1
|
Zhao R, Kim SJ, Xu Y, Zhao J, Wang T, Midya R, Ganguli S, Roy AK, Dubey M, Williams RS, Yang JJ. Memristive Ion Dynamics to Enable Biorealistic Computing. Chem Rev 2025; 125:745-785. [PMID: 39729346 PMCID: PMC11759055 DOI: 10.1021/acs.chemrev.4c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/10/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024]
Abstract
Conventional artificial intelligence (AI) systems are facing bottlenecks due to the fundamental mismatches between AI models, which rely on parallel, in-memory, and dynamic computation, and traditional transistors, which have been designed and optimized for sequential logic operations. This calls for the development of novel computing units beyond transistors. Inspired by the high efficiency and adaptability of biological neural networks, computing systems mimicking the capabilities of biological structures are gaining more attention. Ion-based memristive devices (IMDs), owing to the intrinsic functional similarities to their biological counterparts, hold significant promise for implementing emerging neuromorphic learning and computing algorithms. In this article, we review the fundamental mechanisms of IMDs based on ion drift and diffusion to elucidate the origins of their diverse dynamics. We then examine how these mechanisms operate within different materials to enable IMDs with various types of switching behaviors, leading to a wide range of applications, from emulating biological components to realizing specialized computing requirements. Furthermore, we explore the potential for IMDs to be modified and tuned to achieve customized dynamics, which positions them as one of the most promising hardware candidates for executing bioinspired algorithms with unique specifications. Finally, we identify the challenges currently facing IMDs that hinder their widespread usage and highlight emerging research directions that could significantly benefit from incorporating IMDs.
Collapse
Affiliation(s)
- Ruoyu Zhao
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Seung Ju Kim
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Yichun Xu
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Jian Zhao
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Tong Wang
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - Rivu Midya
- Sandia
National Laboratories, Livermore, California 94550, United States
- Department
of Electrical & Computer Engineering, Texas A&M University, College
Station, Texas, 77843, United States
| | - Sabyasachi Ganguli
- Air
Force Research Laboratory Materials and Manufacturing Directorate
Wright − Patterson Air Force Base Dayton, Ohio 45433, United States
| | - Ajit K. Roy
- Air
Force Research Laboratory Materials and Manufacturing Directorate
Wright − Patterson Air Force Base Dayton, Ohio 45433, United States
| | - Madan Dubey
- Sensors
and Electron Devices Directorate, U.S. Army
Research Laboratory, Adelphi, Maryland 20723, United States
| | - R. Stanley Williams
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| | - J. Joshua Yang
- Ming
Hsieh Department of Electrical and Computer Engineering, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|
2
|
Zhong Z, Wu S, Li X, Wang Z, Yang Q, Huang B, Chen Y, Wang X, Lin T, Shen H, Meng X, Wang M, Shi W, Wang J, Chu J, Huang H. Robust Threshold-Switching Behavior Assisted by Cu Migration in a Ferroionic CuInP 2S 6 Heterostructure. ACS NANO 2023. [PMID: 37186552 DOI: 10.1021/acsnano.3c02406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The two-dimensional layered material CuInP2S6 (CIPS) has attracted significant research attention due to its nontrivial physical properties, including room-temperature ferroelectricity at the ultrathin limit and substantial ionic conductivity. Despite many efforts to control its ionic conductance and develop electronic devices, such as memristors, improving the stability of these devices remains a challenge. This work presents a highly stable threshold-switching device based on the Cu/CIPS/graphene heterostructure, achieved after a comprehensive investigation of the activation of Cu's ionic conductivity. The device exhibits exceptional threshold-switching performance, including good cycling endurance, a high on/off ratio of up to 104, low operation voltages, and an ultrasmall subthreshold swing of less than 1.8 mV/decade for the resistance-switching process. Through temperature-dependent electrical and Raman spectroscopy measurements, the stable resistive-switching mechanism is interpreted with a drifting and diffusion model of Cu ions under the electric field, rather than the conventional conducting filament mechanism. These results make the layered ferroionic CIPS material a promising candidate for information storage devices, demonstrating a compelling approach to achieving high-performance threshold-switching memristor devices.
