1
|
Rafieerad A, Saleth LR, Khanahmadi S, Amiri A, Alagarsamy KN, Dhingra S. Periodic Table of Immunomodulatory Elements and Derived Two-Dimensional Biomaterials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2406324. [PMID: 39754328 PMCID: PMC11809427 DOI: 10.1002/advs.202406324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/09/2024] [Indexed: 01/06/2025]
Abstract
Periodic table of chemical elements serves as the foundation of material chemistry, impacting human health in many different ways. It contributes to the creation, growth, and manipulation of functional metallic, ceramic, metalloid, polymeric, and carbon-based materials on and near an atomic scale. Recent nanotechnology advancements have revolutionized the field of biomedical engineering to tackle longstanding clinical challenges. The use of nano-biomaterials has gained traction in medicine, specifically in the areas of nano-immunoengineering to treat inflammatory and infectious diseases. Two-dimensional (2D) nanomaterials have been found to possess high bioactive surface area and compatibility with human and mammalian cells at controlled doses. Furthermore, these biomaterials have intrinsic immunomodulatory properties, which is crucial for their application in immuno-nanomedicine. While significant progress has been made in understanding their bioactivity and biocompatibility, the exact immunomodulatory responses and mechanisms of these materials are still being explored. Current work outlines an innovative "immunomodulatory periodic table of elements" beyond the periodic table of life, medicine, and microbial genomics and comprehensively reviews the role of each element in designing immunoengineered 2D biomaterials in a group-wise manner. It recapitulates the most recent advances in immunomodulatory nanomaterials, paving the way for the development of new mono, hybrid, composite, and hetero-structured biomaterials.
Collapse
Affiliation(s)
- Alireza Rafieerad
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Leena Regi Saleth
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Soofia Khanahmadi
- Institute for Molecular BiosciencesJohann Wolfgang Goethe Universität60438Frankfurt am MainGermany
| | - Ahmad Amiri
- Russell School of Chemical EngineeringThe University of TulsaTulsaOK74104USA
| | - Keshav Narayan Alagarsamy
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| | - Sanjiv Dhingra
- Institute of Cardiovascular SciencesSt. Boniface Hospital Albrechtsen Research CentreBiomedical Engineering ProgramDepartment of Physiology and PathophysiologyRady Faculty of Health SciencesUniversity of ManitobaWinnipegManitobaR2H2A6Canada
| |
Collapse
|
2
|
Torres-Cavanillas R, Forment-Aliaga A. Design of stimuli-responsive transition metal dichalcogenides. Commun Chem 2024; 7:241. [PMID: 39462088 PMCID: PMC11513992 DOI: 10.1038/s42004-024-01322-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/03/2024] [Indexed: 10/28/2024] Open
Abstract
Stimuli-responsive systems are an emerging class of materials in fields as diverse as electronics, optoelectronics, cancer detection, drug delivery, or sensing. Especially focusing on nanomaterials, 2D transition metal dichalcogenides have recently attracted the scientific community's attention due to their remarkable intrinsic stimuli-responsive behaviour upon external stimuli such as pH, light, voltage, or certain pathogens. This significant response can be further enhanced by forming mixed-dimensional heterostructures and by molecular functionalization, capitalizing on chemistry to manipulate and boost their intrinsic stimuli-responsive properties. Furthermore, thanks to the endless possibilities of chemistry, a new class of smart materials based on the combination of stimuli-responsive molecular systems with transition metal dichalcogenides has recently been synthesized. In these materials, the physical properties of the 2D layers are reversibly modified by the switchable molecules, not only enhancing their stimuli-responsive behaviour but also providing memory to the hybrid. Therefore, this review explores the recent breakthroughs in the chemical design of smart transition metal dichalcogenides with built-in responsiveness.
Collapse
Affiliation(s)
- Ramon Torres-Cavanillas
- Department of Materials, Oxford University, 21 Banbury Road, OX2 6NN, Oxford, UK.
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| | - Alicia Forment-Aliaga
- Instituto de Ciencia Molecular, Universitat de València, Catedrático José Beltrán 2, 46980, Paterna, Spain.
| |
Collapse
|
3
|
Si C, Gao J, Ma X. Natural killer cell-derived exosome-based cancer therapy: from biological roles to clinical significance and implications. Mol Cancer 2024; 23:134. [PMID: 38951879 PMCID: PMC11218398 DOI: 10.1186/s12943-024-02045-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 06/15/2024] [Indexed: 07/03/2024] Open
Abstract
Natural killer (NK) cells are important immune cells in the organism and are the third major type of lymphocytes besides T cells and B cells, which play an important function in cancer therapy. In addition to retaining the tumor cell killing function of natural killer cells, natural killer cell-derived exosomes cells also have the characteristics of high safety, wide source, easy to preserve and transport. At the same time, natural killer cell-derived exosomes are easy to modify, and the engineered exosomes can be used in combination with a variety of current cancer therapies, which not only enhances the therapeutic efficacy, but also significantly reduces the side effects. Therefore, this review summarizes the source, isolation and modification strategies of natural killer cell-derived exosomes and the combined application of natural killer cell-derived engineered exosomes with other antitumor therapies, which is expected to accelerate the clinical translation process of natural killer cell-derived engineered exosomes in cancer therapy.
Collapse
Affiliation(s)
- Chaohua Si
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China
| | - Jianen Gao
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| | - Xu Ma
- National Research Institute for Family Planning, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100000, China.
| |
Collapse
|
4
|
Na H, Carrier J, Oyon S, Lai CY. Fabrication of Rhenium Disulfide/Mesoporous Silica Core-Shell Nanoparticles for a pH-Responsive Drug Release and Combined Chemo-Photothermal Therapy. ACS APPLIED BIO MATERIALS 2024; 7:3337-3345. [PMID: 38700956 DOI: 10.1021/acsabm.4c00291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2024]
Abstract
A stimuli-responsive drug delivery nanocarrier with a core-shell structure combining photothermal therapy and chemotherapy for killing cancer cells was constructed in this study. The multifunctional nanocarrier ReS2@mSiO2-RhB entails an ReS2 hierarchical nanosphere coated with a fluorescent mesoporous silica shell. The three-dimensional hierarchical ReS2 nanostructure is capable of effectively absorbing near-infrared (NIR) light and converting it into heat. These ReS2 nanospheres were generated by a hydrothermal synthesis process leading to the self-assembly of few-layered ReS2 nanosheets. The mesoporous silica shell was further coated on the surface of the ReS2 nanospheres through a surfactant-templating sol-gel approach to provide accessible mesopores for drug uploading. A fluorescent dye (Rhodamine B) was covalently attached to silica precursors and incorporated during synthesis in the mesoporous silica walls toward conferring imaging capability to the nanocarrier. Doxorubicin (DOX), a known cancer drug, was used in a proof-of-concept study to assess the material's ability to function as a drug delivery carrier. While the silica pores are not capped, the drug molecule loading and release take advantage of the pH-governed electrostatic interactions between the drug and silica wall. The ReS2@mSiO2-RhB enabled a drug loading content as high as 19.83 mg/g doxorubicin. The ReS2@mSiO2-RhB-DOX nanocarrier's cumulative drug release rate at pH values that simulate physiological conditions showed significant pH responsiveness, reaching 59.8% at pH 6.8 and 98.5% and pH 5.5. The in vitro testing using HeLa cervical cancer cells proved that ReS2@mSiO2-RhB-DOX has a strong cancer eradication ability upon irradiation with an NIR laser owing to the combined drug delivery and photothermal effect. The results highlight the potential of ReS2@mSiO2-RhB nanoparticles for combined cancer therapy in the future.
Collapse
Affiliation(s)
- Ha Na
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Jake Carrier
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| | - Samuel Oyon
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
| | - Cheng-Yu Lai
- Department of Mechanical and Materials Engineering, Florida International University, Miami, Florida 33174, United States
- Department of Chemistry and Biochemistry, Florida International University, Miami, Florida 33199, United States
| |
Collapse
|
5
|
Shen M, Cao Q, Zhang M, Jing H, Zhao Z. Research progress of inorganic metal nanomaterials in biological imaging and photothermal therapy. SCIENTIA SINICA CHIMICA 2024; 54:160-181. [DOI: 10.1360/ssc-2023-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Murugan SS, Hur W, Son SE, Lee HB, Ha CH, Lee SJ, Cheon SH, Kim DH, Jeon SM, Choi DY, Venkatesan J, Seong GH. The therapeutic efficacy of silver loaded rhenium disulfide nanoparticles as a photothermal agent for cancer eradication. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 250:112831. [PMID: 38134574 DOI: 10.1016/j.jphotobiol.2023.112831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 12/24/2023]
Abstract
Cancer is a life-threatening disease when it is diagnosed at a late stage or treatment procedures fail. Inhibiting cancer cells in the tumor environment is a significant challenge for anticancer therapy. The photothermal effects of nanomaterials are being studied as a new cancer treatment. In this work, rhenium disulfide (ReS2) nanosheets were made by liquid exfoliation with gum arabic (GA) and coated with silver nanoparticles (AgNPs) to produce reactive oxygen species that destroy cancer cells. The synthesized AgNP-GA-ReS2 NPs were characterized using UV, DLS, SEM, TEM, and photothermal studies. According to the DLS findings, the NPs were about 216 nm in size and had a zeta potential of 76 mV. The TEM and SEM analyses revealed that the GA-ReS2 formed single-layered nanosheets on which the AgNPs were distributed. The photothermal effects of the AgNP-GA-ReS2 NPs at 50 μg/mL were tested with an 808 nm laser at 1.2 W cm-2, and they reached 55.8 °C after 5 min of laser irradiation. MBA-MB-231 cells were used to test the cytotoxicity of the newly designed AgNP-GA-ReS2 NPs with and without laser irradiation for 5 min. At 50 μg/mL, the AgNP-GA-ReS2 showed cytotoxicity, which was confirmed with calcein and EtBr staining. The DCFH-DA and flow cytometry analyses demonstrated that AgNP-GA-ReS2 nanosheets under NIR irradiation generated ROS with high anticancer activity, in addition to the photothermal effects.
