1
|
Huang Y, Yao K, Zhang Q, Huang X, Chen Z, Zhou Y, Yu X. Bioelectronics for electrical stimulation: materials, devices and biomedical applications. Chem Soc Rev 2024; 53:8632-8712. [PMID: 39132912 DOI: 10.1039/d4cs00413b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
Bioelectronics is a hot research topic, yet an important tool, as it facilitates the creation of advanced medical devices that interact with biological systems to effectively diagnose, monitor and treat a broad spectrum of health conditions. Electrical stimulation (ES) is a pivotal technique in bioelectronics, offering a precise, non-pharmacological means to modulate and control biological processes across molecular, cellular, tissue, and organ levels. This method holds the potential to restore or enhance physiological functions compromised by diseases or injuries by integrating sophisticated electrical signals, device interfaces, and designs tailored to specific biological mechanisms. This review explains the mechanisms by which ES influences cellular behaviors, introduces the essential stimulation principles, discusses the performance requirements for optimal ES systems, and highlights the representative applications. From this review, we can realize the potential of ES based bioelectronics in therapy, regenerative medicine and rehabilitation engineering technologies, ranging from tissue engineering to neurological technologies, and the modulation of cardiovascular and cognitive functions. This review underscores the versatility of ES in various biomedical contexts and emphasizes the need to adapt to complex biological and clinical landscapes it addresses.
Collapse
Affiliation(s)
- Ya Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Kuanming Yao
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Qiang Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Xingcan Huang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Zhenlin Chen
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| | - Yu Zhou
- Department of Electronic and Computer Engineering, The Hong Kong University of Science and Technology, Hong Kong, China.
| | - Xinge Yu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, China
| |
Collapse
|
2
|
Jiang Q, Liu M. Recent Progress in Artificial Neurons for Neuromodulation. J Funct Biomater 2024; 15:214. [PMID: 39194652 DOI: 10.3390/jfb15080214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/29/2024] Open
Abstract
Driven by the rapid advancement and practical implementation of biomaterials, fabrication technologies, and artificial intelligence, artificial neuron devices and systems have emerged as a promising technology for interpreting and transmitting neurological signals. These systems are equipped with multi-modal bio-integrable sensing capabilities, and can facilitate the benefits of neurological monitoring and modulation through accurate physiological recognition. In this article, we provide an overview of recent progress in artificial neuron technology, with a particular focus on the high-tech applications made possible by innovations in material engineering, new designs and technologies, and potential application areas. As a rapidly expanding field, these advancements have a promising potential to revolutionize personalized healthcare, human enhancement, and a wide range of other applications, making artificial neuron devices the future of brain-machine interfaces.
Collapse
Affiliation(s)
- Qinkai Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Mengwei Liu
- School of Communication and Electronic Engineering, East China Normal University, Shanghai 200241, China
| |
Collapse
|
3
|
Kim M, Lee H, Nam S, Kim DH, Cha GD. Soft Bioelectronics Using Nanomaterials and Nanostructures for Neuroengineering. Acc Chem Res 2024; 57:1633-1647. [PMID: 38752397 DOI: 10.1021/acs.accounts.4c00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
The identification of neural networks for large areas and the regulation of neuronal activity at the single-neuron scale have garnered considerable attention in neuroscience. In addition, detecting biochemical molecules and electrically, optically, and chemically controlling neural functions are key research issues. However, conventional rigid and bulky bioelectronics face challenges for neural applications, including mechanical mismatch, unsatisfactory signal-to-noise ratio, and poor integration of multifunctional components, thereby degrading the sensing and modulation performance, long-term stability and biocompatibility, and diagnosis and therapy efficacy. Implantable bioelectronics have been developed to be mechanically compatible with the brain environment by adopting advanced geometric designs and utilizing intrinsically stretchable materials, but such advances have not been able to address all of the aforementioned challenges.Recently, the exploration of nanomaterial synthesis and nanoscale fabrication strategies has facilitated the design of unconventional soft bioelectronics with mechanical properties similar to those of neural tissues and submicrometer-scale resolution comparable to typical neuron sizes. The introduction of nanotechnology has provided bioelectronics with improved spatial resolution, selectivity, single neuron targeting, and even multifunctionality. As a result, this state-of-the-art nanotechnology has been integrated with bioelectronics in two main types, i.e., bioelectronics integrated with synthesized nanomaterials and bioelectronics with nanoscale structures. The functional nanomaterials can be synthesized and assembled to compose bioelectronics, allowing easy customization of their functionality to meet specific requirements. The unique nanoscale structures implemented with the bioelectronics could maximize the performance in terms of sensing and stimulation. Such