Collapse
Affiliation(s)
- Zhipeng Zhong
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Shuaiqin Wu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Xiang Li
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Zhiqiang Wang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Qianyi Yang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Bangchi Huang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
| | - Yan Chen
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Xudong Wang
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Tie Lin
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Hong Shen
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Xiangjian Meng
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Ming Wang
- Frontier Institute of Chip and System, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Wu Shi
- State Key Laboratory of Surface Physics and Institute for Nanoelectronic Devices and Quantum Computing, Fudan University, Shanghai 200433, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, People's Republic of China
| | - Jianlu Wang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
- Frontier Institute of Chip and System, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai 200433, People's Republic of China
| | - Junhao Chu
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
| | - Hai Huang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronic and Perception, Institute of Optoelectronic and Department of Material Science, Fudan University, Shanghai 200433, People's Republic of China
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai 200083, People's Republic of China
- State Key Laboratory of Integrated Chip and Systems, Fudan University, Shanghai 200433, People's Republic of China
- Zhangjiang Fudan International Innovation Center, Fudan University, Shanghai 201210, People's Republic of China
| |
Collapse
|
3
|
Han WB, Ko GJ, Lee KG, Kim D, Lee JH, Yang SM, Kim DJ, Shin JW, Jang TM, Han S, Zhou H, Kang H, Lim JH, Rajaram K, Cheng H, Park YD, Kim SH, Hwang SW. Ultra-stretchable and biodegradable elastomers for soft, transient electronics. Nat Commun 2023; 14:2263. [PMID: 37081012 PMCID: PMC10119106 DOI: 10.1038/s41467-023-38040-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/13/2023] [Indexed: 04/22/2023] Open
Abstract
As rubber-like elastomers have led to scientific breakthroughs in soft, stretchable characteristics-based wearable, implantable electronic devices or relevant research fields, developments of degradable elastomers with comparable mechanical properties could bring similar technological innovations in transient, bioresorbable electronics or expansion into unexplored areas. Here, we introduce ultra-stretchable, biodegradable elastomers capable of stretching up to ~1600% with outstanding properties in toughness, tear-tolerance, and storage stability, all of which are validated by comprehensive mechanical and biochemical studies. The facile formation of thin films enables the integration of almost any type of electronic device with tunable, suitable adhesive strengths. Conductive elastomers tolerant/sensitive to mechanical deformations highlight possibilities for versatile monitoring/sensing components, particularly the strain-tolerant composites retain high levels of conductivities even under tensile strains of ~550%. Demonstrations of soft electronic grippers and transient, suture-free cardiac jackets could be the cornerstone for sophisticated, multifunctional biodegradable electronics in the fields of soft robots and biomedical implants.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Gwan-Jin Ko
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kang-Gon Lee
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Donghak Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Seung Min Yang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
- Hanwha Systems Co., Ltd., 188 Pangyoyeok-ro, Bundang-gu, Seongnam-Si, Gyeonggi-do, 13524, Republic of Korea
| | - Dong-Je Kim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Tae-Min Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Sungkeun Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Honglei Zhou
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Heeseok Kang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jun Hyeon Lim
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Kaveti Rajaram
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Huanyu Cheng
- Department of Engineering Science and Mechanics, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Yong-Doo Park
- Department of Biomedical Sciences, College of Medicine, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Soo Hyun Kim
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
- Center for Biomaterials, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea.
- Department of Integrative Energy Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
4
|
Huang F, Ge S, Wei R, He J, Ma X, Tao J, Lu Q, Mo X, Wang C, Pan C. Flexible Threshold Switching Based on CsCu 2I 3 with Low Threshold Voltage and High Air Stability. ACS APPLIED MATERIALS & INTERFACES 2022; 14:43474-43481. [PMID: 36098632 DOI: 10.1021/acsami.2c09904] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Halide perovskites featuring remarkable optoelectronic properties hold great potential for threshold switching devices (TSDs) that are of primary importance to next-generation memristors and neuromorphic computers. However, such devices are still in their infancy due to the unsolved challenges of high threshold voltage, poor stability, and lead-containing features. Herein, a unipolar TSD based on an all-inorganic halide perovskite of CsCu2I3 is demonstrated, exhibiting the fascinating attributes of a low threshold voltage of 0.54 V, a high ON/OFF ratio of 104, robust air stability over 70 days, a steep switching slope of 6.2 mV·decade-1, and lead-free composition. Moreover, the threshold voltage can be further reduced to 0.23 V using UV illumination to reduce the barrier of iodide ion migration. The multilevel threshold switching behavior can be realized through the modulation of either the compliance current or the scan rate. The TSD with mechanical compliance and transparency is also demonstrated. This work enriches TSDs with expanded perovskite materials, boosting the related applications of this emerging class of device families.
