1
|
Zhang M, Chen J, Zhao X, Mao X, Li C, Diwu J, Wu G, Chai Z, Wang S. A MOF@Metal Oxide Heterostructure Induced by Post-Synthetic Gamma-Ray Irradiation for Catalytic Reduction. Angew Chem Int Ed Engl 2024; 63:e202405213. [PMID: 38637914 DOI: 10.1002/anie.202405213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/20/2024]
Abstract
Metal-organic framework (MOF) based heterostructures, which exhibit enhanced or unexpected functionality and properties due to synergistic effects, are typically synthesized using post-synthetic strategies. However, several reported post-synthetic strategies remain unsatisfactory, considering issues such as damage to the crystallinity of MOFs, presence of impure phases, and high time and energy consumption. In this work, we demonstrate for the first time a novel route for constructing MOF based heterostructures using radiation-induced post-synthesis, highlighting the merits of convenience, ambient conditions, large-scale production, and notable time and energy saving. Specifically, a new HKUST-1@Cu2O heterostructure was successfully synthesized by simply irradiating a methanol solution dispersed of HKUST-1 with gamma ray under ambient conditions. The copper source of Cu2O was directly derived from in situ radiation etching and reduction of the parent HKUST-1, without the use of any additional copper reagents. Significantly, the resulting HKUST-1@Cu2O heterostructure exhibits remarkable catalytic performance, with a catalytic rate constant nearly two orders of magnitude higher than that of the parent HKUST-1.
Collapse
Affiliation(s)
- Mingxing Zhang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Junchang Chen
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xiaofang Zhao
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Xuanzhi Mao
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Chunyang Li
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Juan Diwu
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Guozhong Wu
- Shanghai Institute of Applied Physics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Zhifang Chai
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| | - Shuao Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Collaborative Innovation Center of Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
2
|
Lee KT, Ho KY, Chen WH, Kwon EE, Lin KYA, Liou SR. Construction and demolition waste as a high-efficiency advanced process for organic pollutant degradation in Fenton-like reaction to approach circular economy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122246. [PMID: 37516293 DOI: 10.1016/j.envpol.2023.122246] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2023] [Revised: 07/17/2023] [Accepted: 07/20/2023] [Indexed: 07/31/2023]
Abstract
The Fenton-like reaction is a promising organic wastewater treatment reaction among advanced oxidation processes (AOP), which has emerged to replace the conventional Fenton reaction. Recycled construction and demolition waste (CDW), which is porous and rich in iron, manganese, and magnesium, can be reused as a Fenton-like catalyst. This study proposes an AOP wastewater treatment strategy using recycled porous CDW mixed with hydrogen peroxide (H2O2) to decompose methylene blue (MB) wastewater. According to the apparent first-order rate (Kapp) of 10 ppm MB adsorption, CDW-3, having the highest specific surface area, also has the highest Kapp of 0.23 min-1 g-1. The optimized conditions recommended by the Taguchi method include a 0.3 g mL-1 CDW-3 concentration, a 0.254 g mL-1 H2O2 concentration, and 10 ppm MB, resulting in an about 2.01 min-1Kapp value. In addition, MB concentration is observed as the most influential factor for Kapp, which decreases with increasing MB concentration and is about 0.62 min-1 at 1000 ppm MB. Repeating the Fenton-like reaction five times at 100 p.m. MB using the same CDW-3, the Kapp is about 0.64 min-1, which is 86% of the initial run. The synergistic effect index (ξ) is defined to quantify the level of interaction between CDW and H2O2, which produces free radicals during the Fenton-like process. The ξ of CDW-3 is about 2.16. Overall, it is demonstrated that CDW is a promising catalyst for Fenton-like reactions, and the synergistic effect index (ξ) can be used as a reference index to evaluate the catalytic generation of free radicals between the catalyst and H2O2.
Collapse
Affiliation(s)
- Kuan-Ting Lee
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan
| | - Kuan-Yu Ho
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan, 701, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung, 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung, 411, Taiwan.
| | - Eilhann E Kwon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Kun-Yi Andrew Lin
- Department of Environmental Engineering & Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, 250 Kuo-Kuang Road, Taichung, Taiwan; Institute of Analytical and Environmental Sciences, National Tsing Hua University, Hsinchu, Taiwan
| | - Shuenn-Ren Liou
- Department of Architecture, National Cheng Kung University, Tainan, 701, Taiwan
| |
Collapse
|
3
|
Zhao Y, Bi S, Gao F, Wang L. Preparation of Cu
2
O/Au Composite Nanomaterials for Effective Reduction of 4‐Nitrophenol. ChemistrySelect 2023. [DOI: 10.1002/slct.202204665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Affiliation(s)
- Yang Zhao
- Hebei Key Laboratory of Nano-biotechnology, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Shiliang Bi
- Hebei Key Laboratory of Nano-biotechnology, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Faming Gao
- Hebei Key Laboratory of Nano-biotechnology, College of Environmental and Chemical Engineering Yanshan University Qinhuangdao 066004 China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| |
Collapse
|
4
|
Zhang Y, Ren D. Mechanisms for Catalytic CO Oxidation on SiAu n ( n = 1-5) Cluster. Molecules 2023; 28:1917. [PMID: 36838905 PMCID: PMC9962203 DOI: 10.3390/molecules28041917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 02/14/2023] [Accepted: 02/14/2023] [Indexed: 02/19/2023] Open
Abstract
Significant progress has been made in understanding the reactivity and catalytic activity of gas-phase and loaded gold clusters for CO oxidation. However, little research has focused on mixed silicon/gold clusters (SiAun) for CO oxidation. In the present work, we performed density function theory (DFT) calculations for a SiAun (n = 1-5) cluster at the CAM-B3LYP/aug-cc-pVDZ-PP level and investigated the effects on the reactivity and catalytic activity of the SiAun cluster for CO oxidation. The calculated results show that the effect is very low for the activation barriers for the formation of OOCO intermediates on SiAu clusters, SiAu3 clusters, and SiAu5 clusters in the catalytic oxidation of CO and the activation energy barriers for the formation of OCO intermediates on OSiAu3, OSiAu4, and OSiAu5. Our calculations show that, compared with the conventional small Au cluster, the incorporation of Si enhances the catalytic performance towards CO oxidation.
