1039/d3cc04354a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Applying galvanic replacement reactions (GRRs) to the host chiral nanoparticles (CNPs) is an exclusive method to generate alloy CNPs with mesoporous structures through chirality transfer. However, the GRR-mediated chirality transfer is too inefficient to impose strong optical activities on the alloy mesoporous CNPs (or m-CNPs). Here we dope the host with gold (Au) to significantly enhance the chirality transfer, and additionally employ the Au adhesion layer to increase the production yield (PY) of binary m-CNPs.
Collapse
Affiliation(s)
- Yicong Ma
- Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Lin Yang
- HKBU Institute for Research and Continuing Education Shenzhen, Guangdong 518057, China
| | - Yu Chen
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Geping Qu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Tao Yao
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| | - Xiangchen Hu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zongxiang Xu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, 201210, China
| | - Zhifeng Huang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
3
|
Ni Z, Qin P, Liu H, Chen J, Cai S, Tang W, Xiao H, Wang C, Qu G, Lin C, Fan Z, Xu ZX, Li G, Huang Z. Significant Enhancement of Circular Polarization in Light Emission through Controlling Helical Pitches of Semiconductor Nanohelices. ACS NANO 2023; 17:20611-20620. [PMID: 37796740 PMCID: PMC10604094 DOI: 10.1021/acsnano.3c07663] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 09/29/2023] [Indexed: 10/07/2023]
Abstract
Circularly polarized light emission (CPLE) can be potentially applied to three-dimensional displays, information storage, and biometry. However, these applications are practically limited by a low purity of circular polarization, i.e., the small optical dissymmetry factor gCPLE. Herein, glancing angle deposition (GLAD) is performed to produce inorganic nanohelices (NHs) to generate CPLE with large gCPLE values. CdSe NHs emit red CPLE with gCPLE = 0.15 at a helical pitch (P) ≈ 570 nm, having a 40-fold amplification of gCPLE compared to that at P ≈ 160 nm. Ceria NHs emit ultraviolet-blue CPLE with gCPLE ≈ 0.06 at P ≈ 830 nm, with a 103-fold amplification compared to that at P ≈ 110 nm. Both the photoluminescence and scattering among the close-packed NHs complicatedly account for the large gCPLE values, as revealed by the numerical simulations. The GLAD-based NH-fabrication platform is devised to generate CPLE with engineerable color and large gCPLE = 10-2-10-1, shedding light on the commercialization of CPLE devices.
Collapse
Affiliation(s)
- Ziyue Ni
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Ping Qin
- Department
of Biology, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Hongshuai Liu
- Department
of Physics, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong
Kong SAR 999077, People’s Republic of China
| | - Jiafei Chen
- School
of Science, Harbin Institute of Technology, Shenzhen 518055, People’s Republic of China
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic
of China
| | - Siyuan Cai
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Wenying Tang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Hui Xiao
- Department
of Chemistry, Guangdong-Hong Kong-Macao Joint Laboratory for Photonic-Thermal-Electrical
Energy Materials and Devices, Southern University
of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Chen Wang
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Geping Qu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
- School
of Chemistry and Chemical Engineering, Harbin
Institute of Technology, Harbin 150001, People’s
Republic of China
| | - Chao Lin
- Department
of Physics, The Chinese University of Hong
Kong, Shatin, New Territories, Hong Kong SAR 999077, People’s Republic
of China
| | - Zhiyong Fan
- Department
of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong SAR 999077, People’s Republic of China
| | - Zong-Xiang Xu
- Department
of Chemistry, Southern University of Science
and Technology, Shenzhen, Guangdong 518055, People’s Republic of China
| | - Guixin Li
- Department
of Materials Science and Engineering, Southern
University of Science and Technology, Shenzhen, Guangdong 518055, People’s Republic
of China
| | - Zhifeng Huang
- Department
of Chemistry, The Chinese University of
Hong Kong, Shatin, New Territories, Hong Kong SAR 999077, People’s Republic of China
| |
Collapse
|
4
|
Han JH, Kim D, Kim J, Kim G, Fischer P, Jeong HH. Plasmonic Nanostructure Engineering with Shadow Growth. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2107917. [PMID: 35332960 DOI: 10.1002/adma.202107917] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/23/2022] [Indexed: 06/14/2023]
Abstract
Physical shadow growth is a vacuum deposition technique that permits a wide variety of 3D-shaped nanoparticles and structures to be fabricated from a large library of materials. Recent advances in the control of the shadow effect at the nanoscale expand the scope of nanomaterials from spherical nanoparticles to complex 3D shaped hybrid nanoparticles and structures. In particular, plasmonically active nanomaterials can be engineered in their shape and material composition so that they exhibit unique physical and chemical properties. Here, the recent progress in the development of shadow growth techniques to realize hybrid plasmonic nanomaterials is discussed. The review describes how fabrication permits the material response to be engineered and highlights novel functions. Potential fields of application with a focus on photonic devices, biomedical, and chiral spectroscopic applications are discussed.