Collapse
Affiliation(s)
- Sesha Subramanian Murugan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea; Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangaluru 575018, India
| | - Won Hur
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Seong Eun Son
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Han Been Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Chang Hyeon Ha
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Su Jeong Lee
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Se Hwa Cheon
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Do Hyeon Kim
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Sung Min Jeon
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Da Young Choi
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea
| | - Jayachandran Venkatesan
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea; Biomaterials Research Laboratory, Yenepoya Research Centre, Yenepoya Deemed to be University, Deralakatte, Mangaluru 575018, India.
| | - Gi Hun Seong
- Department of Bionano Engineering, Center for Bionano Intelligence Education and Research, Hanyang University, Ansan 426-791, South Korea.
| |
Collapse
|
7
|
Wang X, Ma M, Zhang L, Wang X, Zhang Y, Zhao Y, Shi H, Zhang X, Zhao F, Pan J. Flexible use of commercial rhenium disulfide for various theranostic applications. Biomater Sci 2023; 11:5540-5548. [PMID: 37395367 DOI: 10.1039/d3bm00120b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Rhenium disulfide (ReS2) with distinct physicochemical properties has shown promising potential in disease theranostics, such as drug delivery, computed tomography (CT), radiotherapy, and photothermal therapy (PTT). However, the synthesis and post-modification of ReS2 agents for different application scenarios are time- and energy-consuming, which seriously hinders the clinical translation of ReS2. Herein, we proposed three facile excipient strategies for different theranostic applications of ReS2 just through the flexible use of commercial ReS2 powder. Three excipients, including sodium alginate (ALG), xanthan gum (XG), and ultraviolet-cured resin (UCR), were used to prepare different dosage forms of commercial ReS2 powder, like hydrogel, suspension, and capsule, respectively. These dosage forms of ReS2 with distinct characteristics showed great potential for second near-infrared window PTT against tumours, gastric spectral CT imaging, and functional evaluation of the digestive tract in vivo. In addition, these ReS2 formulations exhibited good biocompatibility both in vitro and in vivo, showing a promising prospect for clinical transformation. More importantly, the facile excipient strategies for commercial agents pave a bridge to the development and wide bioapplication of many other theranostic biomaterials.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Department of Ultrasound, The Second Hospital of Tianjin Medical University, Tianjin 300211, China
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Min Ma
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Liang Zhang
- Department of Ultrasound Diagnostics, Tangdu Hospital, Fourth Military Medical University, Xi'an 710038, China
| | - Xiaoran Wang
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yimou Zhang
- College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Yang Zhao
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Huilan Shi
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Xuening Zhang
- Department of Radiology, The Second Hospital of Tianjin Medical University, Tianjin 300211, China.
| | - Fangshi Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging, Tianjin Medical University General Hospital, Tianjin 300052, China.
| |
Collapse
|
8
|
Fu Z, Li K, Wang H, Li Y, Zhang J, Zhou J, Hu J, Xie D, Ni D. Spectral computed tomography-guided radiotherapy of osteosarcoma utilizing BiOI nanosheets. Acta Biomater 2023; 166:615-626. [PMID: 37209977 DOI: 10.1016/j.actbio.2023.05.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Revised: 04/24/2023] [Accepted: 05/15/2023] [Indexed: 05/22/2023]
Abstract
As an aggressive malignant bone tumor, osteosarcoma (OS) is usually found in children and adolescents. Computed tomography (CT) is an important tool for the clinical evaluation of osteosarcoma, but limits to low diagnostic specificity due to single parameters of traditional CT and modest signal-to-noise ratio of clinical iodinated contrast agents. As one kind of spectral CT, dual-energy CT (DECT), with the advantage of a provision of multi-parameter information, makes it possible to acquire the best signal-to-noise ratio image, accurate detection, as well as imaging-guided therapy of bone tumors. Hereby, we synthesized BiOI nanosheets (BiOI NSs) as a DECT contrast agent with superior imaging capability compared to iodine agents for clinical detection of OS. Meanwhile, the synthesized BiOI NSs with great biocompatibility is able to achieve effective radiotherapy (RT) by enhancing X-ray dose deposition at the tumor site, leading to DNA damage, which in turn inhibits tumor growth. This study offers a promising new avenue for DECT imaging-guided treatment of OS. STATEMENT OF SIGNIFICANCE: Osteosarcoma (OS) is a common primary malignant bone tumor. Traditional surgical procedures and conventional CT scans are often used for the treatment and monitoring of OS, but the effects are generally unsatisfactory. In this work, BiOI nanosheets (NSs) was reported for dual-energy CT (DECT) imaging-guided OS radiotherapy. The powerful and constant X-ray absorption of BiOI NSs at any energy guarantees excellent enhanced DECT imaging performance, allowing detailed visualization of OS through images with a better signal-to-noise ratio and guiding radiotherapy process. The deposition of X-rays could be greatly enhanced by Bi atoms to induce serious DNA damage in radiotherapy. Taken together, the BiOI NSs for DECT-guided radiotherapy will greatly improve the current treatment status of OS.
Collapse
Affiliation(s)
- Zi Fu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Kun Li
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, PR China
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China
| | - Yuhan Li
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, Shanghai 200444, PR China
| | - Jingwei Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, PR China
| | - Jiajia Hu
- Department of Nuclear Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| | - Dong Xie
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, PR China.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, PR China.
| |
Collapse
|
9
|
Qi Q, Wang Q, Li Y, Silva DZ, Ruiz MEL, Ouyang R, Liu B, Miao Y. Recent Development of Rhenium-Based Materials in the Application of Diagnosis and Tumor Therapy. Molecules 2023; 28:molecules28062733. [PMID: 36985704 PMCID: PMC10051626 DOI: 10.3390/molecules28062733] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 03/22/2023] Open
Abstract
Rhenium (Re) is widely used in the diagnosis and treatment of cancer due to its unique physical and chemical properties. Re has more valence electrons in its outer shell, allowing it to exist in a variety of oxidation states and to form different geometric configurations with many different ligands. The luminescence properties, lipophilicity, and cytotoxicity of complexes can be adjusted by changing the ligand of Re. This article mainly reviews the development of radionuclide 188Re in radiotherapy and some innovative applications of Re as well as the different therapeutic approaches and imaging techniques used in cancer therapy. In addition, the current application and future challenges and opportunities of Re are also discussed.
Collapse
Affiliation(s)
- Qingwen Qi
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Dionisio Zaldivar Silva
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| | - Maria Eliana Lanio Ruiz
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Faculty of Biology, University of Havana, Havana 10400, Cuba
| | - Ruizhuo Ouyang
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
| | - Baolin Liu
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth and Rhenium, University of Shanghai for Science and Technology, Shanghai 200093, China; (Q.Q.); (Q.W.); (R.O.)
- USST-UH International Joint Laboratory for Tumor Diagnosis and Energy Treatment, University of Shanghai for Science and Technology, Shanghai 200093, China; (M.E.L.R.); (B.L.)
- Correspondence: (Y.L.); (D.Z.S.); (Y.M.)
| |
Collapse
|
10
|
Zhu H, Li B, Yu Chan C, Low Qian Ling B, Tor J, Yi Oh X, Jiang W, Ye E, Li Z, Jun Loh X. Advances in Single-component inorganic nanostructures for photoacoustic imaging guided photothermal therapy. Adv Drug Deliv Rev 2023; 192:114644. [PMID: 36493906 DOI: 10.1016/j.addr.2022.114644] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Revised: 11/02/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Phototheranostic based on photothermal therapy (PTT) and photoacoustic imaging (PAI), as one of avant-garde medical techniques, have sparked growing attention because it allows noninvasive, deeply penetrative, and highly selective and effective therapy. Among a variety of phototheranostic nanoagents, single-component inorganic nanostructures are found to be novel and attractive PAI and PTT combined nanotheranostic agents and received tremendous attention, which not only exhibit structural controllability, high tunability in physiochemical properties, size-dependent optical properties, high reproducibility, simple composition, easy functionalization, and simple synthesis process, but also can be endowed with multiple therapeutic and imaging functions, realizing the superior therapy result along with bringing less foreign materials into body, reducing systemic side effects and improving the bioavailability. In this review, according to their synthetic components, conventional single-component inorganic nanostructures are divided into metallic nanostructures, metal dichalcogenides, metal oxides, carbon based nanostructures, upconversion nanoparticles (UCNPs), metal organic frameworks (MOFs), MXenes, graphdiyne and other nanostructures. On the basis of this category, their detailed applications in PAI guide PTT of tumor treatment are systematically reviewed, including synthesis strategies, corresponding performances, and cancer diagnosis and therapeutic efficacy. Before these, the factors to influence on photothermal effect and the principle of in vivo PAI are briefly presented. Finally, we also comprehensively and thoroughly discussed the limitation, potential barriers, future perspectives for research and clinical translation of this single-component inorganic nanoagent in biomedical therapeutics.
Collapse
Affiliation(s)
- Houjuan Zhu
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Bofan Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore
| | - Chui Yu Chan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Beverly Low Qian Ling
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Jiaqian Tor
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Xin Yi Oh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Wenbin Jiang
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore
| | - Enyi Ye
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Zibiao Li
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore; Institute of Sustainability for Chemicals, Energy and Environment (ISCE2) A*STAR (Agency for Science, Technology and Research) Singapore 138634, Singapore.
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), Singapore 138634, Singapore.
| |
Collapse
|
11
|
Nanoarchitectured assembly and surface of two-dimensional (2D) transition metal dichalcogenides (TMDCs) for cancer therapy. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Li Y, Younis MH, Wang H, Zhang J, Cai W, Ni D. Spectral computed tomography with inorganic nanomaterials: State-of-the-art. Adv Drug Deliv Rev 2022; 189:114524. [PMID: 36058350 PMCID: PMC9664656 DOI: 10.1016/j.addr.2022.114524] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/09/2022] [Accepted: 08/27/2022] [Indexed: 01/24/2023]
Abstract
Recently, spectral computed tomography (CT) technology has received great interest in the field of radiology. Spectral CT imaging utilizes the distinct, energy-dependent X-ray absorption properties of substances in order to provide additional imaging information. Dual-energy CT and multi-energy CT (Spectral CT) are capable of constructing monochromatic energy images, material separation images, energy spectrum curves, constructing effective atomic number maps, and more. However, poor contrast, due to neighboring X-ray attenuation of organs and tissues, is still a challenge to spectral CT. Hence, contrast agents (CAs) are applied for better differentiation of a given region of interest (ROI). Currently, many different kinds of inorganic nanoparticulate CAs for spectral CT have been developed due to the limitations of clinical iodine (I)-based contrast media, leading to the conclusion that inorganic nanomedicine applied to spectral CT will be a powerful collaboration both in basic research and in clinics. In this review, the underlying principles and types of spectral CT techniques are discussed, and some evolving clinical diagnosis applications of spectral CT techniques are introduced. In particular, recent developments in inorganic CAs used for spectral CT are summarized. Finally, the challenges and future developments of inorganic nanomedicine in spectral CT are briefly discussed.
