1
|
Tseng YC, Song J, Zhang J, Shandilya E, Sen A. Chemomechanical Communication between Liposomes Based on Enzyme Cascades. J Am Chem Soc 2024; 146:16097-16104. [PMID: 38805671 DOI: 10.1021/jacs.4c03415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Communication between cells is crucial to the survival of both uni- and multicellular organisms. The primary mode of communication involves chemical cues. There is great current interest in mimicking this behavior in synthetic cells to understand the physical basis of intercellular communication and design collective functional behavior. Using liposomal cell mimics, we demonstrate how a chemical input can elicit a mechanical response (enhanced motility). We employed a single substrate to trigger enzyme cascade-induced control of the diffusion of up to three different liposome populations. Furthermore, substrate competition allows temporal control over enhanced diffusion. The use of enzyme cascades to propagate chemical signals provides a robust and efficient mechanism for diverse populations of protocells to coordinate their motion in response to signals from each other.
Collapse
Affiliation(s)
- Yu-Ching Tseng
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jiaqi Song
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Jianhua Zhang
- College of Chemistry and Chemical Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Ekta Shandilya
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States
| |
Collapse
|
2
|
Joseph A, Wagner AM, Garay-Sarmiento M, Aleksanyan M, Haraszti T, Söder D, Georgiev VN, Dimova R, Percec V, Rodriguez-Emmenegger C. Zwitterionic Dendrimersomes: A Closer Xenobiotic Mimic of Cell Membranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2206288. [PMID: 36134536 DOI: 10.1002/adma.202206288] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/07/2022] [Indexed: 06/16/2023]
Abstract
Building functional mimics of cell membranes is an important task toward the development of synthetic cells. So far, lipid and amphiphilic block copolymers are the most widely used amphiphiles with the bilayers by the former lacking stability while membranes by the latter are typically characterized by very slow dynamics. Herein, a new type of Janus dendrimer containing a zwitterionic phosphocholine hydrophilic headgroup (JDPC ) and a 3,5-substituted dihydrobenzoate-based hydrophobic dendron is introduced. JDPC self-assembles in water into zwitterionic dendrimersomes (z-DSs) that faithfully recapitulate the cell membrane in thickness, flexibility, and fluidity, while being resilient to harsh conditions and displaying faster pore closing dynamics in the event of membrane rupture. This enables the fabrication of hybrid DSs with components of natural membranes, including pore-forming peptides, structure-directing lipids, and glycans to create raft-like domains or onion vesicles. Moreover, z-DSs can be used to create active synthetic cells with life-like features that mimic vesicle fusion and motility as well as environmental sensing. Despite their fully synthetic nature, z-DSs are minimal cell mimics that can integrate and interact with living matter with the programmability to imitate life-like features and beyond.
Collapse
Affiliation(s)
- Anton Joseph
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Anna M Wagner
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Manuela Garay-Sarmiento
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Chair of Biotechnology, RWTH Aachen University, Worringerweg 3, 52074, Aachen, Germany
| | - Mina Aleksanyan
- Institute for Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Tamás Haraszti
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Dominik Söder
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Institute of Technical and Macromolecular Chemistry, RWTH Aachen University, Worringerweg 2, 52074, Aachen, Germany
| | - Vasil N Georgiev
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Rumiana Dimova
- Max Planck Institute of Colloids and Interfaces, Science Park Golm, 14476, Potsdam, Germany
| | - Virgil Percec
- Roy & Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, PA, 19104323, USA
| | - Cesar Rodriguez-Emmenegger
- DWI - Leibniz Institute for Interactive Materials, Forckenbeckstraße 50, 52074, Aachen, Germany
- Bioinspired Interactive Materials and Protocellular Systems, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Carrer de Baldiri Reixac 10-12, 08028, Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluís Companys 23, 08028, Barcelona, Spain
| |
Collapse
|
3
|
Guindani C, da Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio-Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022; 61:e202110855. [PMID: 34856047 PMCID: PMC9314110 DOI: 10.1002/anie.202110855] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 11/08/2021] [Indexed: 12/01/2022]
Abstract
Bottom-up synthetic biology is the science of building systems that mimic the structure and function of living cells from scratch. To do this, researchers combine tools from chemistry, materials science, and biochemistry to develop functional and structural building blocks to construct synthetic cell-like systems. The many strategies and materials that have been developed in recent decades have enabled scientists to engineer synthetic cells and organelles that mimic the essential functions and behaviors of natural cells. Examples include synthetic cells that can synthesize their own ATP using light, maintain metabolic reactions through enzymatic networks, perform gene replication, and even grow and divide. In this Review, we discuss recent developments in the design and construction of synthetic cells and organelles using the bottom-up approach. Our goal is to present representative synthetic cells of increasing complexity as well as strategies for solving distinct challenges in bottom-up synthetic biology.