Collapse
Affiliation(s)
| | - Dasen Ren
- College of Chemical Engineering, Guizhou Minzu University, Guiyang 550025, China
| |
Collapse
|
5
|
Zhang Q, Somerville RJ, Chen L, Yu Y, Fei Z, Wang S, Dyson PJ, Min D. Carbonized wood impregnated with bimetallic nanoparticles as a monolithic continuous-flow microreactor for the reduction of 4-nitrophenol. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130270. [PMID: 36332280 DOI: 10.1016/j.jhazmat.2022.130270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/08/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Porous monolithic microreactors show great promise in catalytic applications, but are usually based on non-renewable materials. Herein, we demonstrate a Ni/Au nanoparticle-decorated carbonized wood (Ni/Au-CW) monolithic membrane microreactor for the efficient reduction of 4-nitrophenol. The hierarchical porous wood structure supports uniformly distributed heterobimetallic Ni/Au nanoparticles. As a consequence of these two factors, both mass diffusion and electron transfer are enhanced, resulting in a superior reduction efficiency of 99.5% as the liquor flows through the optimised Ni/Au-CW membrane. The reaction mechanism was investigated by electron paramagnetic resonance spectroscopy and density functional theory calculations. The proposed attraction-repulsion mechanism facilitated by the bimetallic nanoparticles has been ascribed to the different electronegativities of Ni and Au. The Ni/Au-CW membrane exhibits excellent catalytic performance and could be applicable to other catalytic transformations.
Collapse
Affiliation(s)
- Qingtong Zhang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Rosie J Somerville
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Lan Chen
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Yuanyuan Yu
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zhaofu Fei
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Shuangfei Wang
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Bossco Environmental Protection Technology Co., Ltd, Nanning 530007, PR China
| | - Paul J Dyson
- Institut des Sciences et Ingénierie Chimiques, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Douyong Min
- College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| |
Collapse
|
6
|
CuxOAu–ZnO nano/microstructures with various morphologies and their catalytic applications in reduction in 4-nitrophenol. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2023. [DOI: 10.1007/s13738-022-02741-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
7
|
Pitzalis E, Psaro R, Evangelisti C. From metal vapor to supported single atoms, clusters and nanoparticles: Recent advances to heterogeneous catalysts. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2021.120782] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Nasiruzzaman Shaikh M, Aziz A, Shakil Hussain SM, Helal A. Rh‐Complex Supported on Magnetic Nanoparticles as Catalysts for Hydroformylations and Transfer Hydrogenation Reactions. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202100759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Nasiruzzaman Shaikh
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Abdul Aziz
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - S. M. Shakil Hussain
- Center for Integrative Petroleum Research (CIPR) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| | - Aasif Helal
- Interdisciplinary Research Center for Hydrogen and Energy Storage (IRC-HES) King Fahd University of Petroleum and Minerals (KFUPM) Dhahran 31261 Saudi Arabia
| |
Collapse
|
9
|
Chen S, Liu H. Self-reductive palladium nanoparticles loaded on polydopamine-modified MXene for highly efficient and quickly catalytic reduction of nitroaromatics and dyes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.128038] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
10
|
Bagheri M, Melillo A, Ferrer B, Masoomi MY, Garcia H. Quasi-HKUST Prepared via Postsynthetic Defect Engineering for Highly Improved Catalytic Conversion of 4-Nitrophenol. ACS APPLIED MATERIALS & INTERFACES 2022; 14:978-989. [PMID: 34970910 PMCID: PMC8762642 DOI: 10.1021/acsami.1c19862] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/12/2021] [Indexed: 06/14/2023]
Abstract
HKUST-1 [Cu3(BTC)2(H2O)3]n·nH2OMeOH was submitted to thermolysis under controlled conditions at temperatures between 100 and 300 °C. This treatment resulted in partial ligand decarboxylation, generating coordinatively unsaturated Cu2+ sites with extra porosity on the way to the transformation of the initial HKUST-1 framework to CuO. The obtained materials retaining in part the HKUST-1 original crystal structure (quasi-MOFs) were used to promote 4-nitrophenol conversion to 4-aminophenol. Because of the partial linker decomposition, the quasi-MOF treated at 240 °C contains coordinatively unsaturated Cu2+ ions distributed throughout the Q-HKUST lattice together with micro- and mesopores. These defects explain the excellent catalytic performance of QH-240 with an apparent rate constant of 1.02 × 10-2 s-1 in excess of NaBH4 and an activity factor and half-life time of 51 s-1g-1 and 68 s, respectively, which is much better than that of the HKUST parent. Also, the induction period decreases from the order of minutes to seconds in the presence of the HKUST and QH-240 catalysts, respectively. Kinetic studies fit with the Langmuir-Hinshelwood theory in which both 4-nitrophenol and BH4- should be adsorbed onto the catalyst surface. The values of the true rate constant (k), the adsorption constants of 4-nitrophenol and BH4- (K4-NP and KBH4-), as well as the activation energy are in agreement with a rate-determining step involving the reduction of 4-nitrophenol by the surface-bound hydrogen species.
Collapse
Affiliation(s)
- Minoo Bagheri
- Department
of Chemistry, Faculty of Science, Arak University, Arak 3848177584, Iran
| | - Arianna Melillo
- Instituto
Universitario de Tecnología Química Consejo Superior
de Investigaciones Científica and Departamento de Química, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, Valencia 46022, Spain
| | - Belen Ferrer
- Instituto
Universitario de Tecnología Química Consejo Superior
de Investigaciones Científica and Departamento de Química, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, Valencia 46022, Spain
| | | | - Hermenegildo Garcia
- Instituto
Universitario de Tecnología Química Consejo Superior
de Investigaciones Científica and Departamento de Química, Universitat Politecnica de Valencia, Av. De los Naranjos s/n, Valencia 46022, Spain
| |
Collapse
|
11
|
Liu G, Xiong Q, Xu Y, Fang Q, Leung KCF, Sang M, Xuan S, Hao L. Sandwich-structured MXene@Au/polydopamine nanosheets with excellent photothermal-enhancing catalytic activity. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127860] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Nguyen MT, Deng L, Yonezawa T. Control of nanoparticles synthesized via vacuum sputter deposition onto liquids: a review. SOFT MATTER 2021; 18:19-47. [PMID: 34901989 DOI: 10.1039/d1sm01002f] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Sputter deposition onto a low volatile liquid matrix is a recently developed green synthesis method for metal/metal oxide nanoparticles (NPs). In this review, we introduce the synthesis method and highlight its unique features emerging from the combination of the sputter deposition and the ability of the liquid matrix to regulate particle growth. Then, manipulating the synthesis parameters to control the particle size, composition, morphology, and crystal structure of NPs is presented. Subsequently, we evaluate the key experimental factors governing the particle characteristics and the formation of monometallic and alloy NPs to provide overall directions and insights into the preparation of NPs with desired properties. Following that, the current understanding of the growth and formation mechanism of sputtered particles in liquid media, in particular, ionic liquids and liquid polymers, during and after sputtering is emphasized. Finally, we discuss the challenges that remain and share our perspectives on the future prospects of the synthesis method and the obtained NPs.