Collapse
Affiliation(s)
- Yuhan Li
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China
| | - Muhsin H Younis
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States
| | - Han Wang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China
| | - Jian Zhang
- School of Medicine, Shanghai University, No. 99 Shangda Rd, Shanghai 200444, PR China; Shanghai Universal Medical Imaging Diagnostic Center, Bldg 8, No. 406 Guilin Rd, Shanghai 200233, PR China.
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin-Madison, WI 53705, United States.
| | - Dalong Ni
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197, Ruijin 2nd Rd, Shanghai 200025, PR China.
| |
Collapse
|
13
|
Promising Colloidal Rhenium Disulfide Nanosheets: Preparation and Applications for In Vivo Breast Cancer Therapy. NANOMATERIALS 2022; 12:nano12111937. [PMID: 35683791 PMCID: PMC9182237 DOI: 10.3390/nano12111937] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 11/20/2022]
Abstract
Photothermal therapy (PTT) has become an important therapeutic strategy in the treatment of cancer. However, exploring novel photothermal nanomaterials with satisfactory biocompatibility, high photothermal conversion efficiency, and efficient theranostic outcomes, remains a major challenge for satisfying clinical application. In this study, poly-ethylene glycol modified rhenium disulfide (PEG-ReS2) nanosheets are constructed by a simple-liquid phase exfoliation method. The PEG-ReS2 nanosheets were demonstrated to have good solubility, good biocompatibility, low toxicity, and strong capability of accumulating near-infrared (NIR) photons. Under 808 nm laser irradiation, the PEG-ReS2 nanosheets were found to have an excellent photothermal conversion efficiency (PTCE) of 42%. Moreover, the PEG-ReS2 nanosheets were demonstrated to be ideal photothermal transduction agents (PTAs), which promoted rapid cancer cell death in vitro and efficiently ablated tumors in vivo. Interestingly, the potential utility of up-regulation or down-regulation of miRNAs was proposed to evaluate the therapeutic outcomes of PEG-ReS2 nanosheets. The expression levels of a set of miRNAs in tumor-bearing mice were restored to normal levels after PTT therapy with PEG-ReS2 nanosheets. Both down-regulation miRNAs (miR-125a-5p, miR-34a-5p, miR-132-3p, and miR-148b-3p) and up-regulation miRNAs (miR-133a-3p, miR-200c-5p, miR-9-3p, and miR-150-3p) were suggested to be important clinical biomarkers for evaluating therapeutic outcomes of breast cancer-related PTT. This work highlights the great significance of PEG-ReS2 nanosheets as therapeutic nanoagents for cancer therapy.
Collapse
|
14
|
Liu Z, Jiang S, Tian Y, Shang H, Chen K, Tan H, Zhang L, Jing H, Cheng W. Targeted Phototherapy by Niobium Carbide for Mammalian Tumor Models Similar to Humans. Front Oncol 2022; 12:827171. [PMID: 35223508 PMCID: PMC8866440 DOI: 10.3389/fonc.2022.827171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND In the past few decades, nanomaterial-mediated phototherapy has gained significant attention as an alternative antitumor strategy. However, its antitumor success is majorly limited to the treatment of subcutaneous tumors in nude mice. In fact, no studies have been previously conducted in this area/field on clinically-relevant big animal models. Therefore, there is an urgent need to conduct further investigation in a typical big animal model, which is more closely related to the human body. RESULTS In this study, niobium carbide (NbC) was selected as a photoactive substance owing to the presence of outstanding near-infrared (NIR) absorption properties, which are responsible for the generation of NIR-triggered hyperthermia and reactive oxygen species that contribute towards synergetic photothermal and photodynamic effect. Moreover, the present study utilized macrophages as bio-carrier for the targeted delivery of NbC, wherein phagocytosis by macrophages retained the photothermal/photodynamic effect of NbC. Consequently, macrophage-loaded NbC ensured/allowed complete removal of solid tumors both in nude mice and big animal models involving rabbits. Meanwhile, two-dimensional ultrasound, shave wave elastography (SWE), and contrast-enhanced ultrasound (CEUS) were used to monitor physiological evolution in tumor in vivo post-treatment, which clearly revealed the occurrence of the photoablation process in tumor and provided a new strategy for the surveillance of tumor in big animal models. CONCLUSION Altogether, the use of a large animal model in this study presented higher clinical significance as compared to previous studies.
Collapse
Affiliation(s)
- Zhao Liu
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Shan Jiang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Yuhang Tian
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haitao Shang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Kexin Chen
- Department of Pathology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Haoyan Tan
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Lei Zhang
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Hui Jing
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| | - Wen Cheng
- Department of Ultrasound, Harbin Medical University Cancer Hospital, Harbin, China
| |
Collapse
|
15
|
Huang H, Feng W, Chen Y. Two-dimensional biomaterials: material science, biological effect and biomedical engineering applications. Chem Soc Rev 2021; 50:11381-11485. [PMID: 34661206 DOI: 10.1039/d0cs01138j] [Citation(s) in RCA: 82] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
To date, nanotechnology has increasingly been identified as a promising and efficient means to address a number of challenges associated with public health. In the past decade, two-dimensional (2D) biomaterials, as a unique nanoplatform with planar topology, have attracted explosive interest in various fields such as biomedicine due to their unique morphology, physicochemical properties and biological effect. Motivated by the progress of graphene in biomedicine, dozens of types of ultrathin 2D biomaterials have found versatile bio-applications, including biosensing, biomedical imaging, delivery of therapeutic agents, cancer theranostics, tissue engineering, as well as others. The effective utilization of 2D biomaterials stems from the in-depth knowledge of structure-property-bioactivity-biosafety-application-performance relationships. A comprehensive summary of 2D biomaterials for biomedicine is still lacking. In this comprehensive review, we aim to concentrate on the state-of-the-art 2D biomaterials with a particular focus on their versatile biomedical applications. In particular, we discuss the design, fabrication and functionalization of 2D biomaterials used for diverse biomedical applications based on the up-to-date progress. Furthermore, the interactions between 2D biomaterials and biological systems on the spatial-temporal scale are highlighted, which will deepen the understanding of the underlying action mechanism of 2D biomaterials aiding their design with improved functionalities. Finally, taking the bench-to-bedside as a focus, we conclude this review by proposing the current crucial issues/challenges and presenting the future development directions to advance the clinical translation of these emerging 2D biomaterials.
Collapse
Affiliation(s)
- Hui Huang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China
| | - Wei Feng
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China.
| | - Yu Chen
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, P. R. China. .,School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, P. R. China.,Wenzhou Institute of Shanghai University, Wenzhou, 325000, P. R. China.,School of Medicine, Shanghai University, Shanghai, 200444, P. R. China
| |
Collapse
|
16
|
Chen Y, Wu H, Zhou H, Miao Z, Hong F, Zhao Q, Tao Z, Ma Y, Zhao W, Zha Z. PEGylated Indium Nanoparticles: A Metallic Contrast Agent for Multiwavelength Photoacoustic Imaging and Second Near-Infrared Photothermal Therapy. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46343-46352. [PMID: 34558285 DOI: 10.1021/acsami.1c13578] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Indium, a low melting point metal, is well-known for constructing eutectic gallium-indium liquid metal. However, unlike liquid metal nanoparticles, the biomedical applications of metallic indium nanoparticles (In NPs) remain in their infancy. Herein, an ultrasound-assisted liquid-reduction synthesis strategy was developed to prepare PEGylated In NPs, which were then used as a high-performance contrast agent for enhancing multiwavelength photoacoustic imaging and second near-infrared (NIR-II) photothermal therapy of the 4T1 breast tumor. The obtained In NPs depicted remarkable optical absorption from the first near-infrared (NIR-I) to NIR-II region and a high photothermal conversion efficiency of 41.3% at 1064 nm, higher than the majority of conventional NIR-II photothermal agents. Upon injection into the tumor, the photoacoustic intensities of the tumor section post-injection were obviously increased by 2.59-, 2.62-, and 4.27-fold of those of pre-injection by using excitation wavelengths of 750, 808, and 970 nm, respectively, depicting an excellent multiwavelength contrast capability of photoacoustic imaging. In addition, efficient ablation of the 4T1 tumor was achieved through the photothermal performance of PEGylated In NPs under NIR-II laser irradiation. Importantly, as the widely used element in the clinic, In NPs were highly biocompatible in vitro and in vivo. Therefore, this work pioneered the biomedical applications of PEGylated In NPs for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Yu Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Haitao Wu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Hu Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Fengqiu Hong
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Zhenchao Tao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Yan Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Weidong Zhao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
17
|
Fadhel MM, Ali N, Rashid H, Sapiee NM, Hamzah AE, Zan MSD, Aziz NA, Arsad N. A Review on Rhenium Disulfide: Synthesis Approaches, Optical Properties, and Applications in Pulsed Lasers. NANOMATERIALS 2021; 11:nano11092367. [PMID: 34578683 PMCID: PMC8471421 DOI: 10.3390/nano11092367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 11/16/2022]
Abstract
Rhenium Disulfide (ReS2) has evolved as a novel 2D transition-metal dichalcogenide (TMD) material which has promising applications in optoelectronics and photonics because of its distinctive anisotropic optical properties. Saturable absorption property of ReS2 has been utilized to fabricate saturable absorber (SA) devices to generate short pulses in lasers systems. The results were outstanding, including high-repetition-rate pulses, large modulation depth, multi-wavelength pulses, broadband operation and low saturation intensity. In this review, we emphasize on formulating SAs based on ReS2 to produce pulsed lasers in the visible, near-infrared and mid-infrared wavelength regions with pulse durations down to femtosecond using mode-locking or Q-switching technique. We outline ReS2 synthesis techniques and integration platforms concerning solid-state and fiber-type lasers. We discuss the laser performance based on SAs attributes. Lastly, we draw conclusions and discuss challenges and future directions that will help to advance the domain of ultrafast photonic technology.
Collapse
|
18
|
Yin X, Tang CS, Zheng Y, Gao J, Wu J, Zhang H, Chhowalla M, Chen W, Wee ATS. Recent developments in 2D transition metal dichalcogenides: phase transition and applications of the (quasi-)metallic phases. Chem Soc Rev 2021; 50:10087-10115. [PMID: 34396377 DOI: 10.1039/d1cs00236h] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The advent of two-dimensional transition metal dichalcogenides (2D-TMDs) has led to an extensive amount of interest amongst scientists and engineers alike and an intensive amount of research has brought about major breakthroughs in the electronic and optical properties of 2D materials. This in turn has generated considerable interest in novel device applications. With the polymorphic structural features of 2D-TMDs, this class of materials can exhibit both semiconducting and metallic (quasi-metallic) properties in their respective phases. This polymorphic property further increases the interest in 2D-TMDs both in fundamental research and for their potential utilization in novel high-performance device applications. In this review, we highlight the unique structural properties of few-layer and monolayer TMDs in the metallic 1T- and quasi-metallic 1T'-phases, and how these phases dictate their electronic and optical properties. An overview of the semiconducting-to-(quasi)-metallic phase transition of 2D-TMD systems will be covered along with a discussion on the phase transition mechanisms. The current development in the applications of (quasi)-metallic 2D-TMDs will be presented ranging from high-performance electronic and optoelectronic devices to energy storage, catalysis, piezoelectric and thermoelectric devices, and topological insulator and neuromorphic computing applications. We conclude our review by highlighting the challenges confronting the utilization of TMD-based systems and projecting the future developmental trends with an outlook of the progress needed to propel this exciting field forward.