Collapse
Affiliation(s)
- Jang-Hwan Han
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Doeun Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Juhwan Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Gyurin Kim
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| | - Peer Fischer
- Max Planck Institute for Intelligent Systems, Heisenbergstr. 3, 70569, Stuttgart, Germany
- Institute of Physical Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569, Stuttgart, Germany
| | - Hyeon-Ho Jeong
- School of Electrical Engineering and Computer Science, Gwangju Institute of Science and Technology, Gwangju, 61005, Republic of Korea
| |
Collapse
|
5
|
Yang L, Ma Y, Lin C, Qu G, Bai X, Huang Z. Nanohelix-Induced Optical Activity of Liquid Metal Nanoparticles. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200620. [PMID: 35319827 DOI: 10.1002/smll.202200620] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/26/2022] [Indexed: 06/14/2023]
Abstract
Liquid metals (such as gallium or Ga) exist in liquid states under ambient conditions and are hardly sculpted in chiral structures. Herein, through electron-beam evaporation of Ga, hemispherical achiral Ga nanoparticles (NPs) are randomly immobilized along helical surfaces of SiO2 nanohelices (NHs), functioning as a chiral template. Helical assembly of Ga NPs shows chiroplasmonic optical activity owing to collective plasmon-plasmon interactions, which can be tuned as a function of a helical SiO2 pitch (P) and the amount of Ga evaporated. At a P of ≈150 nm, the chiroplasmonic optical activity, evaluated with anisotropic g-factor, can be as large as ≈0.1. Because the SiO2 NHs and Ga NPs have high environmental stability of nanostructures, the chiroplasmonic optical activity shows excellent anti-aging stability, despite slight blue shift and chiroplasmonic degradation for the first 2 weeks. Spontaneous oxidation of the Ga NPs enables the formation of dense Ga2 O3 layers covering Ga cores to prevent further oxidation and thus to stabilize the chiroplasmonic optical activity. This work devises an alternative approach to impose optical activity onto Ga NPs, providing an additional degree of freedom (i.e., chirality) for Ga-based flexible electronic devices to develop advanced applications of 3D display, circular polarizers, bio-imaging, and bio-detection.