Collapse
Affiliation(s)
- Camila Guindani
- Chemical Engineering ProgramCOPPEFederal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972Rio de JaneiroRJBrazil
| | - Lucas Caire da Silva
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Shoupeng Cao
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| | - Katharina Landfester
- Department of Physical Chemistry of PolymersMax Planck Institute for Polymer ResearchAckermannweg 1055128MainzGermany
| |
Collapse
|
4
|
Guindani C, Silva LC, Cao S, Ivanov T, Landfester K. Synthetic Cells: From Simple Bio‐Inspired Modules to Sophisticated Integrated Systems. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202110855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Camila Guindani
- Chemical Engineering Program COPPE Federal University of Rio de Janeiro, PEQ/COPPE/UFRJ, CEP 21941-972 Rio de Janeiro RJ Brazil
| | - Lucas Caire Silva
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Shoupeng Cao
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Tsvetomir Ivanov
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| | - Katharina Landfester
- Department of Physical Chemistry of Polymers Max Planck Institute for Polymer Research Ackermannweg 10 55128 Mainz Germany
| |
Collapse
|
5
|
Zhang P, Fischer A, Ouyang Y, Wang J, Sohn YS, Karmi O, Nechushtai R, Willner I. Biocatalytic cascades and intercommunicated biocatalytic cascades in microcapsule systems. Chem Sci 2022; 13:7437-7448. [PMID: 35872834 PMCID: PMC9241983 DOI: 10.1039/d2sc01542k] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 04/29/2022] [Indexed: 12/13/2022] Open
Abstract
Dynamic dimerization of GOx-loaded microcapsules with β-gal//hemin/G-quadruplex-bridged T1/T2-loaded microcapsules guides the bi-directional intercommunication of the three catalysts cascade.
Collapse
Affiliation(s)
- Pu Zhang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Amit Fischer
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yu Ouyang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Jianbang Wang
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yang Sung Sohn
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Ola Karmi
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Rachel Nechushtai
- Institute of Life Science, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Itamar Willner
- Institute of Chemistry, Center for Nanoscience and Nanotechnology, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| |
Collapse
|
6
|
Naeem S, Naeem F, Mujtaba J, Shukla AK, Mitra S, Huang G, Gulina L, Rudakovskaya P, Cui J, Tolstoy V, Gorin D, Mei Y, Solovev AA, Dey KK. Oxygen Generation Using Catalytic Nano/Micromotors. MICROMACHINES 2021; 12:1251. [PMID: 34683302 PMCID: PMC8541545 DOI: 10.3390/mi12101251] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 09/30/2021] [Accepted: 10/05/2021] [Indexed: 02/06/2023]
Abstract
Gaseous oxygen plays a vital role in driving the metabolism of living organisms and has multiple agricultural, medical, and technological applications. Different methods have been discovered to produce oxygen, including plants, oxygen concentrators and catalytic reactions. However, many such approaches are relatively expensive, involve challenges, complexities in post-production processes or generate undesired reaction products. Catalytic oxygen generation using hydrogen peroxide is one of the simplest and cleanest methods to produce oxygen in the required quantities. Chemically powered micro/nanomotors, capable of self-propulsion in liquid media, offer convenient and economic platforms for on-the-fly generation of gaseous oxygen on demand. Micromotors have opened up opportunities for controlled oxygen generation and transport under complex conditions, critical medical diagnostics and therapy. Mobile oxygen micro-carriers help better understand the energy transduction efficiencies of micro/nanoscopic active matter by careful selection of catalytic materials, fuel compositions and concentrations, catalyst surface curvatures and catalytic particle size, which opens avenues for controllable oxygen release on the level of a single catalytic microreactor. This review discusses various micro/nanomotor systems capable of functioning as mobile oxygen generators while highlighting their features, efficiencies and application potentials in different fields.