Collapse
Affiliation(s)
- Xinmao Yin
- Shanghai Key Laboratory of High Temperature Superconductors, Physics Department, Shanghai University, Shanghai 200444, China
| | - Chi Sin Tang
- Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore and Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| | - Yue Zheng
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| | - Jing Gao
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| | - Jing Wu
- Institute of Materials Research and Engineering, A-STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, 138634, Singapore
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China and Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China and Shenzhen Research Institute, City University of Hong Kong, Shenzhen, 518057, China
| | - Manish Chhowalla
- Department of Materials Science & Metallurgy, University of Cambridge, Cambridge, CB30FS, UK
| | - Wei Chen
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore. and Department of Chemistry, National University of Singapore, Singapore 117543, Singapore
| | - Andrew T S Wee
- Department of Physics, Faculty of Science, National University of Singapore, Singapore 117542, Singapore.
| |
Collapse
|
19
|
Jung KH, Yeon C, Yang J, Cheon YJ, Lim JW, Yun SJ. Polyvinylalcohol (PVA)-Assisted Exfoliation of ReS 2 Nanosheets and the Use of ReS 2-PVA Composites for Transparent Memristive Photosynapse Devices. ACS APPLIED MATERIALS & INTERFACES 2021; 13:8919-8928. [PMID: 33567825 DOI: 10.1021/acsami.0c20666] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) transition metal dichalcogenides (TMDs) have attracted significant attention for their outstanding optoelectrical properties. Unlike most TMDs with layer-dependent photoresponsivity, rhenium disulfide (ReS2) shows excellent thickness-independent photoresponsivity. Herein, we show a surfactant-free polyvinyl alcohol (PVA)-assisted exfoliation method for 2D-TMDs in aqueous solution and a transparent photosensitive memristor synapse device based on ReS2 nanosheets composited with PVA. ReS2 nanosheets are obtained via PVA-assisted exfoliation. After exfoliation, the ReS2-PVA dispersion solution is spin-coated on a substrate and dried to form a nanocomposite film without additional processing. Transparent memristors are then fabricated on plastic or glass substrates to demonstrate the applicability of the ReS2-PVA film. The devices show "write once, read many" memory behavior with a high ON/OFF current ratio (1.0 × 104 at 0.5 V) during electrical operation. In the high resistive state, synaptic functions with long-term memory behavior are successfully mimicked by applying photonic stimuli to the transparent ReS2-PVA memristors. The excitatory postsynaptic current stimulated by the photosignal is gradually reduced by electric stimuli. The proposed PVA-assisted exfoliation method is cost-effective, environmentally friendly, and applicable to various TMD nanomaterials. Furthermore, the ReS2-PVA nanocomposite film obtained via a simple solution-based process demonstrates excellent photosynaptic behavior.
Collapse
Affiliation(s)
- Kwang Hoon Jung
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Changbong Yeon
- Thin Film Materials Development Team, Soulbrain, Gongdan-Gil, Gongju 14-102, Republic of Korea
| | - Junjae Yang
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
- Department of Advanced Device Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ye Ji Cheon
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
| | - Jung Wook Lim
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
- Department of Advanced Device Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Sun Jin Yun
- ICT Creative Research Laboratory, Electronics and Telecommunications Research Institute, Daejeon 34129, Republic of Korea
- Department of Advanced Device Technology, Korea University of Science and Technology, Daejeon 34113, Republic of Korea
| |
Collapse
|
20
|
Miao Z, Hu D, Gao D, Fan L, Ma Y, Ma T, Liu X, Zheng H, Zha Z, Sheng Z, Xu CY. Tiny 2D silicon quantum sheets: a brain photonic nanoagent for orthotopic glioma theranostics. Sci Bull (Beijing) 2021; 66:147-157. [PMID: 36654222 DOI: 10.1016/j.scib.2020.09.027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/14/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
Abstract
We report that atomically thin two-dimensional silicon quantum sheets (2D Si QSs), prepared by a scalable approach coupling chemical delithiation and cryo-assisted exfoliation, can serve as a high-performance brain photonic nanoagent for orthotopic glioma theranostics. With the lateral size of approximately 14.0 nm and thickness of about 1.6 nm, tiny Si QSs possess high mass extinction coefficient of 27.5 L g-1 cm-1 and photothermal conversion efficiency of 47.2% at 808 nm, respectively, concurrently contributing to the best photothermal performance among the reported 2D mono-elemental materials (Xenes). More importantly, Si QSs with low toxicity maintain the trade-off between stability and degradability, paving the way for practical clinical translation in consideration of both storage and action of nanoagents. In vitro Transwell filter experiment reveals that Si QSs could effectively go across the bEnd.3 cells monolayer. Upon the intravenous injection of Si QSs, orthotopic brain tumors are effectively inhibited under the precise guidance of photoacoustic imaging, and the survival lifetime of brain tumor-bearing mice is increased by two fold. Atomically thin Si QSs with strong light-harvesting capability are expected to provide an effective and robust 2D photonic nanoplatform for the management of brain diseases.
Collapse
Affiliation(s)
- Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Dehong Hu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Duyang Gao
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Linxin Fan
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Yan Ma
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China
| | - Teng Ma
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Xin Liu
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Hairong Zheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.
| | - Zonghai Sheng
- Paul C. Lauterbur Research Center for Biomedical Imaging, Shenzhen Key Laboratory of Ultrasound Imaging and Therapy, Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Cheng-Yan Xu
- Shenzhen Bay Laboratory, Shenzhen 518107, China; School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
21
|
Schiettecatte P, Rousaki A, Vandenabeele P, Geiregat P, Hens Z. Liquid-Phase Exfoliation of Rhenium Disulfide by Solubility Parameter Matching. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:15493-15500. [PMID: 33315400 DOI: 10.1021/acs.langmuir.0c02517] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
In this work, we provide a detailed account of the liquid-phase exfoliation (LPE) of rhenium disulfide (ReS2), a promising new-generation two-dimensional material. By screening LPE in a wide range of solvents, we show that the most optimal solvents are characterized by similar Hildebrand or dispersive Hansen solubility parameters of 25 and 18 MPa1/2, respectively. Such values are attained by solvents such as N-methyl-2-pyrrolidone, N,N-dimethylformamide, and 1-butanol. In line with solution thermodynamics, we interpret the conditions for high-yield exfoliation as a matching of the solvent and ReS2 solubility parameters. Using N-methyl-2-pyrrolidone as an exemplary exfoliation solvent, we undertook a detailed analysis of the exfoliated ReS2. In-depth morphological, structural, and elemental characterization outlined that the LPE procedure presented here produces few-layer, anisotropically stacked, and chemically pure ReS2 platelets with long-term stability against oxidation. These results underscore the suitability of LPE to batch-produce few-layer and pristine ReS2 in solvents that have a solubility parameter close to 25 MPa1/2.
Collapse
Affiliation(s)
- Pieter Schiettecatte
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Anastasia Rousaki
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, 9000 Gent, Belgium
| | - Peter Vandenabeele
- Raman Spectroscopy Research Group, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, 9000 Gent, Belgium
| | - Pieter Geiregat
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| | - Zeger Hens
- Physics and Chemistry of Nanostructures, Department of Chemistry, Ghent University, 9000 Gent, Belgium
- Center for Nano and Biophotonics, Ghent University, 9000 Gent, Belgium
| |
Collapse
|
22
|
Huang Y, Tian Y, Shu J, Wang F, Wei X. Oxygen self-enriched single-component "black carbon nitride" for near-infrared phototheranostics. NANOSCALE 2020; 12:21812-21820. [PMID: 33103711 DOI: 10.1039/d0nr05871h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Single component agent-based near-infrared phototheranostics has captivated researchers in cancer treatment over recent decades. However, the current single-component agents rarely alleviate the hypoxic microenvironment in tumor cells, which severely limits the development of photodynamic therapy. Here, we report a new phototheranostic agent, single-component black graphite carbon nitride nanoparticles (named CN-B NPs), synthesized through thermal copolymerization. Compared with unmodified graphitic carbon nitride (g-C3N4), the absorption of CN-B NPs in the near-infrared region was enhanced. Through in vitro and in vivo studies, we demonstrated that CN-B NPs can be used as a near-infrared phototheranostic agent in both normoxia and hypoxia, simultaneously allowing infrared thermal/photoacoustic imaging and photodynamic/photothermal co-therapy, thereby resulting in remarkable inhibition of tumor growth. This approach could provide a new method to achieve multimodal phototheranostics using a single-component material.
Collapse
Affiliation(s)
- Yuxin Huang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | | | | | | | | |
Collapse
|
23
|
Recent advances on TMDCs for medical diagnosis. Biomaterials 2020; 269:120471. [PMID: 33160702 DOI: 10.1016/j.biomaterials.2020.120471] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 09/30/2020] [Accepted: 10/18/2020] [Indexed: 02/07/2023]
Abstract
Transition metal dichalcogenides (TMDCs), such as MoS2 and WS2, have attracted much attention in biosensing and bioimaging due to its excellent stability, biocompatibility, high specific surface area, and wide varieties. In this review, we overviewed the application of TMDCs in biosensing and bioimaging. Firstly, the synthesis methods and surface functionalization methods of TMDCs were summarized. Secondly, according to the working mechanism, we classified and gave a detailed account of the latest research progress of TMDC-based biosensing for the detection of the enzyme, DNA, and other biological molecules. Then, we outlined the recent progress of applying TMDCs in bio-imaging, including fluorescence, X-ray computed tomographic, magnetic response imaging, photographic and multimodal imaging, respectively. Finally, we discussed the future challenges and development direction of the application of TMDCs in medical diagnosis. Also, we put forward our view on the opportunity of TMDCs in the big data of modern medical diagnosis.