Collapse
Affiliation(s)
- Lin Yang
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Yicong Ma
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China
| | - Chao Lin
- Department of Physics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Geping Qu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Xiaopeng Bai
- Department of Physics, The Chinese University of Hong Kong, Sha Tin, Hong Kong SAR, China
| | - Zhifeng Huang
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Hong Kong SAR, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, Golden Meditech Centre for Neuro Regeneration Sciences, HKBU, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
6
|
Liu J, Yang L, Qin P, Zhang S, Yung KKL, Huang Z. Recent Advances in Inorganic Chiral Nanomaterials. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005506. [PMID: 33594700 DOI: 10.1002/adma.202005506] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Revised: 10/22/2020] [Indexed: 05/27/2023]
Abstract
Inorganic nanoparticles offer a multifunctional platform for biomedical applications in drug delivery, biosensing, bioimaging, disease diagnosis, screening, and therapies. Homochirality prevalently exists in biological systems composed of asymmetric biochemical activities and processes, so biomedical applications essentially favor the usage of inorganic chiral nanomaterials, which have been widely studied in the past two decades. Here, the latest investigations are summarized including the characterization of 3D stereochirality, the bionic fabrication of hierarchical chirality, extension of the compositional space to poly-elements, studying optical activities with the (sub-)single-particle resolution, and the experimental demonstration in biomedical applications. These advanced studies pave the way toward fully understanding the two important chiral effects (i.e., the chiroptical and enantioselective effects), and prospectively promote the flexible design and fabrication of inorganic chiral nanoparticles with engineerable functionalities to solve diverse practical problems closely associated with environment and public health.
Collapse
Affiliation(s)
- Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Lin Yang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
| | - Ping Qin
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Shiqing Zhang
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Biology, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ken Kin Lam Yung
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Department of Biology, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong, 518057, China
- Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
7
|
Ni B, Li Y, Liu W, Li B, Li H, Yang Y. Circularly polarized luminescence from structurally coloured polymer films. Chem Commun (Camb) 2021; 57:2796-2799. [PMID: 33599669 DOI: 10.1039/d1cc00201e] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Structurally coloured polymer films with circularly polarized luminescence (CPL) properties were prepared by the photopolymerization of cholesteric liquid crystal mixtures doped with aggregation-induced emission (AIE)-active tetraphenylethylene. The films show good CPL performance with the luminescence dissymmetry factor up to 0.58 and enhanced fluorescence efficiency.
Collapse
Affiliation(s)
- Baining Ni
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| | - Hongkun Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China. and State Key Laboratory of Luminescent Materials and Devices, Key Laboratory of Luminescence from Molecular Aggregates of Guangdong Province, Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou, 510640, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.
| |
Collapse
|
8
|
Dong B, Liu J, Xue M, Ni Z, Guo Y, Huang Z, Zhang Z. One-Fold Anisotropy of Silver Chiral Nanoparticles Studied by Second-Harmonic Generation. ACS Sens 2021; 6:454-460. [PMID: 33332104 DOI: 10.1021/acssensors.0c02031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Second-harmonic generation (SHG) integrated with diverse nonlinear optical activity characterization has high sensitivity to detect the symmetry of materials at an interface, but the study is in its infancy. Here, we employ SHG with linear dichroism (or SHG-LD) to study the chiroptical origin of silver (Ag) chiral nanoparticles (CNPs) deposited by glancing angle deposition (GLAD). It is found that Ag CNPs show the chiroptical activity ascribed to not only the structural chirality (i.e., atomically chiral lattices) but also one-fold anisotropy at an interface due to the substrate rotation during GLAD. Therefore, the SHG-LD shows great potential to provide valuable complementary information to study the chiroptical properties of chiral metamaterials.
Collapse
Affiliation(s)
- Bin Dong
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong 518057, China
| | - Man Xue
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ziyue Ni
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yuan Guo
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, Shenzhen, Guangdong 518057, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zhen Zhang
- Beijing National Laboratory of Molecular Sciences, State Key Laboratory of Molecular Reaction Dynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Ni Z, Zhu Y, Liu J, Yang L, Sun P, Gu M, Huang Z. Extension of Compositional Space to the Ternary in Alloy Chiral Nanoparticles through Galvanic Replacement Reactions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2001321. [PMID: 33304745 PMCID: PMC7710001 DOI: 10.1002/advs.202001321] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 08/14/2020] [Indexed: 06/01/2023]
Abstract
Metal chiral nanoparticles (CNPs), composed of atomically chiral lattices, are an emerging chiral nanomaterial showing unique asymmetric properties. Chirality transmission from the host CNPs mediated with galvanic replacement reactions (GRRs) has been carried out to extend their compositional space from the unary to binary. Further compositional extension to, e.g., the ternary is of fundamental interest and in practical demand. Here, layer-by-layer glancing angle deposition is used to dope galvanically "inert" dopant Au in the host Cu CNPs to generate binary Cu:Au CNPs. The "inert" dopants serve as structural scaffold to assist the chirality transmission from the host to the third metals (M: Pt and Ag) cathodically precipitating in the CNPs, enabling the formation of polycrystalline ternary Cu:Au:M CNPs whose compositions are tailored with engineering the GRR duration. More scaffold Au atoms are favored for the faster chirality transfer, and the Au-assisted chirality transfer follows the first-order kinetics with the reaction rate coefficient of ≈0.3 h-1 at room temperature. This work provides further understanding of the GRR-mediated chirality transfer and paves the way toward enhancing the application functions in enantiodifferentiation, enantioseperation, asymmetric catalysis, bioimaging, and biodetection.