Collapse
Affiliation(s)
- Sumayyah Naeem
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Farah Naeem
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
- State Key Laboratory for Modification of Chemical Fibers and Polymer Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Jawayria Mujtaba
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Ashish Kumar Shukla
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| | - Shirsendu Mitra
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| | - Gaoshan Huang
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Larisa Gulina
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, 198504 St. Petersburg, Russia; (L.G.); (V.T.)
| | - Polina Rudakovskaya
- Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Jizhai Cui
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Valeri Tolstoy
- Institute of Chemistry, Saint Petersburg State University, 26 Universitetskii Prospect, Petergof, 198504 St. Petersburg, Russia; (L.G.); (V.T.)
| | - Dmitry Gorin
- Center of Photonics & Quantum Materials, Skolkovo Institute of Science and Technology, 3 Nobelya Str., 121205 Moscow, Russia; (P.R.); (D.G.)
| | - Yongfeng Mei
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Alexander A. Solovev
- Department of Materials Science, Fudan University, Shanghai 200433, China; (S.N.); (F.N.); (J.M.); (G.H.); (J.C.); (Y.M.)
| | - Krishna Kanti Dey
- Discipline of Physics, Indian Institute of Technology Gandhinagar, Palaj 382355, Gujarat, India; (A.K.S.); (S.M.)
| |
Collapse
|
7
|
Yuan H, Liu X, Wang L, Ma X. Fundamentals and applications of enzyme powered micro/nano-motors. Bioact Mater 2020; 6:1727-1749. [PMID: 33313451 PMCID: PMC7711193 DOI: 10.1016/j.bioactmat.2020.11.022] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 12/22/2022] Open
Abstract
Micro/nanomotors (MNMs) are miniaturized machines that can convert many kinds of energy into mechanical motion. Over the past decades, a variety of driving mechanisms have been developed, which have greatly extended the application scenarios of MNMs. Enzymes exist in natural organisms which can convert chemical energy into mechanical force. It is an innovative attempt to utilize enzymes as biocatalyst providing driving force for MNMs. The fuels for enzymatic reactions are biofriendly as compared to traditional counterparts, which makes enzyme-powered micro/nanomotors (EMNMs) of great value in biomedical field for their nature of biocompatibility. Until now, EMNMs with various shapes can be propelled by catalase, urease and many others. Also, they can be endowed with multiple functionalities to accomplish on-demand tasks. Herein, combined with the development process of EMNMs, we are committed to present a comprehensive understanding of EMNMs, including their types, propelling principles, and potential applications. In this review, we will introduce single enzyme that can be used as motor, enzyme powered molecule motors and other micro/nano-architectures. The fundamental mechanism of energy conversion process of EMNMs and crucial factors that affect their movement behavior will be discussed. The current progress of proof-of-concept applications of EMNMs will also be elaborated in detail. At last, we will summarize and prospect the opportunities and challenges that EMNMs will face in their future development. Clear classification and description of different enzyme-powered micro/nanomotors (EMNMs). Discussion of the fundamental mechanism of energy conversion process of EMNMs and their movement influence factors. Introduction of the current progress of proof-of-concept applications of EMNMs.