Collapse
Affiliation(s)
- Mai Thanh Nguyen
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Lianlian Deng
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| | - Tetsu Yonezawa
- Division of Materials Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
| |
Collapse
|
13
|
Majdoub M, Amedlous A, Anfar Z, Moussaoui O. MoS 2 nanosheets/silver nanoparticles anchored onto textile fabric as "dip catalyst" for synergistic p-nitrophenol hydrogenation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:64674-64686. [PMID: 34313935 DOI: 10.1007/s11356-021-14882-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
Attaining a synergistic merge between the performance of homogenous catalysts and the recyclability of heterogeneous catalysts remains until now a concerning issue. The main challenge is to design efficient, low-cost catalyst with outstanding reusability, facile recovery, and ease of retrieval and monitoring between the reuses. Despite the vast efforts in the development of silver nanoparticle-based catalyst for the reaction of hydrogenation of 4-nitrophenol, the aforementioned criteria are infrequently found in a chosen system. Herein, we report a MoS2 nanosheet/silver nanoparticle-anchored PES-based textile as an efficient and recyclable "dip catalyst" for the 4-NP hydrogenation in the presence of sodium bohydride as model reaction. The textile fabric-based catalyst was processed via a simple sono-coating approach using MoS2 nanosheets as first coating layer followed by an in situ deposition of silver nanoparticles. The "dip catalyst" fabric is rapidly and easily removed from the reaction and then reinserted in the batch system to attain over 10 reaction cycles. Additionally, the produced textile materials were characterized via spectroscopic and microscopic tools such as FTIR, XRD, SEM, and EDX. Moreover, the sources of the high catalytic activity are also discussed and a plausible reaction mechanism is suggested. The present study demonstrates the potential of metal nanoparticle-textile material combination for future applications in chemical sustainable catalysis for environmental remediation purposes.
Collapse
Affiliation(s)
- Mohammed Majdoub
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, 20000, Casablanca, Morocco.
| | - Abdallah Amedlous
- Laboratory of Materials, Catalysis & Valorization of Natural Resources, Hassan II University, 20000, Casablanca, Morocco.
| | - Zakaria Anfar
- Laboratory of Materials & Environment, Ibn Zohr University, 80000, Agadir, Morocco
| | - Oussama Moussaoui
- Laboratory of Applied Organic Chemistry, Faculty of Science and Techniques, Sidi Mohamed Ben Abdellah University, 2202, Fes, Morocco
| |
Collapse
|
14
|
Ye J, Wang S, Li G, He B, Chen X, Cui Y, Zhao W, Sun J. Insight into the Morphology-Dependent Catalytic Performance of CuO/CeO 2 Produced by Tannic Acid for Efficient Hydrogenation of 4-Nitrophenol. Chem Asian J 2021; 16:3371-3384. [PMID: 34431617 DOI: 10.1002/asia.202100696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/03/2021] [Indexed: 11/08/2022]
Abstract
The construction of a heterogeneous nanocatalyst with outstanding catalytic performance via an environmentally benign and cost-effective synthetic category has long been one of the challenges in nanotechnology. Herein, we synthesized highly efficient and low-cost mesoporous morphology-dependent CuO/CeO2 -Rods and CuO/CeO2 -Cubes catalysts by employing a green and multifunctional polyphenolic compound (tannic acid) as the stabilizer and chelating agent for 4-nitrophenol (4-NP) reduction reaction. The CuO/CeO2 -Rods exhibited excellent performance, of which the activity was 3.2 times higher than that of CuO/CeO2 -Cubes. This can be connected with the higher density of oxygen vacancy on CeO2 -Rods (110) than CeO2 -Cubes (100), the oxygen vacancy favors anchoring CuO species on the CeO2 support, which promotes the strong interaction between finely dispersed CuO and CeO2 -Rods at the interfacial positions and facilitates the electron transfer from BH4 - to 4-NP. The synergistic catalytic mechanism illustrated that 4-NP molecules preferentially adsorbed on the CeO2 , while H2 from BH4 - dissociated over CuO to form highly active H* species, contributing to achieving efficient hydrogenation of 4-NP. This study is expected to shed light on designing and synthesizing cost-effective and high-performance nanocatalysts through a greener synthetic method for the areas of catalysis, nanomaterial science and engineering, and chemical synthesis.
Collapse
Affiliation(s)
- Junqing Ye
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Shuaijun Wang
- School of Energy and Power Engineering, Jiangsu University, Zhenjiang, 212013, P. R. China
| | - Gen Li
- School of Mechanical Engineering, Tianjin University, Tianjin, 300350, P. R. China
| | - Bin He
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xinyan Chen
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Yuandong Cui
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Wanting Zhao
- School of Chemistry and Chemical Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Jian Sun
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China.,Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
15
|
Bimetallic nanocomposite (Ag-Au, Ag-Pd, Au-Pd) synthesis using gum kondagogu a natural biopolymer and their catalytic potentials in the degradation of 4-nitrophenol. Int J Biol Macromol 2021; 190:159-169. [PMID: 34480903 DOI: 10.1016/j.ijbiomac.2021.08.211] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 02/08/2023]
Abstract
Bimetallic nanoparticles (BNPs) constitute two different metal elements and exhibit relatively superior mechanistic and catalytic efficacies owing to their synergistic functions over monometallic nanoparticles. In the present study various bimetallic Ag-Au, Ag-Pd, Au-Pd nanoparticles were synthesized using a natural biopolymer gum kondagogu (GK) as a reducing and capping agent, by a simple and cost-effective method. The synthesized BNPs when characterized using UV-vis spectroscopy revealed a specific surface plasmon resonance band (SPR) of each nanocomposite. The average particle size of Ag-Au, Ag-Pd, and Au-Pd BNPs was found to be 23 ± 10.3, 21 ± 7.6, and 23 ± 9.4 nm respectively based on transmission electron microscopy analysis. Surface morphology and functional groups on the gum matrix of GK-BNPs were analyzed by XRD and FT-IR respectively. The bimetallic nanocomposites were evaluated for their catalytic reduction of 4-nitrophenol (4-NP) to 4-aminophenol in the presence of NaBH4. The kinetic studies performed, depicted rate constants for Ag-Au, Ag-Pd, and Au-PdNPs as 0.31, 0.39, and 0.28 min-1 respectively. The catalytic efficiencies of three bimetallic nanocomposites were of the following order Ag-Pd > Ag-Au > Au-Pd. This study establishes the catalytic potentials of the three different bimetallic nanocomposites in the reduction of 4-NP an environmental pollutant, and the impact of their synergistic property.
Collapse
|
16
|
López-Martín R, Burgos BS, Normile PS, De Toro JA, Binns C. Gas Phase Synthesis of Multi-Element Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2803. [PMID: 34835568 PMCID: PMC8618514 DOI: 10.3390/nano11112803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/01/2021] [Accepted: 10/04/2021] [Indexed: 11/16/2022]
Abstract
The advantages of gas-phase synthesis of nanoparticles in terms of size control and flexibility in choice of materials is well known. There is increasing interest in synthesizing multi-element nanoparticles in order to optimize their performance in specific applications, and here, the flexibility of material choice is a key advantage. Mixtures of almost any solid materials can be manufactured and in the case of core-shell particles, there is independent control over core size and shell thickness. This review presents different methods of producing multi-element nanoparticles, including the use of multiple targets, alloy targets and in-line deposition methods to coat pre-formed cores. It also discusses the factors that produce alloy, core-shell or Janus morphologies and what is possible or not to synthesize. Some applications of multi-element nanoparticles in medicine will be described.