Collapse
Affiliation(s)
- Ziyue Ni
- Department of PhysicsHong Kong Baptist University (HKBU)Kowloon TongKowloonHong Kong SARChina
| | - Yuanmin Zhu
- Department of Materials Science and EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
- SUSTech Academy for Advanced Interdisciplinary studiesSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Junjun Liu
- Department of PhysicsHong Kong Baptist University (HKBU)Kowloon TongKowloonHong Kong SARChina
- HKBU Institute of Research and Continuing EducationShenzhenGuangdong518057China
| | - Lin Yang
- Department of PhysicsHong Kong Baptist University (HKBU)Kowloon TongKowloonHong Kong SARChina
- HKBU Institute of Research and Continuing EducationShenzhenGuangdong518057China
| | - Peng Sun
- Department of PhysicsHong Kong Baptist University (HKBU)Kowloon TongKowloonHong Kong SARChina
- Department of Materials Science and EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Meng Gu
- Department of Materials Science and EngineeringSouthern University of Science and Technology (SUSTech)Shenzhen518055China
| | - Zhifeng Huang
- Department of PhysicsHong Kong Baptist University (HKBU)Kowloon TongKowloonHong Kong SARChina
- HKBU Institute of Research and Continuing EducationShenzhenGuangdong518057China
- Institute of Advanced MaterialsState Key Laboratory of Environmental and Biological AnalysisGolden Meditech Centre for NeuroRegeneration SciencesHKBUKowloon TongKowloonHong Kong SARChina
| |
Collapse
|
10
|
Yang L, Liu J, Sun P, Ni Z, Ma Y, Huang Z. Chiral Ligand-Free, Optically Active Nanoparticles Inherently Composed of Chiral Lattices at the Atomic Scale. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2001473. [PMID: 32419372 DOI: 10.1002/smll.202001473] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/30/2020] [Indexed: 06/11/2023]
Abstract
Bulk metals lack chirality. Recently, metals have been sculptured with metastable chirality varying from the micro- to nano-scale. The manipulation of molecular chirality could be novelly performed using metals composed of chiral lattices at atomic scales (i.e., chiral nanoparticles or CNPs) if one could fundamentally understand the interactions between molecules and the chiral metal lattices. The incorporation of chiral ligands has been generally adapted to form metal CNPs. However, post-fabrication removal of chiral ligands usually causes relaxation of the metastable chiral lattices to thermodynamically stable achiral structures, and thus the coexisting chiral ligands will unavoidably disturb or screen the interactions of interest. Herein, a concept of metal CNPs that are free of chiral ligands and consist of atomically chiral lattices is introduced. Without chiral ligands, shear forces applied by substrate rotation along with the translation of incident atoms lead to imposing the metastable chiral lattices onto metals. Metal CNPs show not only the chiroptical effect but the enantiospecific interactions of chiral lattices and molecules. These two unique chiral effects have resulted in the applications of enantiodifferentiation and asymmetric synthesis. Prospectively, the extension in composition space and constituent engineering will apply alloy CNPs to enantiodiscrimination, enantioseperation, bio-imaging, bio-sensing, and asymmetric catalysis.