Collapse
Affiliation(s)
- Hao Yuan
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xiaoxia Liu
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Liying Wang
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Xing Ma
- Flexible Printed Electronic Technology Center and School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China.,Shenzhen Bay Laboratory, No. 9 Duxue Road, Shenzhen, 518055, China.,Key Laboratory of Microsystems and Microstructures Manufacturing, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, China
| |
Collapse
|
8
|
Enzyme-mediated nitric oxide production in vasoactive erythrocyte membrane-enclosed coacervate protocells. Nat Chem 2020; 12:1165-1173. [DOI: 10.1038/s41557-020-00585-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/29/2020] [Indexed: 12/26/2022]
|
9
|
Xu D, Wang Y, Liang C, You Y, Sanchez S, Ma X. Self-Propelled Micro/Nanomotors for On-Demand Biomedical Cargo Transportation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1902464. [PMID: 31464072 DOI: 10.1002/smll.201902464] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Micro/nanomotors (MNMs) are miniaturized machines that can perform assigned tasks at the micro/nanoscale. Over the past decade, significant progress has been made in the design, preparation, and applications of MNMs that are powered by converting different sources of energy into mechanical force, to realize active movement and fulfill on-demand tasks. MNMs can be navigated to desired locations with precise controllability based on different guidance mechanisms. A considerable research effort has gone into demonstrating that MNMs possess the potential of biomedical cargo loading, transportation, and targeted release to achieve therapeutic functions. Herein, the recent advances of self-propelled MNMs for on-demand biomedical cargo transportation, including their self-propulsion mechanisms, guidance strategies, as well as proof-of-concept studies for biological applications are presented. In addition, some of the major challenges and possible opportunities of MNMs are identified for future biomedical applications in the hope that it may inspire future research.
Collapse
Affiliation(s)
- Dandan Xu
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yong Wang
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Chunyan Liang
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Yongqiang You
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| | - Samuel Sanchez
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Baldiri Reixac 10-12, Barcelona, 08028, Spain
| | - Xing Ma
- State Key Laboratory of Advanced Welding and Joining, Flexible Printed Electronic Technology Center, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
| |
Collapse
|
10
|
Mathesh M, Sun J, Wilson DA. Enzyme catalysis powered micro/nanomotors for biomedical applications. J Mater Chem B 2020; 8:7319-7334. [DOI: 10.1039/d0tb01245a] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This review provides insights on enzyme powered motors using fuels present in biological environments for biomedical applications.
Collapse
Affiliation(s)
- Motilal Mathesh
- Institute of Molecules and Materials
- Radboud University
- Nijmegen
- The Netherlands
| | - Jiawei Sun
- Institute of Molecules and Materials
- Radboud University
- Nijmegen
- The Netherlands
| | - Daniela A. Wilson
- Institute of Molecules and Materials
- Radboud University
- Nijmegen
- The Netherlands
| |
Collapse
|
11
|
Abstract
Compartmentalisation is recognised to be a primary step for the assembly of non-living matter towards the construction of life-like microensembles. To date, a host of hollow microcompartments with various functionalities have been widely developed. Within this respect, given that dynamic behaviour is one of the fundamental features to distinguish living ensembles from those that are non-living, the design and construction of microcompartments with various dynamic behaviours are attracting considerable interest from a wide range of research communities. Significantly, the created dynamic microcompartments could also be widely used as chassis for further bottom-up design towards building protocell models by integrating and booting up necessary biological information. Herein, strategies to install the various motility behaviours into microcompartments, including haptotaxis, chemotaxis and gravitaxis, are summarized in the anticipation of inspiring more designs towards creating various advanced active microcompartments, and contributing new techniques to the ultimate goal of constructing a basic living unit entirely from non-living components.