Collapse
Affiliation(s)
| | | | | | | | - Chris Binns
- Departamento de Física Aplicada, Instituto Regional de Investigación Científica Aplicada (IRICA), Universidad de Castilla la Mancha, 13071 Ciudad Real, Spain; (R.L.-M.); (B.S.B.); (P.S.N.); (J.A.D.T.)
| |
Collapse
|
17
|
Li K, Gong K, Liu J, Yang Y, Nabi I, Bacha AUR, Cheng H, Han J, Zhang L. New insights into the role of sulfite in BiOX photocatalytic pollutants elimination: In-operando generation of plasmonic Bi metal and oxygen vacancies. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126207. [PMID: 34102353 DOI: 10.1016/j.jhazmat.2021.126207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 05/10/2021] [Accepted: 05/21/2021] [Indexed: 06/12/2023]
Abstract
Photocatalysis has been regarded as a sustainable strategy for wastewaters remediation, and sulfite addition could significantly accelerate the photocatalytic performances. However, the related mechanisms are still not well understood. Here, we for the first time found that plasmonic Bi and oxygen vacancies were in-operando generated on BiOX (X = Cl, Br, I) in the presence of sulfite under light irradiation. The oxidative degradation rate constants of 4-nitrophenol, bisphenol A, and phenol were improved by about 11.5, 4.7, and 12.2 times on BiOBr and 9.1, 1.6, and 3.1 times on BiOCl with addition of 5 mM sulfite, while the photocatalytic reduction rate of 4-nitrophenol to 4-aminophenol was promoted by approximate 31.7 times on BiOI. The results indicated that sulfite could improve the photooxidation ability of BiOBr and BiOCl and the photoreduction performance of BiOI, resulted from the improved light absorption and separation of photogenerated charge carriers. This work can provide exploratory platforms for understanding and maximizing the sulfite-assisted BiOX photocatalysis.
Collapse
Affiliation(s)
- Kejian Li
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Kedong Gong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Juan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yang Yang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Iqra Nabi
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Aziz-Ur-Rahim Bacha
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Hanyun Cheng
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jin Han
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, People's Republic of China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China.
| |
Collapse
|
18
|
Sun J, Li M, Sun X, Wang L, Han P, Qi G, Gao D, Zhang L, Tao S. Copper-Based Integral Catalytic Impeller for the Rapid Catalytic Reduction of 4-Nitrophenol. ACS OMEGA 2021; 6:21784-21791. [PMID: 34471780 PMCID: PMC8388078 DOI: 10.1021/acsomega.1c03458] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 07/30/2021] [Indexed: 05/31/2023]
Abstract
The integral catalytic impeller can simultaneously improve reaction efficiency and avoid the problem of catalyst separation, which has great potential in applying heterogeneous catalysis. This paper introduced a strategy of combining electroless copper plating with 3D printing technology to construct a pluggable copper-based integral catalytic agitating impeller (Cu-ICAI) and applied it to the catalytic reduction of 4-nitrophenol (4-NP). The obtained Cu-ICAI exhibits very excellent catalytic activity. The 4-NP conversion rate reaches almost 100% within 90 s. Furthermore, the Cu-ICAI can be easily pulled out from the reactor to be repeatedly used more than 15 times with high performance. Energy-dispersive spectrometry, X-ray diffraction, and X-ray photoelectron spectroscopy characterizations show that the catalyst obtained by electroless copper plating is a ternary Cu-Cu2O-CuO composite catalyst, which is conducive to the electron transfer process. This low-cost, facile, and versatile strategy, combining electroless plating and 3D printing, may provide a new idea for the preparation of the integral impeller with other metal catalytic activities.
Collapse
Affiliation(s)
- Jiawei Sun
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Min Li
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Xueyan Sun
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Lu Wang
- School
of Energy and Power Engineering, Dalian
University of Technology, Dalian 116024, P. R. China
| | - Peng Han
- SINOPEC
Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Guicun Qi
- SINOPEC
Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Dali Gao
- SINOPEC
Beijing Research Institute of Chemical Industry, Beijing 100013, P. R. China
| | - Lijing Zhang
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| | - Shengyang Tao
- School
of Chemical Engineering, Dalian University
of Technology, Dalian 116024, P. R. China
| |
Collapse
|
19
|
Global minima and structural properties of Au Fe nanoalloys from a Mexican Enhanced Genetic Algorithm-based Density Functional Theory. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Nanostructured silica-supported gold: Effect of nanoparticle size distribution and electronic state on its catalytic properties in oxidation reactions. Catal Today 2021. [DOI: 10.1016/j.cattod.2020.08.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
21
|
Sahoo L, Mondal S, Beena NC, Gloskovskii A, Manju U, Topwal D, Gautam UK. 3D Porous Polymeric-Foam-Supported Pd Nanocrystal as a Highly Efficient and Recyclable Catalyst for Organic Transformations. ACS APPLIED MATERIALS & INTERFACES 2021; 13:10120-10130. [PMID: 33617231 DOI: 10.1021/acsami.1c00497] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The efficient recovery of noble metal nanocrystals used in heterogeneous organic transformations has remained a significant challenge, hindering their use in industry. Herein, highly catalytic Pd nanoparticles (NPs) were first prepared having a yield of >98% by a novel hydrothermal method using PVP as the reducing cum stabilizing agent that exhibited excellent turnover frequencies of ∼38,000 h-1 for Suzuki-Miyaura cross-coupling and ∼1200 h-1 for catalytic reduction of nitroarene compounds in a benign aqueous reaction medium. The Pd NPs were more efficient for cross-coupling of aryl compounds with electron-donating substituents than with electron-donating ones. Further, to improve their recyclability, a strategy was developed to embed these Pd NPs on mechanically robust polyurethane foam (PUF) for the first time and a "dip-catalyst" (Pd-PUF) containing 3D interconnected 100-500 μm pores was constructed. The PUF was chosen as the support with an expectation to reduce the fabrication cost of the "dip-catalyst" as the production of PUF is already commercialized. Pd-PUF could be easily separated from the reaction aliquot and reused without any loss of activity because the leaching of Pd NPs was found to be negligible in the various reaction mixtures. We show that the Pd-PUF could be reused for over 50 catalytic cycles maintaining a similar activity. We further demonstrate a scale-up reaction with a single-reaction 1.5 g yield for the Suzuki-Miyaura cross-coupling reaction.