soft nanobioelectronics have demonstrated their applicability for neuronal recording and modulation over a long period at the intracellular level and incorporation of multiple functions, such as electrical, optical, and chemical sensing and stimulation functions.In this Account, we will discuss the technical pathways in soft bioelectronics integrated with nanomaterials and implementing nanostructures for application to neuroengineering. We traced the historical development of bioelectronics from rigid and bulky structures to soft and deformable devices to conform to neuroengineering requirements. Recent approaches that introduced nanotechnology into neural devices enhanced the spatiotemporal resolution and endowed various device functions. These soft nanobioelectronic technologies are discussed in two categories: bioelectronics with synthesized nanomaterials and bioelectronics with nanoscale structures. We describe nanomaterial-integrated soft bioelectronics exhibiting various functionalities and modalities depending on the integrated nanomaterials. Meanwhile, soft bioelectronics with nanoscale structures are explained with their superior resolution and unique administration methods. We also exemplified the neural sensing and stimulation applications of soft nanobioelectronics across various modalities, showcasing their clinical applications in the treatment of neurological diseases, such as brain tumors, epilepsy, and Parkinson's disease. Finally, we discussed the challenges and direction of next-generation technologies.
Collapse
Affiliation(s)
- Minjeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Hyunjin Lee
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Seonghyeon Nam
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
- School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
- Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Gi Doo Cha
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| |
Collapse
|
4
|
Liu X, Gong Y, Jiang Z, Stevens T, Li W. Flexible high-density microelectrode arrays for closed-loop brain-machine interfaces: a review. Front Neurosci 2024; 18:1348434. [PMID: 38686330 PMCID: PMC11057246 DOI: 10.3389/fnins.2024.1348434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 01/12/2024] [Indexed: 05/02/2024] Open
Abstract
Flexible high-density microelectrode arrays (HDMEAs) are emerging as a key component in closed-loop brain-machine interfaces (BMIs), providing high-resolution functionality for recording, stimulation, or both. The flexibility of these arrays provides advantages over rigid ones, such as reduced mismatch between interface and tissue, resilience to micromotion, and sustained long-term performance. This review summarizes the recent developments and applications of flexible HDMEAs in closed-loop BMI systems. It delves into the various challenges encountered in the development of ideal flexible HDMEAs for closed-loop BMI systems and highlights the latest methodologies and breakthroughs to address these challenges. These insights could be instrumental in guiding the creation of future generations of flexible HDMEAs, specifically tailored for use in closed-loop BMIs. The review thoroughly explores both the current state and prospects of these advanced arrays, emphasizing their potential in enhancing BMI technology.
Collapse
Affiliation(s)
- Xiang Liu
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
| | - Yan Gong
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Zebin Jiang
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Trevor Stevens
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
| | - Wen Li
- Neuroscience Program, Department of Physiology, Michigan State University, East Lansing, MI, United States
- Institute for Quantitative Health Science and Engineering (IQ), East Lansing, MI, United States
- Department of Electrical and Computer Engineering, Michigan State University, East Lansing, MI, United States
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, United States
| |
Collapse
|
5
|
Xiao Y, Pang YX, Yan Y, Qian P, Zhao H, Manickam S, Wu T, Pang CH. Synthesis and Functionalization of Graphene Materials for Biomedical Applications: Recent Advances, Challenges, and Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205292. [PMID: 36658693 PMCID: PMC10037997 DOI: 10.1002/advs.202205292] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Since its discovery in 2004, graphene is increasingly applied in various fields owing to its unique properties. Graphene application in the biomedical domain is promising and intriguing as an emerging 2D material with a high surface area, good mechanical properties, and unrivalled electronic and physical properties. This review summarizes six typical synthesis methods to fabricate pristine graphene (p-G), graphene oxide (GO), and reduced graphene oxide (rGO), followed by characterization techniques to examine the obtained graphene materials. As bare graphene is generally undesirable in vivo and in vitro, functionalization methods to reduce toxicity, increase biocompatibility, and provide more functionalities are demonstrated. Subsequently, in vivo and in vitro behaviors of various bare and functionalized graphene materials are discussed to evaluate the functionalization effects. Reasonable control of dose (<20 mg kg-1 ), sizes (50-1000 nm), and functionalization methods for in vivo application are advantageous. Then, the key biomedical applications based on graphene materials are discussed, coupled with the current challenges and outlooks of this growing field. In a broader sense, this review provides a comprehensive discussion on the synthesis, characterization, functionalization, evaluation, and application of p-G, GO, and rGO in the biomedical field, highlighting their recent advances and potential.