Collapse
Affiliation(s)
- Youping Lin
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Lei Wang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| | - Xin Huang
- MIIT Key Laboratory of Critical Materials Technology, for New Energy Conversion and Storage, School of Chemistry & Chemical Engineering, Harbin Institute of Technology (HIT), Harbin, 150001, P.R. China
| |
Collapse
|
12
|
Somasundar A, Ghosh S, Mohajerani F, Massenburg LN, Yang T, Cremer PS, Velegol D, Sen A. Positive and negative chemotaxis of enzyme-coated liposome motors. NATURE NANOTECHNOLOGY 2019; 14:1129-1134. [PMID: 31740796 DOI: 10.1038/s41565-019-0578-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The ability of cells or cell components to move in response to chemical signals is critical for the survival of living systems. This motion arises from harnessing free energy from enzymatic catalysis. Artificial model protocells derived from phospholipids and other amphiphiles have been made and their enzymatic-driven motion has been observed. However, control of directionality based on chemical cues (chemotaxis) has been difficult to achieve. Here we show both positive or negative chemotaxis of liposomal protocells. The protocells move autonomously by interacting with concentration gradients of either substrates or products in enzyme catalysis, or Hofmeister salts. We hypothesize that the propulsion mechanism is based on the interplay between enzyme-catalysis-induced positive chemotaxis and solute-phospholipid-based negative chemotaxis. Controlling the extent and direction of chemotaxis holds considerable potential for designing cell mimics and delivery vehicles that can reconfigure their motion in response to environmental conditions.
Collapse
Affiliation(s)
- Ambika Somasundar
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Subhadip Ghosh
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Farzad Mohajerani
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA
| | - Lynnicia N Massenburg
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, USA
| | - Tinglu Yang
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA
| | - Paul S Cremer
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| | - Darrell Velegol
- Department of Chemical Engineering, The Pennsylvania State University, University Park, PA, USA.
| | - Ayusman Sen
- Department of Chemistry, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
13
|
Llopis-Lorente A, García-Fernández A, Murillo-Cremaes N, Hortelão AC, Patiño T, Villalonga R, Sancenón F, Martínez-Máñez R, Sánchez S. Enzyme-Powered Gated Mesoporous Silica Nanomotors for On-Command Intracellular Payload Delivery. ACS NANO 2019; 13:12171-12183. [PMID: 31580642 DOI: 10.1021/acsnano.9b06706] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
The introduction of stimuli-responsive cargo release capabilities on self-propelled micro- and nanomotors holds enormous potential in a number of applications in the biomedical field. Herein, we report the preparation of mesoporous silica nanoparticles gated with pH-responsive supramolecular nanovalves and equipped with urease enzymes which act as chemical engines to power the nanomotors. The nanoparticles are loaded with different cargo molecules ([Ru(bpy)3]Cl2 (bpy = 2,2'-bipyridine) or doxorubicin), grafted with benzimidazole groups on the outer surface, and capped by the formation of inclusion complexes between benzimidazole and cyclodextrin-modified urease. The nanomotor exhibits enhanced Brownian motion in the presence of urea. Moreover, no cargo is released at neutral pH, even in the presence of the biofuel urea, due to the blockage of the pores by the bulky benzimidazole:cyclodextrin-urease caps. Cargo delivery is only triggered on-command at acidic pH due to the protonation of benzimidazole groups, the dethreading of the supramolecular nanovalves, and the subsequent uncapping of the nanoparticles. Studies with HeLa cells indicate that the presence of biofuel urea enhances nanoparticle internalization and both [Ru(bpy)3]Cl2 or doxorubicin intracellular release due to the acidity of lysosomal compartments. Gated enzyme-powered nanomotors shown here display some of the requirements for ideal drug delivery carriers such as the capacity to self-propel and the ability to "sense" the environment and deliver the payload on demand in response to predefined stimuli.