Collapse
Affiliation(s)
- Lipipuspa Sahoo
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Sanjit Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - Nayana Christudas Beena
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| | - A Gloskovskii
- DESY Photon Science, Deutsches Elektronen-Synchrotron, 22603 Hamburg, Germany
| | - Unnikrishnan Manju
- CSIR -Institute of Minerals and Materials Technology, Bhubaneswar 751013, India
| | - D Topwal
- Institute of Physics, Sachivalaya Marg, Bhubaneswar 751005, India
- Training School Complex, Homi Bhabha National Institute, Anushakti Nagar, Mumbai 400094, India
| | - Ujjal K Gautam
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER)-Mohali, Sector 81, Mohali, SAS, Nagar, Punjab 140306, India
| |
Collapse
|
22
|
The influence of modifying nanoflower and nanostar type Pd coatings on low temperature hydrogen permeability through Pd-containing membranes. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2020.118894] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
23
|
Kottappara R, Pillai SC, Kizhakkekilikoodayil Vijayan B. Copper-based nanocatalysts for nitroarene reduction-A review of recent advances. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108181] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
24
|
Wu S, Wang T, Xu H. Regulating Heterogeneous Catalysis of Gold Nanoparticles with Polymer Mechanochemistry. ACS Macro Lett 2020; 9:1192-1197. [PMID: 35638615 DOI: 10.1021/acsmacrolett.0c00451] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Polymer mechanochemistry has emerged as a unique approach to regulate homogeneous catalysis in chemical transformations. The utilization of polymer mechanochemistry to regulate heterogeneous catalysis, however, still remains to be investigated. In this study, using polymer-grafted gold nanoparticles as the model heterogeneous catalysts, we show that polymer chains can be mechanically ruptured from the surface of gold nanoparticles, and thus, the catalytic activity of gold nanoparticles can be accelerated under sonication. The mechanical activation of polymer-grafted gold nanoparticles only occurs when the grafted polymer chains exceed a threshold molecular weight. This mechanical behavior is similar to those mechanophore-linked polymers. More importantly, further characterizations reveal that the Au-Au bonds instead of the Au-S bonds are broken at the heterointerfaces of polymer chains and gold nanoparticles. Our study unveils an unprecedented characteristic of polymer-grafted metallic nanoparticles in response to external mechanical stress.
Collapse
Affiliation(s)
- Siyao Wu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tao Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hangxun Xu
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui 230026, China
- Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
25
|
Cai R, Martelli F, Vernieres J, Albonetti S, Dimitratos N, Tizaoui C, Palmer RE. Scale-Up of Cluster Beam Deposition to the Gram Scale with the Matrix Assembly Cluster Source for Heterogeneous Catalysis (Catalytic Ozonation of Nitrophenol in Aqueous Solution). ACS APPLIED MATERIALS & INTERFACES 2020; 12:24877-24882. [PMID: 32391685 DOI: 10.1021/acsami.0c05955] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The deposition of precisely controlled clusters from the beam onto suitable supports represents a novel method to prepare advanced cluster-based catalysts. In principle, cluster size, composition, and morphology can be tuned or selected prior to deposition. The newly invented matrix assembly cluster source (MACS) offers one solution to the long-standing problem of low cluster deposition rate. Demonstrations of the cluster activities under realistic reaction conditions are now needed. We deposited elemental silver (Ag) and gold (Au) clusters onto gram-scale powders of commercial titanium dioxide (TiO2) to investigate the catalytic oxidation of nitrophenol (a representative pollutant in water) by ozone in aqueous solution, as relevant to the removal of waste drugs from the water supply. A range of techniques, including scanning transmission electron microscopy (STEM), Brunauer-Emmett-Teller (BET) surface area test, and X-ray photoelectron spectroscopy (XPS), were employed to reveal the catalyst size, morphology, surface area, and oxidation state. Both the Ag and Au cluster catalysts proved active for the nitrophenol ozonation. The cluster catalysts showed activities at least comparable to those of catalysts made by traditional chemical methods in the literature, demonstrating the potential applications of the cluster beam deposition method for practical heterogeneous catalysis in solution.
Collapse
Affiliation(s)
- Rongsheng Cai
- College of Engineering, Swansea University, Bay Campus, Fabian Way, SwanseaSA1 8EN, U.K
| | - Francesca Martelli
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna, Viale Risorgimento, 4, 40136 Bologna, Italy
| | - Jerome Vernieres
- College of Engineering, Swansea University, Bay Campus, Fabian Way, SwanseaSA1 8EN, U.K
| | - Stefania Albonetti
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna, Viale Risorgimento, 4, 40136 Bologna, Italy
| | - Nikolaos Dimitratos
- Department of Industrial Chemistry "Toso Montanari", Alma Mater Studiorum-University of Bologna, Viale Risorgimento, 4, 40136 Bologna, Italy
| | - Chedly Tizaoui
- College of Engineering, Swansea University, Bay Campus, Fabian Way, SwanseaSA1 8EN, U.K
| | - Richard E Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, SwanseaSA1 8EN, U.K
| |
Collapse
|
26
|
|
27
|
Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916154] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic ScienceDepartment of ChemistrySchool of ScienceTianjin University Tianjin 300072 P. R. China
- Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu ProvinceCollege of Chemistry and Chemical EngineeringNorthwest Normal University Lanzhou 730070 P. R. China
| |
Collapse
|
28
|
Deng Y, Zhang Z, Du P, Ning X, Wang Y, Zhang D, Liu J, Zhang S, Lu X. Embedding Ultrasmall Au Clusters into the Pores of a Covalent Organic Framework for Enhanced Photostability and Photocatalytic Performance. Angew Chem Int Ed Engl 2020; 59:6082-6089. [PMID: 31943588 DOI: 10.1002/anie.201916154] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Indexed: 01/09/2023]
Abstract
Gold clusters loaded on various supports have been widely used in the fields of energy and biology. However, the poor photostability of Au clusters on support interfaces under prolonged illumination usually results in loss of catalytic performance. Covalent organic frameworks (COFs) with periodic and ultrasmall pore structures are ideal supports for dispersing and stabilizing Au clusters, although it is difficult to encapsulate Au clusters in the ultrasmall pores. In this study, a two-dimensional (2D) COF modified with thiol chains in its pores was prepared. With -SH groups as nucleation sites, Au nanoclusters (NCs) could grow in situ within the COF. The ultrasmall pores of the COF and the strong S-Au binding energy combine to improve the dispersibility of Au NCs under prolonged light illumination. Interestingly, Au-S-COF bridging as observed in this artificial Z-scheme photocatalytic system is deemed to be an ideal means to increase charge-separation efficiency.