Collapse
|
24
|
Zhou Z, Li B, Shen C, Wu D, Fan H, Zhao J, Li H, Zeng Z, Luo Z, Ma L, Tan C. Metallic 1T Phase Enabling MoS 2 Nanodots as an Efficient Agent for Photoacoustic Imaging Guided Photothermal Therapy in the Near-Infrared-II Window. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004173. [PMID: 33006243 DOI: 10.1002/smll.202004173] [Citation(s) in RCA: 115] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/07/2020] [Indexed: 06/11/2023]
Abstract
Transition metal dichalcogenide (TMD) nanomaterials, specially MoS2 , are proven to be appealing nanoagents for photothermal cancer therapies. However, the impact of the crystal phase of TMDs on their performance in photoacoustic imaging (PAI) and photothermal therapy (PTT) remains unclear. Herein, the preparation of ultrasmall single-layer MoS2 nanodots with different phases (1T and 2H phase) is reported to explore their phase-dependent performances as nanoagents for PAI guided PTT in the second near-infrared (NIR-II) window. Significantly, the 1T-MoS2 nanodots give a much higher extinction coefficient (25.6 L g-1 cm-1 ) at 1064 nm and subsequent photothermal power conversion efficiency (PCE: 43.3%) than that of the 2H-MoS2 nanodots (extinction coefficient: 5.3 L g-1 cm-1 , PCE: 21.3%). Moreover, the 1T-MoS2 nanodots also give strong PAI signals as compared to negligible signals of 2H-MoS2 nanodots in the NIR-II window. After modification with polyvinylpyrrolidone, the 1T-MoS2 nanodots can be used as a highly efficient agent for PAI guided PTT to effectively ablate cancer cells in vitro and tumors in vivo under 1064 nm laser irradiation. This work proves that the crystal phase plays a key role in determining the performance of nanoagents based on TMD nanomaterials for PAI guided PTT.
Collapse
Affiliation(s)
- Zhan Zhou
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Bowen Li
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chuang Shen
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Di Wu
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Huacheng Fan
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Jiangqi Zhao
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Hai Li
- Institute of Advanced Materials (IAM) and Key Laboratory of Flexible Electronics (KLoFE), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, P. R. China
| | - Zhiyuan Zeng
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| | - Zhimin Luo
- Key Laboratory for Organic Electronics and Information Displays and Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China
| | - Lufang Ma
- Henan Key Laboratory of Function-Oriented Porous Materials, College of Chemistry and Chemical Engineering, Luoyang Normal University, Luoyang, 471934, China
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, 999077, China
| |
Collapse
|
25
|
Xie X, Zhan C, Wang J, Zeng F, Wu S. An Activatable Nano-Prodrug for Treating Tyrosine-Kinase-Inhibitor-Resistant Non-Small Cell Lung Cancer and for Optoacoustic and Fluorescent Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2003451. [PMID: 32815304 DOI: 10.1002/smll.202003451] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/11/2020] [Indexed: 06/11/2023]
Abstract
Non-small cell lung cancer (NSCLC) is the most common type of lung cancer and the cause of high rate of mortality. The epidermal growth factor receptor (EGFR)-targeted tyrosine kinase inhibitors are used to treat NSCLC, yet their curative effects are usually compromised by drug resistance. This study demonstrates a nanodrug for treating tyrosine-kinase-inhibitor-resistant NSCLC through inhibiting upstream and downstream EGFR signaling pathways. The main molecule of the nanodrug is synthesized by linking a tyrosine kinase inhibitor gefitinib and a near-infrared dye (NIR) on each side of a disulfide via carbonate bonds, and the nanodrug is then obtained through nanoparticle formation of the main molecule in aqueous medium and concomitant encapsulation of a serine threonine protein kinase (Akt) inhibitor celastrol. Upon administration, the nanodrug accumulates at the tumor region of NSCLC-bearing mice and releases the drugs for tumor inhibition, and the dye for fluorescence and optoacoustic imaging. Through suppressing the phosphorylation of upstream EGFR and downstream Akt in the EGFR pathway by gefitinib and celastrol, respectively, the nanodrug exhibits high inhibition efficacy against orthotopic NSCLC in mouse models.
Collapse
Affiliation(s)
- Xin Xie
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Chenyue Zhan
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Jie Wang
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Fang Zeng
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| | - Shuizhu Wu
- Biomedical Division, State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China
| |
Collapse
|
26
|
Xiao YF, Xiang C, Li S, Mao C, Chen H, Chen JX, Tian S, Cui X, Wan Y, Huang Z, Li X, Zhang XH, Guo W, Lee CS. Single-Photomolecular Nanotheranostics for Synergetic Near-Infrared Fluorescence and Photoacoustic Imaging-Guided Highly Effective Photothermal Ablation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002672. [PMID: 32697430 DOI: 10.1002/smll.202002672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/05/2020] [Indexed: 06/11/2023]
Abstract
Multi-modality imaging-guided cancer therapy is considered as a powerful theranostic platform enabling simultaneous precise diagnosis and treatment of cancer. However, recently reported multifunctional systems with multiple components and sophisticate structures remain major obstacles for further clinical translation. In this work, a single-photomolecular theranostic nanoplatform is fabricated via a facile nanoprecipitation strategy. By encapsulating a semiconductor oligomer (IT-S) into an amphiphilic lipid, water-dispersible IT-S nanoparticles (IT-S NPs) are prepared. The obtained IT-S NPs have a very simple construction and possess ultra-stable near-infrared (NIR) fluorescence (FL)/photoacoustic (PA) dual-modal imaging and high photothermal conversion efficiency of 72.3%. Accurate spatiotemporal distribution profiles of IT-S NPs are successfully visualized by NIR FL/PA dual-modal imaging. With the comprehensive in vivo imaging information provided by IT-S NPs, tumor photothermal ablation is readily realized under precise manipulation of laser irradiation, which greatly improves the therapeutic efficacy without any obvious side effects. Therefore, the IT-S NPs allow high tumor therapeutic efficacy under the precise guidance of FL/PA imaging techniques and thus hold great potential as an effective theranostic platform for future clinical applications.
Collapse
Affiliation(s)
- Ya-Fang Xiao
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Chenyang Xiang
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Shengliang Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Cong Mao
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Haoting Chen
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Jia-Xiong Chen
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shuang Tian
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao Cui
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Yingpeng Wan
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Zhongming Huang
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiaozhen Li
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| | - Xiao-Hong Zhang
- Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Institute of Functional Nano & Soft Materials (FUNSOM), Joint International Research Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Weisheng Guo
- Translational Medicine Center, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Second Affiliated Hospital, Guangzhou Medical University, Guangzhou, 510260, P. R. China
| | - Chun-Sing Lee
- Center of Super-Diamond and Advanced Films (COSDAF), Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong SAR, P. R. China
| |
Collapse
|
27
|
Yu J, Seo S, Luo Y, Sun Y, Oh S, Nguyen CTK, Seo C, Kim JH, Kim J, Lee H. Efficient and Stable Solar Hydrogen Generation of Hydrophilic Rhenium-Disulfide-Based Photocatalysts via Chemically Controlled Charge Transfer Paths. ACS NANO 2020; 14:1715-1726. [PMID: 31990522 DOI: 10.1021/acsnano.9b07366] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Effective charge separation and rapid transport of photogenerated charge carriers without self-oxidation in transition metal dichalcogenide photocatalysts are required for highly efficient and stable hydrogen generation. Here, we report that a molecular junction as an electron transfer path toward two-dimensional rhenium disulfide (2D ReS2) nanosheets from zero-dimensional titanium dioxide (0D TiO2) nanoparticles induces high efficiency and stability of solar hydrogen generation by balanced charge transport of photogenerated charge carriers. The molecular junctions are created through the chemical bonds between the functionalized ReS2 nanosheets (e.g., -COOH groups) and -OH groups of two-phase TiO2 (i.e., ReS2-C6H5C(═O)-O-TiO2 denoted by ReS2-BzO-TiO2). This enhances the chemical energy at the conduction band minimum of ReS2 in ReS2-BzO-TiO2, leading to efficiently improved hydrogen reduction. Through the molecular junction (a Z-scheme charge transfer path) in ReS2-BzO-TiO2, recombination of photogenerated charges and self-oxidation of the photocatalyst are restrained, resulting in a high photocatalytic activity (9.5 mmol h-1 per gram of ReS2 nanosheets, a 4750-fold enhancement compared to bulk ReS2) toward solar hydrogen generation with high cycling stability of more than 20 h. Our results provide an effective charge transfer path of photocatalytic TMDs by preventing self-oxidation, leading to increases in photocatalytic durability and a transport rate of the photogenerated charge carriers.
Collapse
Affiliation(s)
- Jianmin Yu
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Sohyeon Seo
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Yongguang Luo
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Yan Sun
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Simgeon Oh
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Chau T K Nguyen
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Changwon Seo
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Ji-Hee Kim
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Joonsoo Kim
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| | - Hyoyoung Lee
- Centre for Integrated Nanostructure Physics (CINAP) , Institute of Basic Science (IBS) , Suwon 16419 , Republic of Korea
- Department of Chemistry , Sungkyunkwan University , Suwon 16419 , Republic of Korea
- Department of Energy Science , Sungkyunkwan University , Suwon 16419 , Republic of Korea
| |
Collapse
|
28
|
Wei Z, Xin F, Zhang J, Wu M, Qiu T, Lan Y, Qiao S, Liu X, Liu J. Donor–acceptor conjugated polymer-based nanoparticles for highly effective photoacoustic imaging and photothermal therapy in the NIR-II window. Chem Commun (Camb) 2020; 56:1093-1096. [PMID: 31894764 DOI: 10.1039/c9cc07821e] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
BDA nanoparticles exhibit excellent theranostic properties including an extremely high cancer cell killing ability, admirable tumor elimination efficiency (100%) and a remarkable photoacoustic imaging contrast enhancing ability.