Collapse
Affiliation(s)
- Antoni Llopis-Lorente
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain , Universitat Politècnica de València , Camino de Vera s/n , 46022 València , Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia , Universitat Politècnica de València, Centro de Investigación Príncipe Felipe , 46012 València , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Alba García-Fernández
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain , Universitat Politècnica de València , Camino de Vera s/n , 46022 València , Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia , Universitat Politècnica de València, Centro de Investigación Príncipe Felipe , 46012 València , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Nerea Murillo-Cremaes
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| | - Ana C Hortelão
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| | - Tania Patiño
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
| | - Reynaldo Villalonga
- Department of Analytical Chemistry, Faculty of Chemistry , Complutense University of Madrid , 28040 Madrid , Spain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain , Universitat Politècnica de València , Camino de Vera s/n , 46022 València , Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia , Universitat Politècnica de València, Centro de Investigación Príncipe Felipe , 46012 València , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Ramón Martínez-Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y Desarrollo Tecnológico (IDM), Universitat Politècnica de València, Universitat de València, Spain , Universitat Politècnica de València , Camino de Vera s/n , 46022 València , Spain
- Unidad Mixta UPV-CIPF de Investigación en Mecanismos de Enfermedades y Nanomedicina, Valencia , Universitat Politècnica de València, Centro de Investigación Príncipe Felipe , 46012 València , Spain
- CIBER de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN) , 28029 Madrid , Spain
| | - Samuel Sánchez
- Institute for Bioengineering of Catalonia (IBEC) , The Barcelona Institute of Science and Technology (BIST) , Baldiri Reixac 10-12 , 08028 Barcelona , Spain
- Institució Catalana de Recerca i Estudies Avançats (ICREA) , Pg. Lluís Companys 23 , 08010 Barcelona , Spain
| |
Collapse
|
14
|
Ghosh S, Mohajerani F, Son S, Velegol D, Butler PJ, Sen A. Motility of Enzyme-Powered Vesicles. NANO LETTERS 2019; 19:6019-6026. [PMID: 31429577 DOI: 10.1021/acs.nanolett.9b01830] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Autonomous nanovehicles powered by energy derived from chemical catalysis have potential applications as active delivery agents. For in vivo applications, it is necessary that the engine and its fuel, as well as the chassis itself, be biocompatible. Enzyme molecules have been shown to display enhanced motility through substrate turnover and are attractive candidates as engines; phospholipid vesicles are biocompatible and can serve as cargo containers. Herein, we describe the autonomous movement of vesicles with membrane-bound enzymes in the presence of the substrate. We find that the motility of the vesicles increases with increasing enzymatic turnover rate. The enhanced diffusion of these enzyme-powered systems was further substantiated in real time by tracking the motion of the vesicles using optical microscopy. The membrane-bound protocells that move by transducing chemical energy into mechanical motion serve as models for motile living cells and are key to the elucidation of the fundamental mechanisms governing active membrane dynamics and cellular movement.
Collapse
|
15
|
Tian L, Li M, Patil AJ, Drinkwater BW, Mann S. Artificial morphogen-mediated differentiation in synthetic protocells. Nat Commun 2019; 10:3321. [PMID: 31346180 PMCID: PMC6658542 DOI: 10.1038/s41467-019-11316-4] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 07/02/2019] [Indexed: 11/09/2022] Open
Abstract
The design and assembly of artificial protocell consortia displaying dynamical behaviours and systems-based properties are emerging challenges in bottom-up synthetic biology. Cellular processes such as morphogenesis and differentiation rely in part on reaction-diffusion gradients, and the ability to mimic rudimentary aspects of these non-equilibrium processes in communities of artificial cells could provide a step to life-like systems capable of complex spatiotemporal transformations. Here we expose acoustically formed arrays of initially identical coacervate micro-droplets to uni-directional or counter-directional reaction-diffusion gradients of artificial morphogens to induce morphological differentiation and spatial patterning in single populations of model protocells. Dynamic reconfiguration of the droplets in the morphogen gradients produces a diversity of membrane-bounded vesicles that are spontaneously segregated into multimodal populations with differentiated enzyme activities. Our results highlight the opportunities for constructing protocell arrays with graded structure and functionality and provide a step towards the development of artificial cell platforms capable of multiple operations. The ability to mimic aspects of cellular process that rely on reaction-diffusion gradients could provide a step to building life-like systems capable of complex behaviour. Here the authors demonstrate morphological differentiation in coacervate micro-droplets.
Collapse
Affiliation(s)
- Liangfei Tian
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Mei Li
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Avinash J Patil
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK
| | - Bruce W Drinkwater
- Faculty of Engineering, Queens Building, University of Bristol, Bristol, BS8 1TR, UK
| | - Stephen Mann
- Centre for Protolife Research and Centre for Organized Matter Chemistry, School of Chemistry, University of Bristol, Bristol, BS8 1TS, UK.
| |
Collapse
|