Collapse
Affiliation(s)
- Yang Deng
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Zhen Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Peiyao Du
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xingming Ning
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| | - Yue Wang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Dongxu Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Jia Liu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Shouting Zhang
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China
| | - Xiaoquan Lu
- Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Tianjin, 300072, P. R. China.,Key Laboratory of Bioelectrochemistry and Environmental Analysis of Gansu Province, College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China
| |
Collapse
|
29
|
Humphrey JJL, Kronberg R, Cai R, Laasonen K, Palmer RE, Wain AJ. Active site manipulation in MoS 2 cluster electrocatalysts by transition metal doping. NANOSCALE 2020; 12:4459-4472. [PMID: 32030382 DOI: 10.1039/c9nr10702a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The development of non-platinum group metal catalysts for the hydrogen evolution reaction (HER) in water electrolyser devices is essential for their widespread and sustainable deployment. In recent years, molybdenum disulfide (MoS2) catalysts have received significant attention as they not only exhibit good electrocatalytic HER activity but also, crucially, acid-stability. However, further performance enhancement is required for these materials to be competitive with Pt and to that end transition metal doping of MoS2 has been explored as a route to further increasing its catalytic activity. In this work, cluster beam deposition was employed to produce controlled cobalt-doped MoS2 clusters (MoS2-Co). We demonstrate that, in contrast to previous observations of performance enhancement in MoS2 resulting from nickel doping (MoS2-Ni), the introduction of Co has a detrimental effect on HER activity. The contrasting behaviours of Ni and Co doping are rationalized by density functional theory (DFT) calculations, which suggest that HER-active surface vacancies are deactivated by combination with Co dopant atoms, whilst their activity is retained, or even partially enhanced, by combination with Ni dopant atoms. Furthermore, the adatom dopant-vacancy combination kinetics appear to be more than three orders of magnitude faster in MoS2-Co than for MoS2-Ni. These findings highlight a fundamental difference in the influence of transition metal dopants on the HER performance of MoS2 electrocatalysts and stress the importance of considering surface atomic defects when predicting their behaviour.
Collapse
Affiliation(s)
- Jo J L Humphrey
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| | - Rasmus Kronberg
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Rongsheng Cai
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Kari Laasonen
- Department of Chemistry and Materials Science, Aalto University, P.O. Box 16100, 00076 Aalto, Finland
| | - Richard E Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea, SA1 8EN, UK
| | - Andrew J Wain
- National Physical Laboratory, Hampton Road, Teddington, TW11 0LW, UK.
| |
Collapse
|
30
|
Mousavi S, Nazari B, Keshavarz MH, Bordbar AK. A Simple Method for Safe Determination of the Activity of Palladium on Activated Carbon Catalysts in the Hydrogenation of Cinnamic Acid to Hydrocinnamic Acid. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b06087] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Sajjad Mousavi
- Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr 83145/115, Iran
| | - Behzad Nazari
- Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr 83145/115, Iran
| | - Mohammad H. Keshavarz
- Department of Chemistry, Malek-ashtar University of Technology, Shahin-shahr 83145/115, Iran
| | | |
Collapse
|
31
|
Jiang X, Fan X, Xu W, Zhang R, Wu G. Biosynthesis of Bimetallic Au–Ag Nanoparticles Using Escherichia coli and its Biomedical Applications. ACS Biomater Sci Eng 2019; 6:680-689. [DOI: 10.1021/acsbiomaterials.9b01297] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Xinglu Jiang
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Xiaobo Fan
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Wei Xu
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Rui Zhang
- Medical School of Southeast University, Nanjing 210009, People’s Republic of China
| | - Guoqiu Wu
- Center of Clinical Laboratory Medicine, Zhongda Hospital, Southeast University, Nanjing 210009, People’s Republic of China
| |
Collapse
|
32
|
Three-dimensional Cu/C porous composite: Facile fabrication and efficient catalytic reduction of 4-nitrophenol. J Colloid Interface Sci 2019; 553:768-777. [DOI: 10.1016/j.jcis.2019.06.079] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 05/30/2019] [Accepted: 06/24/2019] [Indexed: 12/22/2022]
|
33
|
Luo J, Liu Y, Zhang L, Ren Y, Miao S, Zhang B, Su DS, Liang C. Atomic-Scale Observation of Bimetallic Au-CuO x Nanoparticles and Their Interfaces for Activation of CO Molecules. ACS APPLIED MATERIALS & INTERFACES 2019; 11:35468-35478. [PMID: 31483599 DOI: 10.1021/acsami.9b12017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Supported gold nanoparticles with sizes below 5 nm display attractive catalytic activities for heterogeneous reactions, particularly those promoted by secondary metal (e.g., Cu) because of the well-defined synergy between metal compositions. However, the specific atomic structure at interfaces is less interpreted systematically. In this work, various bimetallic Au-CuOx catalysts with specific surface structures were synthesized and explored by aberration-corrected scanning transmission electron microscopy (AC-STEM), temperature-programmed experiments and in situ DRIFT experiments. Results suggest that the atomic structure and interfaces between gold and CuOx are determined by the nucleation behaviors of the nanoparticles and result in subsequently the distinctive ability for CO activation. Bimetallic CuO*/Au sample formatted by gold particles surrounded with CuOx nanoclusters have rough surface with prominently exposed low-coordinated Au step defects. Whereas the bimetallic Au@CuO sample formatted by copper precursor in the presence of gold nanoparticles have core-shell structure with relatively smooth surface. The former structure of CuO*/Au displays much accelerated properties for CO adsorption and activation with 90% CO converted to CO2 at 90 °C and nice stability with time on stream. The results clearly determine from atomic scale the significance of exposed gold step sites and intrinsic formation of defected surface by different nucleation. The above properties are directly responsible for the induced variation in chemical composition and the catalytic activity.