Collapse
Affiliation(s)
- Zuwu Wei
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- Mengchao Med-X Center
| | - Fuli Xin
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University
- Fuzhou 350005
- P. R. China
| | - Jian Zhang
- School of Basic Medical Sciences
- Affiliated Stomatology Hospital of Guangzhou Medical University
- Guangzhou Medical University
- Guangzhou 511436
- P. R. China
| | - Ming Wu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- Mengchao Med-X Center
| | - Ting Qiu
- School of Basic Medical Sciences
- Affiliated Stomatology Hospital of Guangzhou Medical University
- Guangzhou Medical University
- Guangzhou 511436
- P. R. China
| | - Yintao Lan
- School of Basic Medical Sciences
- Affiliated Stomatology Hospital of Guangzhou Medical University
- Guangzhou Medical University
- Guangzhou 511436
- P. R. China
| | - Shuangying Qiao
- School of Life Sciences
- Fujian Agriculture and Forestry University
- Fuzhou 350002
- P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- Mengchao Med-X Center
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province
- Mengchao Hepatobiliary Hospital of Fujian Medical University
- Fuzhou 350025
- P. R. China
- Mengchao Med-X Center
| |
Collapse
|
29
|
Ren L, Liu X, Ji T, Deng G, Liu F, Yuan H, Yu J, Hu J, Lu J. "All-in-One" Theranostic Agent with Seven Functions Based on Bi-Doped Metal Chalcogenide Nanoflowers. ACS APPLIED MATERIALS & INTERFACES 2019; 11:45467-45478. [PMID: 31718131 DOI: 10.1021/acsami.9b16962] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Most of the existing single-component nanostructures cannot provide comprehensive diagnostic information, and their treatment strategies always have to combine other therapeutics as a complementary for effective biomedical application. Here, we adopted a facile approach to design a theranostic nanoflower (NF) with robust efficacy for comprehensive tumor diagnosis and quadruple synergistic cancer therapy. The NF is equipped with a metallic hybrid of several functional elements and flower-like superstructures and thus shows excellent in vitro and in vivo theranostic performance. It shows high X-ray attenuation coefficiency for the Bi element, strong near-infrared (NIR) plasmon absorbance and singlet oxygen (1O2) generation ability for the Mo element, and great photothermal conversion efficiency (54.7%) because of enhanced photoabsorption of the petal structure. Moreover, the NF realizes a very high doxorubicin-loading efficiency (90.0%) and bimodal pH/NIR-responsive drug release, posing a promise as a controlled drug carrier. The NF also shows excellent performance at trimodal magnetic resonance/X-ray computed tomography/photoacoustic imaging for comprehensive tumor diagnosis. To our best knowledge, it is the first time that integrating at least seven functions into one biomedical nanomaterial for well-rounded tumor theranostics has been reported. This "all-in-one" NF opens a new perspective in developing novel and efficient multifunctional nanotheranostics.
Collapse
Affiliation(s)
- Lanfang Ren
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P. R. China
- Shanghai Key Laboratory of Regulatory Biology, School of Life Sciences , East China Normal University , Shanghai , 200241 , China
| | - Xijian Liu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P. R. China
- School of Materials Science and Engineering , Nanyang Technological University , 639798 , Singapore
| | - Tao Ji
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen , 518118 , China
| | - Guoying Deng
- Trauma Center, Shanghai General Hospital , Shanghai Jiaotong University School of Medicine , No. 650 Xin Songjiang Road , Shanghai , 201620 , China
| | - Fengjiao Liu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P. R. China
| | - Haikuan Yuan
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P. R. China
| | - Jing Yu
- School of Materials Science and Engineering , Nanyang Technological University , 639798 , Singapore
| | - Junqing Hu
- College of Health Science and Environmental Engineering , Shenzhen Technology University , Shenzhen , 518118 , China
| | - Jie Lu
- College of Chemistry and Chemical Engineering , Shanghai University of Engineering Science , Shanghai 201620 , P. R. China
| |
Collapse
|
30
|
Wang S, Zhou L, Zheng Y, Li L, Wu C, Yang H, Huang M, An X. Synthesis and biocompatibility of two-dimensional biomaterials. Colloids Surf A Physicochem Eng Asp 2019; 583:124004. [DOI: 10.1016/j.colsurfa.2019.124004] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
31
|
Bimetallic nanodots for tri-modal CT/MRI/PA imaging and hypoxia-resistant thermoradiotherapy in the NIR-II biological windows. Biomaterials 2019; 233:119656. [PMID: 31864762 DOI: 10.1016/j.biomaterials.2019.119656] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 11/02/2019] [Accepted: 11/27/2019] [Indexed: 01/14/2023]
Abstract
Hypoxic tumor microenvironment leads to resistance or failure of radiotherapy (RT). As a non-invasive therapy, photothermal therapy (PTT) can improve the tumor hypoxic microenvironment in addition to directly killing tumor cells. PTT combined with RT (thermoradiotherapy) becomes an emerging treatment. Multi-functional nanoparticles used for hypoxia-resistant thermoradiotherapy in the second near-infrared (NIR-II) biological windows (1000-1700 nm) are urgently needed to be developed. Here, a facil method synthesis of ultra-small cysteamine (Cys)-coated FePd bimetallic nanodots (NDs) is reported. These NDs can not only produce effective hyperthermia (35.4%) when irradiated in the NIR-II region (1064 nm) but also have an enhanced radiation effect due to i) Hypoxic improvement in tumor tissues by photothermal treatment in the NIR-II Biological Windows can greatly enhance the sensitivity of tumor cells to radiotherapy ii) The ability of NDs to deposit radiation energy in tumors has further enhanced the sensitivity of tumor cells to radiotherapy. Meanwhile, NDs was a contrast agent for tri-modal imaging including computed tomography (CT)/magnetic resonance imaging (MRI)/photoacoustic imaging (PAI) in vitro and in vivo. Both in vitro and in vivo tests demonstrated good biocompatibility and excellent stability of NDs, indicating great potential for clinical applications.
Collapse
|
32
|
Wang Y, Song S, Lu T, Cheng Y, Song Y, Wang S, Tan F, Li J, Li N. Oxygen-supplementing mesoporous polydopamine nanosponges with WS2 QDs-embedded for CT/MSOT/MR imaging and thermoradiotherapy of hypoxic cancer. Biomaterials 2019; 220:119405. [DOI: 10.1016/j.biomaterials.2019.119405] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 12/19/2022]
|
33
|
Zhang D, Zheng Y, Lin Z, Lan S, Zhang X, Zheng A, Li J, Liu G, Yang H, Liu X, Liu J. Artificial Engineered Natural Killer Cells Combined with Antiheat Endurance as a Powerful Strategy for Enhancing Photothermal-Immunotherapy Efficiency of Solid Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902636. [PMID: 31468667 DOI: 10.1002/smll.201902636] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 08/07/2019] [Indexed: 06/10/2023]
Abstract
Although photothermal therapy (PTT) is preclinically applied in solid tumor treatment, incomplete tumor removal of PTT and heat endurance of tumor cells induces significant tumor relapse after treatment, therefore lowering the therapeutic efficiency of PTT. Herein, a programmable therapeutic strategy that integrates photothermal therapeutic agents (PTAs), DNAzymes, and artificial engineered natural killer (A-NK) cells for immunotherapy of hepatocellular carcinoma (HCC) is designed. The novel PTAs, termed as Mn-CONASHs, with 2D structure are synthesized by the coordination of tetrahydroxyanthraquinone and Mn2+ ions. By further adsorbing polyetherimide/DNAzymes on the surface, the DNAzymes@Mn-CONASHs exhibit excellent light-to-heat conversion ability, tumor microenvironment enhanced T1 -MRI guiding ability, and antiheat endurance ability. Furthermore, the artificial engineered NK cells with HCC specific targeting TLS11a-aptamer decoration are constructed for specifically eliminating any possible residual tumor cells after PTT, to systematically enhance the therapeutic efficacy of PTT and avoid tumor relapse. Taken together, the potential of A-NK cells combined with antiheat endurance as a powerful strategy for immuno-enhancing photothermal therapy efficiency of solid tumors is highlighted, and the current strategy might provide promising prospects for cancer therapy.
Collapse
Affiliation(s)
- Da Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Youshi Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Ziguo Lin
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Shanyou Lan
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
| | - Xiaolong Zhang
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Aixian Zheng
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Juan Li
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Gang Liu
- Center for Molecular Imaging and Translational Medicine, Xiamen University, Xiamen, 361005, P. R. China
| | - Huanghao Yang
- The Key Lab of Analysis and Detection Technology for Food Safety of the MOE, Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, P. R. China
| | - Xiaolong Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jingfeng Liu
- The United Innovation of Mengchao Hepatobiliary Technology Key Laboratory of Fujian Province, Mengchao Hepatobiliary Hospital of Fujian Medical University, Fuzhou, 350025, P. R. China
- The Liver Center of Fujian Province, Fujian Medical University, Fuzhou, 350025, P. R. China
- Mengchao Med-X Center, Fuzhou University, Fuzhou, 350116, P. R. China
- Liver Disease Center, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, P. R. China
| |
Collapse
|
34
|
Miao Z, Liu P, Wang Y, Li K, Huang D, Yang H, Zhao Q, Zha Z, Zhen L, Xu CY. PEGylated Tantalum Nanoparticles: A Metallic Photoacoustic Contrast Agent for Multiwavelength Imaging of Tumors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1903596. [PMID: 31441213 DOI: 10.1002/smll.201903596] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2019] [Revised: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Elemental tantalum is a well-known biomedical metal in clinics due to its extremely high biocompatibility, which is superior to that of other biomedical metallic materials. Hence, it is of significance to expand the scope of biomedical applications of tantalum. Herein, it is reported that tantalum nanoparticles (Ta NPs), upon surface modification with polyethylene glycol (PEG) molecules via a silane-coupling approach, are employed as a metallic photoacoustic (PA) contrast agent for multiwavelength imaging of tumors. By virtue of the broad optical absorbance from the visible to near-infrared region and high photothermal conversion efficiency (27.9%), PEGylated Ta NPs depict high multiwavelength contrast capability for enhancing PA imaging to satisfy the various demands (penetration depth, background noise, etc.) of clinical diagnosis as needed. Particularly, the PA intensity of the tumor region postinjection is greatly increased by 4.87, 7.47, and 6.87-fold than that of preinjection under 680, 808, and 970 nm laser irradiation, respectively. In addition, Ta NPs with negligible cytotoxicity are capable of eliminating undesirable reactive oxygen species, ensuring the safety for biomedical applications. This work introduces a silane-coupling strategy for the surface engineering of Ta NPs, and highlights the potential of Ta NPs as a biocompatible metallic contrast agent for multiwavelength photoacoustic image.