Collapse
Affiliation(s)
- Fengchang Huang
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Shuaipeng Ge
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Ruilai Wei
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Jiaqi He
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaole Ma
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Juan Tao
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Qiuchun Lu
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
| | - Xiaoming Mo
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, Guangxi 530004, P. R. China
| | - Chunfeng Wang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, P. R. China
| | - Caofeng Pan
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
5
|
Wang K, Liu J, El-Khouly ME, Cui X, Che Q, Zhang B, Chen Y. Water-Soluble Polythiophene-Conjugated Polyelectrolyte-Based Memristors for Transient Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:36987-36997. [PMID: 35943132 DOI: 10.1021/acsami.2c04752] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The key to protect sensitive information stored in electronic memory devices from disclosure is to develop transient electronic devices that are capable of being destroyed quickly in an emergency. By using a highly water-soluble polythiophene-conjugated polyelectrolyte PTT-NMI+Br- as an active material, which was synthesized by the reaction of poly[thiophene-alt-4,4-bis(6-bromohexyl)-4H-cyclopenta(1,2-b:5,4-b')dithiophene] with N-methylimidazole, a flexible electronic device, Al/PTT-NMI+Br-/ITO-coated PET (ITO: indium tin oxide; PET: polyethylene terephthalate), is successfully fabricated. This device shows a typical nonvolatile rewritable resistive random access memory (RRAM) effect at a sweep voltage range of ±3 V and a history-dependent memristive switching performance at a small sweep voltage range of ±1 V. Both the learning/memorizing functions and the synaptic potentiation/depression of biological systems have been emulated. The switching mechanism for the PTT-NMI+Br--based electronic device may be highly associated with ion migration under bias. Once water is added to this device, it will be destructed rapidly within 20 s due to the dissolution of the active layer. This device is not only a typical transient device but can also be used for constructing conventional memristors with long-term stability after electronic packaging. Furthermore, the soluble active layer in the device can be easily recycled from its aqueous solution and reused for fabricating new transient memristors. This work offers a train of new thoughts for designing and constructing a neuromorphic computing system that can be quickly destroyed with water in the near future.
Collapse
Affiliation(s)
- Kexin Wang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jiaxuan Liu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mohamed E El-Khouly
- Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), Alexandria 21934, Egypt
| | - Xiaosheng Cui
- Shanghai Institute of Space Propulsion, 801 Minhang Wanfang Road, Shanghai 201112, China
| | - Qiang Che
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Bin Zhang
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Yu Chen
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| |
Collapse
|
6
|
Zhang X, Zhao X, Shan X, Tian Q, Wang Z, Lin Y, Xu H, Liu Y. Humidity Effect on Resistive Switching Characteristics of the CH 3NH 3PbI 3 Memristor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28555-28563. [PMID: 34101436 DOI: 10.1021/acsami.1c05590] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Organic-inorganic hybrid halide perovskites (OIHPs) with inherent mixed ionic-electronic conduction ability have been proposed as promising candidates for memristors with unique optoelectronic characteristics. Despite the great achievements toward understanding the working mechanism and exploring their functionality as water-sensitive materials, the humidity effect on the resistive switching (RS) characteristics still remains to be studied. This study investigates the humidity effect on the RS characteristics of Au/CH3NH3PbI3/FTO memristor. The memristor works well at moderate relative humidity (RH, <75%) and degrades rapidly at higher RH of 90%. An obvious decrease in low resistance states on increasing the RH level is observed, which could be attributed to water-induced reduction of the iodide migration barrier. Raman and X-ray diffraction analyses indicate that the migration barrier reduction possibly originated from the weakening of the Pb-I bond caused by the intercalation of water molecules into the crystal lattice. The humidity-sensitive RS characteristics of the memristor could extend the scope of OIHP application for sensing and security applications and also prompt researchers to pay attention to the humidity effect on memristor devices with OIHPs.
Collapse
Affiliation(s)
- Xiaohan Zhang
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Xiaoning Zhao
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Xuanyu Shan
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Qiaoling Tian
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Zhongqiang Wang
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Ya Lin
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Haiyang Xu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| | - Yichun Liu
- Key Laboratory of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024, P.R. China
| |
Collapse
|
7
|
Han WB, Lee JH, Shin JW, Hwang SW. Advanced Materials and Systems for Biodegradable, Transient Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2002211. [PMID: 32974973 DOI: 10.1002/adma.202002211] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 07/08/2020] [Indexed: 05/23/2023]
Abstract
Transient electronics refers to an emerging class of advanced technology, defined by an ability to chemically or physically dissolve, disintegrate, and degrade in actively or passively controlled fashions to leave environmentally and physiologically harmless by-products in environments, particularly in bio-fluids or aqueous solutions. The unusual properties that are opposite to operational modes in conventional electronics for a nearly infinite time frame offer unprecedented opportunities in research areas of eco-friendly electronics, temporary biomedical implants, data-secure hardware systems, and others. This review highlights the developments of transient electronics, including materials, manufacturing strategies, electronic components, and transient kinetics, along with various potential applications.