Collapse
Affiliation(s)
- Jingjie Luo
- State Key Laboratory of Fine Chemicals and Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering , Dalian University of Technology, Panjin Campus , Panjin 124221 , China
| | - Yuefeng Liu
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Liyun Zhang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research , Chinese Academy of Science , 72 Wenhua Road , Shenyang 110016 , China
- Department of Chemical Engineering , Qufu Normal University , Qufu 273165 , China
| | - Yujing Ren
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Shu Miao
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Bingsen Zhang
- Shenyang National Laboratory for Materials Science (SYNL), Institute of Metal Research , Chinese Academy of Science , 72 Wenhua Road , Shenyang 110016 , China
| | - Dang Sheng Su
- Dalian National Laboratory for Clean Energy (DNL), Dalian Institute of Chemical Physics , Chinese Academy of Sciences , 457 Zhongshan Road , Dalian 116023 , China
| | - Changhai Liang
- State Key Laboratory of Fine Chemicals and Laboratory of Advanced Materials & Catalytic Engineering (AMCE), School of Chemical Engineering , Dalian University of Technology, Panjin Campus , Panjin 124221 , China
| |
Collapse
|
34
|
Antony Samy AJR, Vellaichamy P, Sehar M, Kuo‐Lun T, Ramasamy A. Synthesis, characterization, and catalytic application of ecofriendly Ca‐bridged aminoclay. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21317] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
| | - Parthasarathy Vellaichamy
- Department of PhysicsHindustan Institute of Technology and Science (Deemed to be University) Padur Chennai India
| | - Mahalakshmi Sehar
- Department of PhysicsAnnad Institute of Higher Technology Kazhipattur Chennai India
| | - Tung Kuo‐Lun
- Department of Chemical EngineeringNational Taiwan University Taipei Taiwan
| | - Anbarasan Ramasamy
- Department of Chemical EngineeringNational Taiwan University Taipei Taiwan
| |
Collapse
|
35
|
Hussein HA, Gao M, Hou Y, Horswell SL, Johnston RL. Physico-Chemical Insights into Gas-Phase and Oxide-Supported Sub-Nanometre AuCu Clusters. Z PHYS CHEM 2019. [DOI: 10.1515/zpch-2018-1356] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Catalysis by AuCu nanoclusters is a promising scientific field. However, our fundamental understanding of the underlying mechanisms of mixing in AuCu clusters at the sub-nanometre scale and their physico-chemical properties in both the gas-phase and on oxide supports is limited. We have identified the global minima of gas-phase and MgO(100)-supported AuCu clusters with 3–10 atoms using the Mexican Enhanced Genetic Algorithm coupled with density functional theory. Au and Cu adatoms and supported dimers have been also simulated at the same level of theory. The most stable composition, as calculated from mixing and binding energies, is obtained when the Cu proportion is close to 50%. The structures of the most stable free AuCu clusters exhibit Cu-core/Au-shell segregation. On the MgO surface however, there is a preference for Cu atoms to lie at the cluster-substrate interface. Due to the interplay between the number of interfacial Cu atoms and surface-induced cluster rearrangement, on the MgO surface 3D structures become more stable than 2D structures. The O-site of MgO surface is found to be the most favourable adsorption site for both metals. All dimers favour vertical (V) configurations on the surface and their adsorption energies are in the order: AuCu < CuCu < AuAu < AuCu (where the underlined atom is bound to the O-site). For both adatoms and AuCu dimers, adsorption via Cu is more favourable than Au-adsorbed configurations, but, this disagrees with the ordering for the pure dimers due to a combination of electron transfer and the metal-on-top effect. Binding energy (and second difference) and HOMO-LUMO gap calculations show that even-atom (even-electron) clusters are more stable than the neighbouring odd-atom (odd- electron) clusters, which is expected for closed- and open-shell systems. Supporting AuCu clusters on the MgO(100) surface decreases the charge transfer between Au and Cu atoms calculated in free clusters. The results of this study may serve as a foundation for designing better AuCu catalysts.
Collapse
Affiliation(s)
- Heider A. Hussein
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
- Department of Chemistry , College of Science, University of Kufa , Najaf , Iraq
| | - Mansi Gao
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| | - Yiyun Hou
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| | - Sarah L. Horswell
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| | - Roy L. Johnston
- School of Chemistry, University of Birmingham , Birmingham B15 2TT , UK
| |
Collapse
|
36
|
Gao M, Yang Y, Guo J. Revealing the Role of Chain Length of Ligands on Gold Nanoparticles Surface in the Process for Catalysis Reduction of 4-Nitrophenol. Catal Letters 2019. [DOI: 10.1007/s10562-019-02752-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
37
|
Ling M, Blackman CS. Gas-phase synthesis of hybrid nanostructured materials. NANOSCALE 2018; 10:22981-22989. [PMID: 30500044 DOI: 10.1039/c8nr06257a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nanoparticles (NPs) of noble metals and their oxides, which have many applications in catalysis, electrocatalysis and photocatalysis, are frequently loaded onto metal oxide supports to enhance performance due to the presence of strong metal-metal oxide or metal oxide-metal oxide interactions. Here we present a flexible aerosol-assisted chemical vapour deposition (AACVD) method for constructing nanostructured thin films of noble metal (Au, Pt, Pd or Ru) and metal oxide (PdO or RuOx) NPs supported on 1D WO3 nanorod arrays. The size of the NPs (1.6 to 7.3 nm) is directly controlled by the deposition time (0.5 to 36 minutes).
Collapse
Affiliation(s)
- Min Ling
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H 0AJ, UK.
| | | |
Collapse
|
38
|
Liang W, Zhang T, Liu Y, Huang Y, Liu Z, Liu Y, Yang B, Zhou X, Zhang J. Polydimethylsiloxane Sponge-Supported Nanometer Gold: Highly Efficient Recyclable Catalyst for Cross-Dehydrogenative Coupling in Water. CHEMSUSCHEM 2018; 11:3586-3590. [PMID: 30125475 DOI: 10.1002/cssc.201801180] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 08/16/2018] [Indexed: 06/08/2023]
Abstract
Polydimethylsiloxane (PDMS, a stable hydrophobic polymer material) sponge-supported nanometer-sized gold can be used as a highly efficient recyclable catalyst for cross-dehydrogenative coupling of tertiary amines with various nucleophiles in water. This PDMS sponge nanometer gold catalyst can provide much better activity than the free nanometer gold in water. The reaction can be scaled up by using an easy-to-build continuous flow reactor. These results indicate the potential application of porous hydrophobic PDMS sponge material as a promising support for highly efficient recyclable catalysts in water.
Collapse
Affiliation(s)
- Weiwei Liang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Teng Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yufei Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yuxing Huang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhipeng Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Yizhen Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xuechang Zhou
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Junmin Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
39
|
Palmer RE, Cai R, Vernieres J. Synthesis without Solvents: The Cluster (Nanoparticle) Beam Route to Catalysts and Sensors. Acc Chem Res 2018; 51:2296-2304. [PMID: 30188111 DOI: 10.1021/acs.accounts.8b00287] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
It is hard to predict the future of science. For example, when C60 and its structure were identified from the mass spectra of gas phase carbon clusters, few could have predicted the era of carbon nanotechnology which the discovery introduced. The solubilization and functionalization of C60, the identification and then synthesis of carbon nanotubes, and the generation and physics of graphene have made a scale of impact on the international R&D (and to some extent industrial) landscape which could not have been foreseen. Technology emerged from a search for molecules of astrochemical interest in the interstellar gas. This little sketch provides the authors with the confidence to present here a status report on progress toward another radical future-the synthesis of nanoparticles (typically metals) on an industrial scale without solvents and consequently effluents, without salts and their sometimes accompanying toxicity, with minimal prospects for unwanted nanoparticle escape into the environment, with a high degree of precision in the control of the size, shape and composition of the nanoparticles produced and with applications from catalysts and sensors to photonics, electronics and theranostics. In fact, our story begins in exactly the same place as the origin of the nanocarbon era-the generation and mass selection of free atomic clusters in a vacuum chamber. The steps along the path so far include deposition of such beams of clusters onto surfaces in vacuum, elucidation of the key elements of the cluster-surface interaction, and demonstrations of the potential applications of deposited clusters. The principal present challenges, formidable but solvable, are the necessary scale-up of cluster beam deposition from the nanogram to the gram scale and beyond, and the processing and integration of the nanoclusters into appropriate functional architectures, such as powders for heterogeneous catalysis, i.e., the formulation engineering problem. The research which is addressing these challenges is illustrated in this Account by examples of cluster production (on the traditional nanogram scale), emphasizing self-selection of size, controlled generation of nonspherical shapes, and nonspherical binary nanoparticles; by the scale-up of cluster beam production by orders of magnitude with the magnetron sputtering, gas condensation cluster source, and especially the Matrix Assembly Cluster Source (MACS); and by promising demonstrations of deposited clusters in gas sensing and in heterogeneous catalysis (this on the gram scale) in relevant environments (both liquid and vapor phases). The impact on manufacturing engineering of the new paradigm described here is undoubtedly radical; the prospects for economic success are, as usual, full of uncertainties. Let the readers form their own judgements.