Collapse
Affiliation(s)
- Yuqin Xiao
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Yoong Xin Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
| | - Yuxin Yan
- College of Energy EngineeringZhejiang UniversityHangzhouZhejiang310027P. R. China
| | - Ping Qian
- Beijing Advanced Innovation Center for Materials Genome EngineeringBeijing100083P. R. China
- School of Mathematics and PhysicsUniversity of Science and Technology BeijingBeijing100083P. R. China
| | - Haitao Zhao
- Materials Interfaces CenterShenzhen Institute of Advanced TechnologyChinese Academy of SciencesShenzhenGuangdong518055P. R. China
| | - Sivakumar Manickam
- Petroleum and Chemical EngineeringFaculty of EngineeringUniversiti Teknologi BruneiBandar Seri BegawanBE1410Brunei Darussalam
| | - Tao Wu
- New Materials InstituteUniversity of NottinghamNingbo315100P. R. China
- Key Laboratory for Carbonaceous Wastes Processing and ProcessIntensification Research of Zhejiang ProvinceUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| | - Cheng Heng Pang
- Department of Chemical and Environmental EngineeringUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
- Municipal Key Laboratory of Clean Energy Conversion TechnologiesUniversity of Nottingham Ningbo ChinaNingbo315100P. R. China
| |
Collapse
|
6
|
Rodrigues AF, Tavares APM, Simões S, Silva RPFF, Sobrino T, Figueiredo BR, Sales G, Ferreira L. Engineering graphene-based electrodes for optical neural stimulation. NANOSCALE 2023; 15:687-706. [PMID: 36515425 DOI: 10.1039/d2nr05256c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Graphene-based materials (GBMs) have been investigated in recent years with the aim of developing flexible interfaces to address a range of neurological disorders, where electrical stimulation may improve brain function and tissue regeneration. The recent discovery that GBM electrodes can generate an electrical response upon light exposure has inspired the development of non-genetic approaches capable of selectively modulating brain cells without genetic manipulation (i.e., optogenetics). Here, we propose the conjugation of graphene with upconversion nanoparticles (UCNPs), which enable wireless transcranial activation using tissue-penetrating near-infrared (NIR) radiation. Following a design of experiments approach, we first investigated the influence of different host matrices and dopants commonly used to synthesize UCNPs in the electrical response of graphene. Two UCNP formulations achieving optimal enhancement of electrical conductivity upon NIR activation at λ = 780 or 980 nm were identified. These formulations were then covalently attached to graphene nanoplatelets following selective hydroxyl derivatization. The resulting nanocomposites were evaluated in vitro using SH-SY5Y human neuroblastoma cells. NIR activation at λ = 980 nm promoted cell proliferation and downregulated neuronal and glial differentiation markers, suggesting the potential application of GBMs in minimally invasive stimulation of cells for tissue regeneration.
Collapse
Affiliation(s)
- Artur Filipe Rodrigues
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3000-517 Coimbra, Portugal.
| | - Ana P M Tavares
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Susana Simões
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3000-517 Coimbra, Portugal.
| | - Rui P F F Silva
- Graphenest S.A., Edifício Vouga Park, 3740-070 Paradela do Vouga, Portugal
| | - Tomás Sobrino
- NeuroAging Laboratory, Clinical Neurosciences Research Laboratory, Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Bruno R Figueiredo
- Graphenest S.A., Edifício Vouga Park, 3740-070 Paradela do Vouga, Portugal
| | - Goreti Sales
- BioMark@UC, Department of Chemical Engineering, Faculty of Sciences and Technology, University of Coimbra, 3030-790 Coimbra, Portugal
| | - Lino Ferreira
- CNC - Center for Neurosciences and Cell Biology, University of Coimbra, 3000-517 Coimbra, Portugal.