Collapse
Affiliation(s)
- Zhaohua Miao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
| | - Peiying Liu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Yichuan Wang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kai Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Huanjie Yang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, 150080, China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics and Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, 361102, China
| | - Zhengbao Zha
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Zhen
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Cheng-Yan Xu
- State Key Laboratory of Advanced Welding and Joining, Harbin Institute of Technology, Harbin, 150001, China
- School of Materials Science and Engineering, Harbin Institute of Technology, Harbin, 150001, China
- Shenzhen Bay Laboratory, Shenzhen, 518052, China
| |
Collapse
|
35
|
Wang X, Wang J, Pan J, Zhao F, Kan D, Cheng R, Zhang X, Sun SK. Rhenium Sulfide Nanoparticles as a Biosafe Spectral CT Contrast Agent for Gastrointestinal Tract Imaging and Tumor Theranostics in Vivo. ACS APPLIED MATERIALS & INTERFACES 2019; 11:33650-33658. [PMID: 31448891 DOI: 10.1021/acsami.9b10479] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Spectral computed tomography (CT) imaging as a novel imaging technique shows promising prospects in the accurate diagnosis of various diseases. However, clinically iodinated contrast agents suffer from poor signal-to-noise ratio, and emerging heavy-metal-based CT contrast agents arouse great biosafety concern. Herein, we show the fabrication of rhenium sulfide (ReS2) nanoparticles, a clinic radiotherapy sensitizer, as a biosafe spectral CT contrast agent for the gastrointestinal tract imaging and tumor theranostics in vivo by teaching old drugs new tricks. The ReS2 nanoparticles were fabricated in a one-pot facile method at room temperature, and exhibited sub-10 nm size, favorable monodispersity, admirable aqueous solubility, and strong X-ray attenuation capability. More importantly, the proposed nanoparticles possess an outstanding spectral CT imaging ability and undoubted biosafety as a clinic therapeutic agent. Besides, the ReS2 nanoparticles possess appealing photothermal performance due to their intense near-infrared absorption. The proposed nano-agent not only guarantees obvious contrast enhancement in gastrointestinal tract spectral CT imaging in vivo, but also allows effective CT imaging-guided tumor photothermal therapy. The proposed "teaching old drugs new tricks" strategy shortens the time and cuts the cost required for clinical application of nano-agents based on existing clinical toxicology testing and trial results, and lays down a low-cost, time-saving, and energy-saving method for the development of multifunctional nano-agents toward clinical applications.
Collapse
Affiliation(s)
| | - Jiaojiao Wang
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| | - Jinbin Pan
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Fangshi Zhao
- Department of Radiology, Tianjin Key Laboratory of Functional Imaging , Tianjin Medical University General Hospital , Tianjin 300052 , China
| | - Di Kan
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| | - Ran Cheng
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| | | | - Shao-Kai Sun
- School of Medical Imaging , Tianjin Medical University , Tianjin 300203 , China
| |
Collapse
|
36
|
Wang X, Cheng L. Multifunctional two-dimensional nanocomposites for photothermal-based combined cancer therapy. NANOSCALE 2019; 11:15685-15708. [PMID: 31355405 DOI: 10.1039/c9nr04044g] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Two-dimensional (2D) nanocomposites have been widely used in biomedical applications during the past few years due to their extraordinary physicochemical properties, which has proved their importance in the field of nanomedicine. Benefiting from the excellent optical absorption in the near-infrared window and large specific surface area, many efforts have been devoted to fabricating 2D nanomaterial-based multifunctional nanoplatforms to realize photothermal therapy (PTT)-based or chemotherapy-based synergistic treatment, which exhibits obvious anti-tumor effects and significantly enhances the therapeutic efficiency of cancer compared with monotherapy. In particular, 2D nanocomposites are usually fabricated as intelligent nanoplatforms for stimuli-responsive nanocarriers, whose therapeutic effects could be specifically activated by the tumor microenvironment (TME). In addition, different fluorescent probes and functional inorganic nanomaterials could be absorbed on the surface of 2D nanomaterials to fabricate multifunctional hybrid nanomaterials with satisfactory magnetic, optical, or other properties that are widely used for multimodal imaging-guided cancer therapy. In this review, the latest development of multifunctional 2D nanocomposites for combination therapy is systematically summarized, mainly focusing on PTT-based synergistic cancer therapy, and the other forms and potential forms of synergistic cancer therapy are also simply summarized. Furthermore, the design principles of 2D nanocomposites are particularly emphasized, and the current challenges and future prospects of 2D nanocomposites for cancer theranostics are discussed simultaneously.
Collapse
Affiliation(s)
- Xianwen Wang
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou 215123, P. R. China.
| | | |
Collapse
|
37
|
Huang C, Sun Z, Cui H, Pan T, Geng S, Zhou W, Chu PK, Yu XF. InSe Nanosheets for Efficient NIR-II-Responsive Drug Release. ACS APPLIED MATERIALS & INTERFACES 2019; 11:27521-27528. [PMID: 31180631 DOI: 10.1021/acsami.9b06170] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Near-infrared-II (NIR-II) biowindow is appealing from the perspectives of larger maximum permissible exposure in comparison with the near-infrared-I biowindow, so the NIR-II-responsive drug-delivery nanoplatform is highly desirable. In this work, two-dimensional InSe nanosheets (InSe NSs) are modified with poly(ethylene glycol) and evaluated as an effective NIR-II-responsive cancer treatment nanoplatform. The InSe NSs synthesized by liquid exfoliation exhibit prominent NIR-II-responsive photothermal conversion efficiency (39.5%) and photothermal stability. Moreover, the InSe NSs have a doxorubicin (DOX) loading capacity as high as 93.6%, along with excellent NIR-II-responsive DOX release characteristic. The superior synergistic chemo/photothermal effects have also been demonstrated by the in vitro experiments in killing cancer cells. In combination with good biocompatibility, the InSe NSs have great potential in therapeutic applications.
Collapse
Affiliation(s)
- Chi Huang
- Institute of Chemical Biology and Nanomedicine, Molecular Science and Biomedicine Laboratory, State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha 410082 , China
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Zhengbo Sun
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Haodong Cui
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Ting Pan
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Shengyong Geng
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Wenhua Zhou
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| | - Paul K Chu
- Department of Physics and Department of Materials Science and Engineering , City University of Hong Kong , Tat Chee Avenue , Kowloon , Hong Kong 999077 , China
| | - Xue-Feng Yu
- Materials and Interfaces Center , Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences , Shenzhen 518055 , China
| |
Collapse
|
38
|
Miao Z, Chen S, Xu CY, Ma Y, Qian H, Xu Y, Chen H, Wang X, He G, Lu Y, Zhao Q, Zha Z. PEGylated rhenium nanoclusters: a degradable metal photothermal nanoagent for cancer therapy. Chem Sci 2019; 10:5435-5443. [PMID: 31293725 PMCID: PMC6544121 DOI: 10.1039/c9sc00729f] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Accepted: 04/22/2019] [Indexed: 11/21/2022] Open
Abstract
A common issue of functional nanoagents for potential clinical translation is whether they are biodegradable or renal clearable. Previous studies have widely explored noble metal nanoparticles (Au and Pd) as the first generation of photothermal nanoagents for cancer therapy, but all of the reported noble metal nanoparticles are non-degradable. On the other hand, rhenium (Re), one of the noble and precious metals with a high atomic number (Z = 75), has been mainly utilized as a jet superalloy or chemical catalyst, but the biological characteristics and activity of Re nanoparticles have never been evaluated until now. To address these issues, here we report a simple and scalable liquid-reduction strategy to synthesize PEGylated Re nanoclusters, which exhibit intrinsically high photothermal conversion efficacy (33.0%) and high X-ray attenuation (21.2 HU mL mg-1), resulting in excellent photothermal ablation (100% tumor elimination) and higher CT enhancement (15.9 HU mL mg-1 for commercial iopromide in clinics). Impressively, biocompatible Re nanoclusters can degrade into renal clearable ReO4 - ions after exposure to H2O2, and thus achieve much higher renal clearance efficiency than conventional gold nanoparticles. This work reveals the potential of theranostic application of metallic Re nanoclusters with both biodegradation and renal clearance properties and provides insights into the design of degradable metallic platforms with high clinical prospects.
Collapse
Affiliation(s)
- Zhaohua Miao
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Harbin , 150001 , P. R. China
| | - Sheng Chen
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China .
| | - Cheng-Yan Xu
- State Key Laboratory of Advanced Welding and Joining , Harbin Institute of Technology , Harbin , 150001 , P. R. China
| | - Yan Ma
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Haisheng Qian
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Yunjun Xu
- The First Affiliated Hospital of University of Science and Technology of China , Anhui Province Hospital , Hefei 230001 , P. R. China
| | - Huajian Chen
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Xianwen Wang
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Gang He
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| | - Yang Lu
- School of Chemistry and Chemical Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China .
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics , Center for Molecular Imaging and Translational Medicine , School of Public Health , Xiamen University , Xiamen 361102 , China
| | - Zhengbao Zha
- School of Food and Biological Engineering , Hefei University of Technology , Hefei , Anhui 230009 , P. R. China . ;
| |
Collapse
|
39
|
Zhou Y, Feng W, Qian X, Yu L, Han X, Fan G, Chen Y, Zhu J. Construction of 2D Antimony(III) Selenide Nanosheets for Highly Efficient Photonic Cancer Theranostics. ACS APPLIED MATERIALS & INTERFACES 2019; 11:19712-19723. [PMID: 31066264 DOI: 10.1021/acsami.9b02104] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Photonic cancer hyperthermia has been considered to be one of the most representative noninvasive cancer treatments with high therapeutic efficiency and biosafety. However, it still remains a crucial challenge to develop efficient photothermal nanoagents with satisfactory photothermal performance and biocompatibility, among which two-dimensional (2D) ultrathin nanosheets have recently been regarded as the promising multifunctional theranostic agents for photothermal tumor ablation. In this work, we report, for the first time, on the construction of a novel kind of photothermal agents based on the intriguing 2D antimony(III) selenide (Sb2Se3) nanosheets for highly efficient photoacoustic imaging-guided photonic cancer hyperthermia by near-infrared (NIR) laser activation. These Sb2Se3 nanosheets were easily fabricated by a novel but efficiently combined liquid nitrogen pretreatment and freezing-thawing approach, which were featured with high photothermal-conversion capability (extinction coefficient: 33.2 L g-1 cm-1; photothermal-conversion efficiency: 30.78%). The further surface engineering of these Sb2Se3 ultrathin nanosheets with poly(vinyl pyrrolidone) (PVP) substantially improved the biocompatibility of the nanosheets and their stability in physiological environments, guaranteeing the feasibility in photonic antitumor applications. Importantly, 2D Sb2Se3-PVP nanosheets have been certificated to efficiently eradicate the tumors by NIR-triggered photonic tumor hyperthermia. Especially, the biosafety in vitro and in vivo of these Sb2Se3 ultrathin nanosheets has been evaluated and demonstrated. This work meaningfully expands the biomedical applications of 2D bionanoplatforms with a planar topology through probing into new members (Sb2Se3 in this work) of 2D biomaterials with unique intrinsic physiochemical property and biological effect.