Collapse
Affiliation(s)
- Richard E. Palmer
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Rongsheng Cai
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| | - Jerome Vernieres
- College of Engineering, Swansea University, Bay Campus, Fabian Way, Swansea SA1 8EN, United Kingdom
| |
Collapse
|
40
|
Waterhouse GIN, Chen WT, Chan A, Sun-Waterhouse D. Achieving Color and Function with Structure: Optical and Catalytic Support Properties of ZrO 2 Inverse Opal Thin Films. ACS OMEGA 2018; 3:9658-9674. [PMID: 31459096 PMCID: PMC6645476 DOI: 10.1021/acsomega.8b01334] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Accepted: 08/09/2018] [Indexed: 05/14/2023]
Abstract
Taking inspiration from natural photonic crystal architectures, we report herein the successful fabrication of zirconia inverse opal (ZrO2 IO) thin-film photonic crystals possessing striking iridescence at visible wavelengths. Poly(methyl methacrylate) (PMMA) colloidal crystal thin films (synthetic opals) were first deposited on glass microscope slides, after which the interstitial voids in the films were filled with a Zr(IV) sol. Controlled calcination of the resulting composite films yielded iridescent ZrO2 IO thin films with pseudo photonic band gaps (PBGs) along the surface normal at visible wavelengths. The PBG position was dependent on the macropore diameter (D) in the inverse opals (and thus proportional to the diameter of the PMMA colloids in the sacrificial templates), the incident angle of light with respect to the surface normal (θ), and also the refractive index of the medium filling the macropores, all of which were accurately described by a modified Bragg's law expression. Au/ZrO2 IO catalysts prepared using the ZrO2 IO films demonstrated outstanding performance for the reduction of 4-nitrophenol to 4-aminophenol in the presence of NaBH4, which can be attributed to the interconnected macroporosity in the films, which afforded a high Au nanoparticle dispersion and also facile diffusion of 4-nitrophenol to the catalytically active Au sites.
Collapse
Affiliation(s)
- Geoffrey I. N. Waterhouse
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
- E-mail: . Tel: 64-9-9237212. Fax: 64-9-373 7422
| | - Wan-Ting Chen
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | - Andrew Chan
- School
of Chemical Sciences, The University of
Auckland, Auckland 1010, New Zealand
- The
MacDiarmid Institute for Advanced Materials and Nanotechnology, Wellington 6140, New Zealand
- The
Dodd-Walls Centre for Photonic and Quantum Technologies, Dunedin 9054, New Zealand
| | | |
Collapse
|
41
|
Abstract
Development of a novel approach for synthesizing nanostructured catalysts and achieving further improvements in catalytic activity, effectiveness, and efficiency remains a major challenge. In this report, we describe the preparation of a nanostructured PdO/ZnO@mSiO2 hybrid nanocatalyst featuring well-dispersed PdO nanoparticles within hollow ZnO@mSiO2. The as-prepared PdO/ZnO@mSiO2 hybrid nanocatalyst exhibited good morphological features, derived from the controlled stepwise synthesis from Pd/PS@ZIF-8@mSiO2 (PS = polystyrene). The morphology, size, oxidation state, crystallinity, and thermal stability of the prepared PdO/ZnO@mSiO2 hybrid nanocatalyst were confirmed by a series of physicochemical techniques. The PdO/ZnO@mSiO2 hybrid nanocatalyst showed very high catalytic efficiency in the reduction of 4-nitrophenol and various nitroarenes under eco-friendly conditions. Therefore, the PdO/ZnO@mSiO2 hybrid nanocatalyst is a promising alternative catalyst for applications in environmental remediation.
Collapse
|
42
|
Jia L, Zhang W, Xu J, Cao J, Xu Z, Wang Y. Facile Fabrication of Highly Active Magnetic Aminoclay Supported Palladium Nanoparticles for the Room Temperature Catalytic Reduction of Nitrophenol and Nitroanilines. NANOMATERIALS 2018; 8:nano8060409. [PMID: 29882835 PMCID: PMC6027500 DOI: 10.3390/nano8060409] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2018] [Revised: 06/01/2018] [Accepted: 06/04/2018] [Indexed: 11/16/2022]
Abstract
Magnetically recyclable nanocatalysts with excellent performance are urgent need in heterogeneous catalysis, due to their magnetic nature, which allows for convenient and efficient separation with the help of an external magnetic field. In this research, we developed a simple and rapid method to fabricate a magnetic aminoclay (AC) based an AC@Fe3O4@Pd nanocatalyst by depositing palladium nanoparticles (Pd NPs) on the surface of the magnetic aminoclay nanocomposite. The microstructure and the magnetic properties of as-prepared AC@Fe3O4@Pd were tested using transmission electron microscopy (TEM), energy-dispersive X-ray spectroscopy (EDS), X-ray diffraction (XRD), and vibrating sample magnetometry (VSM) analyses. The resultant AC@Fe3O4@Pd nanocatalyst with the magnetic Fe-based inner shell, catalytically activate the outer noble metal shell, which when combined with ultrafine Pd NPs, synergistically enhanced the catalytic activity and recyclability in organocatalysis. As the aminoclay displayed good water dispersibility, the nanocatalyst indicated satisfactory catalytic performance in the reaction of reducing nitrophenol and nitroanilines to the corresponding aminobenzene derivatives. Meanwhile, the AC@Fe3O4@Pd nanocatalyst exhibited excellent reusability, while still maintaining good activity after several catalytic cycles.
Collapse
Affiliation(s)
- Lei Jia
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Wensheng Zhang
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jun Xu
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Jianliang Cao
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Zhouqing Xu
- School of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China.
| | - Yan Wang
- School of Safety Science and Engineering, State Key Laboratory Cultivation Base for Gas Geology and Gas Control, Henan Polytechnic University, Jiaozuo 454000, China.
| |
Collapse
|