Collapse
Affiliation(s)
- Won Bae Han
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Joong Hoon Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Jeong-Woong Shin
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Suk-Won Hwang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| |
Collapse
|
8
|
Jeong WH, Han JH, Choi BJ. Effect of Ag Concentration Dispersed in HfO x Thin Films on Threshold Switching. NANOSCALE RESEARCH LETTERS 2020; 15:27. [PMID: 32002695 PMCID: PMC6990205 DOI: 10.1186/s11671-020-3258-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/20/2020] [Indexed: 06/10/2023]
Abstract
A sneak path current-a current passing through a neighboring memory cell-is an inherent and inevitable problem in a crossbar array consisting of memristor memory cells. This serious problem can be alleviated by serially connecting the selector device to each memristor cell. Among the various types of selector device concepts, the diffusive selector has garnered considerable attention because of its excellent performance. This selector features volatile threshold switching (TS) using the dynamics of active metals such as Ag or Cu, which act as an electrode or dopant in the solid electrolyte. In this study, a diffusive selector based on Ag-doped HfOx is fabricated using a co-sputtering system. As the Ag concentration in the HfOx layer varies, different electrical properties and thereby TS characteristics are observed. The necessity of the electroforming (EF) process for the TS characteristic is determined by the proper Ag concentration in the HfOx layer. This difference in the EF process can significantly affect the parameters of the TS characteristics. Therefore, an optimized doping condition is required for a diffusive selector to attain excellent selector device behavior and avoid an EF process that can eventually degrade device performance.
Collapse
Affiliation(s)
- Won Hee Jeong
- Department of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech), Seoul, 01811, South Korea
| | - Jeong Hwan Han
- Department of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech), Seoul, 01811, South Korea
| | - Byung Joon Choi
- Department of Materials Science and Engineering, Seoul National University of Science and Technology (Seoultech), Seoul, 01811, South Korea.
| |
Collapse
|
9
|
Zhou X, Gu D, Li Y, Qin H, Jiang Y, Xu J. A high performance electroformed single-crystallite VO 2 threshold switch. NANOSCALE 2019; 11:22070-22078. [PMID: 31720651 DOI: 10.1039/c9nr08364b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Threshold switches (TSs) are an effective approach for resolving the sneak path problem within a memristor array. VO2 is a promising material for fabricating high-performance TSs. Here we report a single crystal VO2-based TS device with high switching performance. The single crystal monoclinic VO2 channel is obtained by electroforming in a composite vanadium oxide film consisting of VO2, V2O5 and V3O7. The formation mechanism on single crystal VO2 is thoroughly investigated by means of X-ray diffraction, transmission electron microscopy, and Raman spectroscopy. The single crystal VO2-based TS device exhibits better switching performance than the polycrystalline monoclinic VO2 counterpart. The TS device based on a single crystal channel with the (2[combining macron]11) orientation exhibits a steep turn-on voltage slope of <0.5 mV dec-1, a fast switching speed of 23 ns, an excellent endurance over 109 cycles, a high Ion/Ioff ratio of 143 and a low sample-to-sample variance. The enhanced switching performance originates from the single crystal feature and specified crystal orientation.
Collapse
Affiliation(s)
- Xin Zhou
- School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China.
| | - Deen Gu
- School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China.
| | - Yatao Li
- School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China.
| | - Haoxin Qin
- School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China.
| | - Yadong Jiang
- School of Optoelectronic Information, University of Electronic Science and Technology of China (UESTC), Chengdu, 610054, China.