Collapse
Affiliation(s)
- Yadan Zhou
- Department of Ultrasound , Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310016 , P. R. China
| | - Wei Feng
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| | - Xiaoqin Qian
- Department of Ultrasound , The Affiliated People's Hospital of Jiangsu University , Zhenjiang 212002 , P. R. China
| | - Luodan Yu
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| | - Xiuguo Han
- Shanghai Key Laboratory of Orthopedic Implants, Department of Orthopedic Surgery Shanghai Ninth People's Hospital , Shanghai Jiao Tong University School of Medicine , Shanghai 200011 , P. R. China
| | - Gonglin Fan
- Department of Ultrasound , Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310016 , P. R. China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure , Shanghai Institute of Ceramics, Chinese Academy of Sciences , Shanghai 200050 , P. R. China
| | - Jiang Zhu
- Department of Ultrasound , Sir Run Run Shaw Hospital, Zhejiang University School of Medicine , Hangzhou 310016 , P. R. China
| |
Collapse
|
40
|
|
41
|
Fu Q, Zhu R, Song J, Yang H, Chen X. Photoacoustic Imaging: Contrast Agents and Their Biomedical Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2019; 31:e1805875. [PMID: 30556205 DOI: 10.1002/adma.201805875] [Citation(s) in RCA: 288] [Impact Index Per Article: 48.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 10/10/2018] [Indexed: 05/20/2023]
Abstract
Photoacoustic (PA) imaging as a fast-developing imaging technique has great potential in biomedical and clinical applications. It is a noninvasive imaging modality that depends on the light-absorption coefficient of the imaged tissue and the injected PA-imaging contrast agents. Furthermore, PA imaging provides superb contrast, super spatial resolution, and high penetrability and sensitivity to tissue functional characteristics by detecting the acoustic wave to construct PA images. In recent years, a series of PA-imaging contrast agents are developed to improve the PA-imaging performance in biomedical applications. Here, recent progress of PA contrast agents and their biomedical applications are outlined. PA contrast agents are classified according to their components and function, and gold nanocrystals, gold-nanocrystal assembly, transition-metal chalcogenides/MXene-based nanomaterials, carbon-based nanomaterials, other inorganic imaging agents, small organic molecules, semiconducting polymer nanoparticles, and nonlinear PA-imaging contrast agents are discussed. The applications of PA contrast agents as biosensors (in the sensing of metal ions, pH, enzymes, temperature, hypoxia, reactive oxygen species, and reactive nitrogen species) and in bioimaging (lymph nodes, vasculature, tumors, and brain tissue) are discussed in detail. Finally, an outlook on the future research and investigation of PA-imaging contrast agents and their significance in biomedical research is presented.
Collapse
Affiliation(s)
- Qinrui Fu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Rong Zhu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Xiaoyuan Chen
- Laboratory of Molecular Imaging and Nanomedicine (LOMIN), National Institute of Biomedical Imaging and Bioengineering (NIBIB), National Institutes of Health (NIH), Bethesda, MD, 20892, USA
| |
Collapse
|
42
|
Yang C, Yu H, Gao Y, Guo W, Li Z, Chen Y, Pan Q, Ren M, Han X, Guo C. Surface-engineered vanadium nitride nanosheets for an imaging-guided photothermal/photodynamic platform of cancer treatment. NANOSCALE 2019; 11:1968-1977. [PMID: 30644942 DOI: 10.1039/c8nr08269c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Of the many strategies for precise tumor treatment, near-infrared (NIR) light-activated "one-for-all" theranostic modality with real-time diagnosis and therapy has attracted extensive attention from researchers. Herein, a brand-new theranostic nanoplatform was established on versatile vanadium nitride (VN) nanosheets, which show significant NIR optical absorption, and resultant photothermal effect and reactive oxygen species activity under NIR excitation, thereby realizing the synergistic action of photothermal/photodynamic co-therapy. As expected, systematic in vitro and in vivo antitumor evaluations demonstrated efficient cancer cell killing and solid tumor removal without recurrence. Meanwhile, the surface modification of VN nanosheets with poly(allylamine hydrochloride) and bovine serum albumin enhanced the biocompatibility of VN and made it more suitable for in vivo delivery. Moreover, VN has been ascertained as a potential photoacoustic imaging contrast for in vivo tumor depiction. Thus, this work highlights the potential of VN nanosheets as a single-component theranostic nanoplatform.
Collapse
Affiliation(s)
- Chunyu Yang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Zhou R, Zhu S, Gong L, Fu Y, Gu Z, Zhao Y. Recent advances of stimuli-responsive systems based on transition metal dichalcogenides for smart cancer therapy. J Mater Chem B 2019; 7:2588-2607. [DOI: 10.1039/c8tb03240h] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
A comprehensive overview of the development of stimuli-responsive TMDC-based nanoplatforms for “smart” cancer therapy is presented to demonstrate a more intelligent and better controllable therapeutic strategy.
Collapse
Affiliation(s)
- Ruxin Zhou
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Linji Gong
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yanyan Fu
- State Key Lab of Transducer Technology
- Shanghai Institute of Microsystem and Information Technology
- Chinese Academy of Sciences
- Shanghai 200050
- P. R. China
| | - Zhanjun Gu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| | - Yuliang Zhao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety
- Institute of High Energy Physics
- Chinese Academy of Sciences
- Beijing 100049
- China
| |
Collapse
|
44
|
Fan L, Huang D, Wang Y, Miao Z, Ma Y, Zhao Q, Zha Z. Cryo-assisted exfoliation of atomically thin 2D Sb2Se3 nanosheets for photo-induced theranostics. Chem Commun (Camb) 2019; 55:2805-2808. [DOI: 10.1039/c9cc00576e] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cryo-assisted liquid exfoliation approach was developed to prepare atomically thin Sb2Se3 colloidal nanosheets for simultaneous photoacoustic imaging and photothermal therapy.
Collapse
Affiliation(s)
- Linxin Fan
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Doudou Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine
- School of Public Health
- Xiamen University
- Xiamen 361102
- China
| | - Yichuan Wang
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Zhaohua Miao
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- China
- State Key Laboratory of Advanced Welding and Joining
| | - Yan Ma
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- China
| | - Qingliang Zhao
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics & Center for Molecular Imaging and Translational Medicine
- School of Public Health
- Xiamen University
- Xiamen 361102
- China
| | - Zhengbao Zha
- School of Food and Biological Engineering
- Hefei University of Technology
- Hefei 230009
- China
| |
Collapse
|
45
|
Tumor Photothermal Therapy Employing Photothermal Inorganic Nanoparticles/Polymers Nanocomposites. CHINESE JOURNAL OF POLYMER SCIENCE 2018. [DOI: 10.1007/s10118-019-2193-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
46
|
Qi J, Chen C, Ding D, Tang BZ. Aggregation-Induced Emission Luminogens: Union Is Strength, Gathering Illuminates Healthcare. Adv Healthc Mater 2018; 7:e1800477. [PMID: 29969201 DOI: 10.1002/adhm.201800477] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 06/06/2018] [Indexed: 12/13/2022]
Abstract
The rapid development of healthcare techniques encourages the emergence of new molecular imaging agents and modalities. Fluorescence imaging that enables precise monitoring and detection of biological processes/diseases is extensively investigated as this imaging technique has strengths in terms of high sensitivity, excellent temporal resolution, low cost, and good safety. Aggregation-induced emission luminogens (AIEgens) have recently emerged as a new class of emitters that possess several notable features, such as high brightness, large Stokes shift, marked photostability, good biocompatibility, and so on. So far, AIEgens are widely explored and exhibit superb performance in the area of biomedicine and life sciences. Herein, this review summarizes and discusses the recent investigations of AIEgens for in vivo diagnosis and therapy including long-term tracking, 3D angiography, multimodality imaging, disease theranostics, and activatable sensing. Collectively, these results reveal that AIEgens are of great promise for in vivo biomedical applications. It is hoped that this review will lead to new insights into the development of advanced healthcare materials.
Collapse
Affiliation(s)
- Ji Qi
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
| | - Chao Chen
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Dan Ding
- State Key Laboratory of Medicinal Chemical Biology; Key Laboratory of Bioactive Materials; Ministry of Education, and College of Life Sciences; Nankai University; Tianjin 300071 China
| | - Ben Zhong Tang
- Department of Chemistry; Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction; Division of Life Science; State Key Laboratory of Molecular Neuroscience; Institute for Advanced Study, and Institute of Molecular Functional Materials; The Hong Kong University of Science and Technology; Clear Water Bay Kowloon Hong Kong China
- NSFC Center for Luminescence from Molecular Aggregates; SCUT-HKUST Joint Research Institute; State Key Laboratory of Luminescent Materials and Devices; South China University of Technology; Guangzhou 510640 China
| |
Collapse
|
47
|
Hou M, Yan C, Chen Z, Zhao Q, Yuan M, Xu Y, Zhao B. Multifunctional NIR-responsive poly(vinylpyrrolidone)-Cu-Sb-S nanotheranostic agent for photoacoustic imaging and photothermal/photodynamic therapy. Acta Biomater 2018; 74:334-343. [PMID: 29753138 DOI: 10.1016/j.actbio.2018.05.011] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 01/31/2023]
Abstract
Ternary copper-based chalcogenide nanomaterials have become rather attractive due to the near-infrared (NIR) response in cancer theranostic fields. However, it is still challenging to further improve the theranostic efficiency of these nanomaterials. Herein, Cu-Sb-S nanoparticles (NPs) around 24 nm are synthesized facilely and functionalized with poly(vinylpyrrolidone) (PVP). Under the NIR irradiation, the resultant PVP-Cu-Sb-S NPs exhibit a relatively high photothermal conversion efficiency of 53.16% and a simultaneous reactive oxygen species (ROS) generation effect. Due to these outstanding photothermal/photodynamic effects, excellent tumor ablation results can be achieved by the combination of PVP-Cu-Sb-S NPs and 808 nm NIR laser treatments without obvious side effect. In addition, they show remarkable contrast enhancement according to in vitro and in vivo photoacoustic (PA) imaging. These PVP-Cu-Sb-S NPs could be served as a multifunctional nanotheranostic agent for PA imaging, photothermal/photodynamic cancer therapy. STATEMENT OF SIGNIFICANCE Highly theranostic efficiency ternary copper-based chalcogenide nanomaterials has not been fully developed yet. Herein we report the PVP-Cu-Sb-S nanoparticles (NPs) with relatively high photothermal efficiency, simultaneous reactive oxygen species generation effect and photoacoustic imaging capability. The photothermal conversion efficiency of PVP-Cu-Sb-S NPs is higher than most of copper-based chalcogenide nanomaterials reported before. These findings provide a new kind of ternary copper-based chalcogenide with an enhanced theranostic effect, which could be served as a promising multifunctional nanotheranostic agent in the field of biomedical application.
Collapse
|