- Faculty of Medicine, Pólo das Ciências da Saúde, Unidade Central, University of Coimbra, 3000-354 Coimbra, Portugal
| |
Collapse
|
7
|
Cho KW, Sunwoo SH, Hong YJ, Koo JH, Kim JH, Baik S, Hyeon T, Kim DH. Soft Bioelectronics Based on Nanomaterials. Chem Rev 2021; 122:5068-5143. [PMID: 34962131 DOI: 10.1021/acs.chemrev.1c00531] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Recent advances in nanostructured materials and unconventional device designs have transformed the bioelectronics from a rigid and bulky form into a soft and ultrathin form and brought enormous advantages to the bioelectronics. For example, mechanical deformability of the soft bioelectronics and thus its conformal contact onto soft curved organs such as brain, heart, and skin have allowed researchers to measure high-quality biosignals, deliver real-time feedback treatments, and lower long-term side-effects in vivo. Here, we review various materials, fabrication methods, and device strategies for flexible and stretchable electronics, especially focusing on soft biointegrated electronics using nanomaterials and their composites. First, we summarize top-down material processing and bottom-up synthesis methods of various nanomaterials. Next, we discuss state-of-the-art technologies for intrinsically stretchable nanocomposites composed of nanostructured materials incorporated in elastomers or hydrogels. We also briefly discuss unconventional device design strategies for soft bioelectronics. Then individual device components for soft bioelectronics, such as biosensing, data storage, display, therapeutic stimulation, and power supply devices, are introduced. Afterward, representative application examples of the soft bioelectronics are described. A brief summary with a discussion on remaining challenges concludes the review.
Collapse
Affiliation(s)
- Kyoung Won Cho
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea
| | - Sung-Hyuk Sunwoo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Yongseok Joseph Hong
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Ja Hoon Koo
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Jeong Hyun Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea
| | - Seungmin Baik
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Taeghwan Hyeon
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea
| | - Dae-Hyeong Kim
- Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul 08826, Republic of Korea.,Interdisciplinary Program for Bioengineering, Seoul National University, Seoul 08826, Republic of Korea.,School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul 08826, Republic of Korea.,Department of Materials Science and Engineering, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
8
|
Kim J, Lee Y, Kang M, Hu L, Zhao S, Ahn JH. 2D Materials for Skin-Mountable Electronic Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005858. [PMID: 33998064 DOI: 10.1002/adma.202005858] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/08/2020] [Indexed: 06/12/2023]
Abstract
Skin-mountable devices that can directly measure various biosignals and external stimuli and communicate the information to the users have been actively studied owing to increasing demand for wearable electronics and newer healthcare systems. Research on skin-mountable devices is mainly focused on those materials and mechanical design aspects that satisfy the device fabrication requirements on unusual substrates like skin and also for achieving good sensing capabilities and stable device operation in high-strain conditions. 2D materials that are atomically thin and possess unique electrical and optical properties offer several important features that can address the challenging needs in wearable, skin-mountable electronic devices. Herein, recent research progress on skin-mountable devices based on 2D materials that exhibit a variety of device functions including information input and output and in vitro and in vivo healthcare and diagnosis is reviewed. The challenges, potential solutions, and perspectives on trends for future work are also discussed.
Collapse
Affiliation(s)
- Jejung Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Yongjun Lee
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Minpyo Kang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Luhing Hu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| | - Songfang Zhao
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
- School of Material Science and Engineering, University of Jinan, Jinan, Shandong, 250022, China
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul, 03722, Republic of Korea
| |
Collapse
|
9
|
Dong R, Wang L, Hang C, Chen Z, Liu X, Zhong L, Qi J, Huang Y, Liu S, Wang L, Lu Y, Jiang X. Printed Stretchable Liquid Metal Electrode Arrays for In Vivo Neural Recording. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2006612. [PMID: 33711201 DOI: 10.1002/smll.202006612] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 01/07/2021] [Indexed: 06/12/2023]
Abstract
The adoption of neural interfacing into neurological diagnosis is severely hampered by the complex, costly, and error-prone manufacturing methods, requiring new fabrication processes and materials for flexible neural interfacing. Here a strategy for fabricating highly stretchable neural electrode arrays based on screen printing of liquid metal conductors onto polydimethylsiloxane substrates is presented. The screen-printed electrode arrays show a resolution of 50 µm, which is ideally applicable to neural interfaces. The integration of liquid metal-polymer conductor enables the neural electrode arrays to retain stable electrical properties and compliant mechanical performance under a significant (≈108%) strain. Taking advantage of its high biocompatibility, liquid metal electrode arrays exhibit excellent performance for neurite growth and long-term implantation. The stretchable electrode arrays can spontaneously conformally come in touch with the brain surface, and high-throughput electrocorticogram signals are recorded. Based on stretchable electrode arrays, real-time monitoring of epileptiform activities can be provided at different states of seizure. The method reported here offers a new fabrication strategy to manufacture stretchable neural electrodes, with additional potential utility in diagnostic brain-machine interfaces.