| | - Jimmy Xu
- School of Engineering, Brown University, 184 Hope Street, Providence, Rhode Island 02912, USA
| |
Collapse
|
10
|
Xia Q, Yang JJ. Memristive crossbar arrays for brain-inspired computing. NATURE MATERIALS 2019; 18:309-323. [PMID: 30894760 DOI: 10.1038/s41563-019-0291-x] [Citation(s) in RCA: 472] [Impact Index Per Article: 78.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Accepted: 02/16/2019] [Indexed: 05/19/2023]
Abstract
With their working mechanisms based on ion migration, the switching dynamics and electrical behaviour of memristive devices resemble those of synapses and neurons, making these devices promising candidates for brain-inspired computing. Built into large-scale crossbar arrays to form neural networks, they perform efficient in-memory computing with massive parallelism by directly using physical laws. The dynamical interactions between artificial synapses and neurons equip the networks with both supervised and unsupervised learning capabilities. Moreover, their ability to interface with analogue signals from sensors without analogue/digital conversions reduces the processing time and energy overhead. Although numerous simulations have indicated the potential of these networks for brain-inspired computing, experimental implementation of large-scale memristive arrays is still in its infancy. This Review looks at the progress, challenges and possible solutions for efficient brain-inspired computation with memristive implementations, both as accelerators for deep learning and as building blocks for spiking neural networks.
Collapse
Affiliation(s)
- Qiangfei Xia
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA.
| | - J Joshua Yang
- Department of Electrical and Computer Engineering, University of Massachusetts, Amherst, MA, USA.
| |
Collapse
|
11
|
Xu J, Zhao X, Wang Z, Xu H, Hu J, Ma J, Liu Y. Biodegradable Natural Pectin-Based Flexible Multilevel Resistive Switching Memory for Transient Electronics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1803970. [PMID: 30500108 DOI: 10.1002/smll.201803970] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 11/09/2018] [Indexed: 05/05/2023]
Abstract
Transient electronics that can physically vanish in solution can offer opportunities to address the ecological challenges for dealing with the rapidly growing electronic waste. As one important component, it is desirable that memory devices combined with the transient feature can also be developed as secrecy information storage systems besides the above advantage. Resistive switching (RS) memory is one of the most promising technologies for next-generation memory. Herein, the biocompatible pectin extracted from natural orange peel is introduced to fabricate RS memory devices (Ag/pectin/indium tin oxides (ITO)), which exhibit excellent RS characteristics, such as forming free characteristic, low operating voltages (≈1.1 V), fast switching speed (<70 ns), long retention time (>104 s), and multilevel RS behaviors. The device performance is not degraded after 104 bending cycles, which will be beneficial for flexible memory applications. Additionally, instead of using acid solution, the Ag/pectin/ITO memory device can be dissolved rapidly in deionized water within 10 min thanks to the good solubility arising from ionization of its carboxylic groups, which shows promising application for green electronics. The present biocompatible memory devices based on natural pectin suggest promising material candidates toward enabling high-density secure information storage systems applications, flexible electronics, and green electronics.
Collapse
Affiliation(s)
- Jiaqi Xu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Xiaoning Zhao
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Zhongqiang Wang
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Haiyang Xu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Junli Hu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Jiangang Ma
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| | - Yichun Liu
- Key Laboratory for UV Light-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun, 130024, China
| |
Collapse
|
12
|
Dang B, Wu Q, Song F, Sun J, Yang M, Ma X, Wang H, Hao Y. A bio-inspired physically transient/biodegradable synapse for security neuromorphic computing based on memristors. NANOSCALE 2018; 10:20089-20095. [PMID: 30357252 DOI: 10.1039/c8nr07442a] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Physically transient electronic devices that can disappear on demand have great application prospects in the field of information security, implantable biomedical systems, and environment friendly electronics. On the other hand, the memristor-based artificial synapse is a promising candidate for new generation neuromorphic computing systems in artificial intelligence applications. Therefore, a physically transient synapse based on memristors is highly desirable for security neuromorphic computing and bio-integrated systems. Here, this is the first presentation of fully degradable biomimetic synaptic devices based on a W/MgO/ZnO/Mo memristor on a silk protein substrate, which show remarkable information storage and synaptic characteristics including long-term potentiation (LTP), long-term depression (LTD) and spike timing dependent plasticity (STDP) behaviors. Moreover, to emulate the apoptotic process of biological neurons, the transient synapse devices can be dissolved completely in phosphate-buffered saline solution (PBS) or deionized (DI) water in 7 min. This work opens the route to security neuromorphic computing for smart security and defense electronic systems, as well as for neuro-medicine and implantable electronic systems.
Collapse
Affiliation(s)
- Bingjie Dang
- School of Advanced Materials and Nanotechnology, Key Laboratory of Wide Band Gap Semiconductor Technology, Xidian University, Xi'an, 710071, China.
| | | | | | | | | | | | | | | |
Collapse
|