Collapse
Affiliation(s)
- Lin Yang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China
| | - Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China
| | - Peng Sun
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Ziyue Ni
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Yicong Ma
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| | - Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, The Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing Third Road, South Zone, Hi-Tech Industrial Park Nanshan District, Shenzhen, Guangdong, 518057, China
- Institute of Advanced Materials, State Key Laboratory of Environmental and Biological Analysis, Golden Meditech Centre for NeuroRegeneration Sciences, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
11
|
Sun P, Liu J, Yan M, Huang Z. Helical nanoparticle-induced enantiospecific adsorption of N3 dyes. Chem Commun (Camb) 2018; 54:4270-4273. [DOI: 10.1039/c8cc01836g] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
N3 dyes are enantiospecifically adsorbed on silver helical nanoparticles, and the adsorption enantiospecificity is primarily determined by the helical handedness and maximized at a nominal helical pitch of ∼15 nm.
Collapse
Affiliation(s)
- Peng Sun
- Department of Physics
- Hong Kong Baptist University (HKBU)
- Kowloon
- China
- Department of Materials Science and Engineering
| | - Junjun Liu
- Department of Physics
- Hong Kong Baptist University (HKBU)
- Kowloon
- China
| | - Ming Yan
- Department of Materials Science and Engineering
- Southern University of Science and Technology
- Shenzhen
- China
| | - Zhifeng Huang
- Department of Physics
- Hong Kong Baptist University (HKBU)
- Kowloon
- China
- Institute of Advanced Materials, and Partner State Key Laboratory of Environmental and Biological Analysis
| |
Collapse
|
12
|
Huang Z, Liu J. Chiroptically Active Metallic Nanohelices with Helical Anisotropy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2017; 13. [PMID: 28960853 DOI: 10.1002/smll.201701883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/05/2017] [Indexed: 05/14/2023]
Abstract
Manipulation of circular polarization states of light in the ultraviolet-visible-near infrared range, which cannot be operated using natural materials, is of fundamental interest derived from a wide range of chirality-associated optical, chemical and biological applications. To achieve this objective, chiral metamaterials made of metallic nanohelices (NHs) have been artificially designed and generated. The circular polarization manipulation is as a result of helical anisotropy and localized surface plasmon resonance of metallic NHs, and engineering helical structures and metallic composition gives rise to flexible tailoring of the circular polarization manipulation. Herein, we review the latest development of metallic NHs in terms of fabrication, fundamentally optical and magnetic properties, and chiroptical applications, followed by envisioning prospective applications closely related to molecular chirality. We strongly believe that the helicity-induced anisotropy of metallic NHs will provide us a wide range of opportunities to tackle some prominent problems and challenges intrinsically associated with the natural homochirality.
Collapse
Affiliation(s)
- Zhifeng Huang
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
- Institute of Advanced Materials, Partner State Key Laboratory of Environmental and Biological Analysis, HKBU, Kowloon Tong, Kowloon, Hong Kong SAR, China
- HKBU Institute of Research and Continuing Education, 9F, the Industrialization Complex of Shenzhen Virtual University Park, No. 2 Yuexing 3rd Road, South Zone, Hi-tech Industrial Park, Nanshan District, Shenzhen, 518057, Guangdong Province, China
| | - Junjun Liu
- Department of Physics, Hong Kong Baptist University (HKBU), Kowloon Tong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
13
|
The Effect of Glancing Angle Deposition Conditions on the Morphology of a Silver Nanohelix Array. COATINGS 2017. [DOI: 10.3390/coatings7090140] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Silver nanohelices were grown on smooth substrates using glancing angle deposition and substrate cooling. Various nanohelix arrays were deposited under different deposition conditions—different deposition rates, substrate spin rates, deposition angles, and substrate temperatures. The effect of deposition conditions on the morphology of each nanohelix array in terms of pitch angle, pitch length, wire diameter, and radius of curvature was investigated. The dependence of circular dichroism on the size of the nanohelix arrays was also measured and demonstrated.
Collapse
|