Collapse
Affiliation(s)
- Ruihua Dong
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Lulu Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Chen Hang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Zhen Chen
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Xiaoyan Liu
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Leni Zhong
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Jie Qi
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Yuqing Huang
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| | - Shaoqin Liu
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Yi Lu
- CAS Key Laboratory of Brain Connectome and Manipulation, the Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055, China
| | - Xingyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, 2 Yikuang Road, Nangang District, Harbin, 150001, P. R. China
- Department of Biomedical Engineering, Southern University of Science and Technology, No. 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong, 518055, P. R. China
| |
Collapse
|
10
|
Pang Y, Yang Z, Yang Y, Ren TL. Wearable Electronics Based on 2D Materials for Human Physiological Information Detection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1901124. [PMID: 31364311 DOI: 10.1002/smll.201901124] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2019] [Revised: 05/07/2019] [Indexed: 05/12/2023]
Abstract
Recently, advancement in materials production, device fabrication, and flexible circuit has led to the huge prosperity of wearable electronics for human healthcare monitoring and medical diagnosis. Particularly, with the emergence of 2D materials many merits including light weight, high stretchability, excellent biocompatibility, and high performance are used for those potential applications. Thus, it is urgent to review the wearable electronics based on 2D materials for the detection of various human signals. In this work, the typical graphene-based materials, transition-metal dichalcogenides, and transition metal carbides or carbonitrides used for the wearable electronics are discussed. To well understand the human physiological information, it is divided into two dominated categories, namely, the human physical and the human chemical signals. The monitoring of body temperature, electrograms, subtle signals, and limb motions is described for the physical signals while the detection of body fluid including sweat, breathing gas, and saliva is reviewed for the chemical signals. Recent progress and development toward those specific utilizations are highlighted in the Review with the representative examples. The future outlook of wearable healthcare techniques is briefly discussed for their commercialization.
Collapse
Affiliation(s)
- Yu Pang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Zhen Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Yi Yang
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| | - Tian-Ling Ren
- Institute of Microelectronics, Tsinghua University, Beijing, 100084, China
- Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100084, China
| |
Collapse
|
11
|
Noh W, Pak S, Choi G, Yang S, Yang S. Transient Potassium Channels: Therapeutic Targets for Brain Disorders. Front Cell Neurosci 2019; 13:265. [PMID: 31263403 PMCID: PMC6585177 DOI: 10.3389/fncel.2019.00265] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 05/28/2019] [Indexed: 01/04/2023] Open
Abstract
Transient potassium current channels (IA channels), which are expressed in most brain areas, have a central role in modulating feedforward and feedback inhibition along the dendroaxonic axis. Loss of the modulatory channels is tightly associated with a number of brain diseases such as Alzheimer’s disease, epilepsy, fragile X syndrome (FXS), Parkinson’s disease, chronic pain, tinnitus, and ataxia. However, the functional significance of IA channels in these diseases has so far been underestimated. In this review, we discuss the distribution and function of IA channels. Particularly, we posit that downregulation of IA channels results in neuronal (mostly dendritic) hyperexcitability accompanied by the imbalanced excitation and inhibition ratio in the brain’s networks, eventually causing the brain diseases. Finally, we propose a potential therapeutic target: the enhanced action of IA channels to counteract Ca2+-permeable channels including NMDA receptors could be harnessed to restore dendritic excitability, leading to a balanced neuronal state.
Collapse
Affiliation(s)
- Wonjun Noh
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| | - Sojeong Pak
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Geunho Choi
- Department of Computer Science and Engineering, Incheon National University, Incheon, South Korea
| | - Sungchil Yang
- Department of Biomedical Sciences, City University of Hong Kong, Kowloon, Hong Kong
| | - Sunggu Yang
- Department of Nano-Bioengineering, Incheon National University, Incheon, South Korea
| |
Collapse
|