1
|
Xie B, Xie H. Application of stimuli-responsive hydrogel in brain disease treatment. Front Bioeng Biotechnol 2024; 12:1450267. [PMID: 39091971 PMCID: PMC11291207 DOI: 10.3389/fbioe.2024.1450267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 08/04/2024] Open
Abstract
Treating brain diseases presents significant challenges due to neuronal degeneration, inflammation, and the intricate nature of the brain. Stimuli-responsive hydrogels, designed to closely resemble the brain's extracellular matrix, have emerged as promising candidates for controlled drug delivery and tissue engineering. These hydrogels have the unique ability to encapsulate therapeutic agents and release them in a controlled manner when triggered by environmental stimuli. This property makes them particularly suitable for delivering drugs precisely to targeted areas of the brain, while minimizing collateral damage to healthy tissue. Their preclinical success in treating various brain diseases in animal studies underscores their translational potential for human brain disease treatment. However, a deeper understanding of their long-term behavior, biodistribution, and biocompatibility within the brain remains crucial. Furthermore, exploring novel hydrogel systems and therapeutic combinations is paramount for advancing towards more effective treatments. This review summarizes the latest advancements in this field over the past 5 years, specifically highlighting preclinical progress with novel stimuli-responsive hydrogels for treating brain diseases.
Collapse
Affiliation(s)
- Bingqing Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, Sichuan, China
| | - Huangfan Xie
- Laboratory of Neurological Diseases and Brain Function, The Affiliated Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Institute of Epigenetics and Brain Science, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
2
|
Sharifi M, Kamalabadi-Farahani M, Salehi M, Ebrahimi-Barough S, Alizadeh M. Recent advances in enhances peripheral nerve orientation: the synergy of micro or nano patterns with therapeutic tactics. J Nanobiotechnology 2024; 22:194. [PMID: 38643117 PMCID: PMC11031871 DOI: 10.1186/s12951-024-02475-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 04/11/2024] [Indexed: 04/22/2024] Open
Abstract
Several studies suggest that topographical patterns influence nerve cell fate. Efforts have been made to improve nerve cell functionality through this approach, focusing on therapeutic strategies that enhance nerve cell function and support structures. However, inadequate nerve cell orientation can impede long-term efficiency, affecting nerve tissue repair. Therefore, enhancing neurites/axons directional growth and cell orientation is crucial for better therapeutic outcomes, reducing nerve coiling, and ensuring accurate nerve fiber connections. Conflicting results exist regarding the effects of micro- or nano-patterns on nerve cell migration, directional growth, immunogenic response, and angiogenesis, complicating their clinical use. Nevertheless, advances in lithography, electrospinning, casting, and molding techniques to intentionally control the fate and neuronal cells orientation are being explored to rapidly and sustainably improve nerve tissue efficiency. It appears that this can be accomplished by combining micro- and nano-patterns with nanomaterials, biological gradients, and electrical stimulation. Despite promising outcomes, the unclear mechanism of action, the presence of growth cones in various directions, and the restriction of outcomes to morphological and functional nerve cell markers have presented challenges in utilizing this method. This review seeks to clarify how micro- or nano-patterns affect nerve cell morphology and function, highlighting the potential benefits of cell orientation, especially in combined approaches.
Collapse
Affiliation(s)
- Majid Sharifi
- Student Research Committee, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran.
| | | | - Majid Salehi
- Department of Tissue Engineering, School of Medicine, Shahroud University of Medical Sciences, Shahroud, Iran
| | - Somayeh Ebrahimi-Barough
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Morteza Alizadeh
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran
| |
Collapse
|
3
|
Mateus JC, Sousa MM, Burrone J, Aguiar P. Beyond a Transmission Cable-New Technologies to Reveal the Richness in Axonal Electrophysiology. J Neurosci 2024; 44:e1446232023. [PMID: 38479812 PMCID: PMC10941245 DOI: 10.1523/jneurosci.1446-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 03/17/2024] Open
Abstract
The axon is a neuronal structure capable of processing, encoding, and transmitting information. This assessment contrasts with a limiting, but deeply rooted, perspective where the axon functions solely as a transmission cable of somatodendritic activity, sending signals in the form of stereotypical action potentials. This perspective arose, at least partially, because of the technical difficulties in probing axons: their extreme length-to-diameter ratio and intricate growth paths preclude the study of their dynamics through traditional techniques. Recent findings are challenging this view and revealing a much larger repertoire of axonal computations. Axons display complex signaling processes and structure-function relationships, which can be modulated via diverse activity-dependent mechanisms. Additionally, axons can exhibit patterns of activity that are dramatically different from those of their corresponding soma. Not surprisingly, many of these recent discoveries have been driven by novel technology developments, which allow for in vitro axon electrophysiology with unprecedented spatiotemporal resolution and signal-to-noise ratio. In this review, we outline the state-of-the-art in vitro toolset for axonal electrophysiology and summarize the recent discoveries in axon function it has enabled. We also review the increasing repertoire of microtechnologies for controlling axon guidance which, in combination with the available cutting-edge electrophysiology and imaging approaches, have the potential for more controlled and high-throughput in vitro studies. We anticipate that a larger adoption of these new technologies by the neuroscience community will drive a new era of experimental opportunities in the study of axon physiology and consequently, neuronal function.
Collapse
Affiliation(s)
- J C Mateus
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - M M Sousa
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - J Burrone
- MRC Centre for Neurodevelopmental Disorders, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London SE1 1UL, United Kingdom
| | - P Aguiar
- i3S- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
4
|
Cho Y, Choi Y, Seong H. Nanoscale surface coatings and topographies for neural interfaces. Acta Biomater 2024; 175:55-75. [PMID: 38141934 DOI: 10.1016/j.actbio.2023.12.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/28/2023] [Accepted: 12/14/2023] [Indexed: 12/25/2023]
Abstract
With the lack of minimally invasive tools for probing neuronal systems across spatiotemporal scales, understanding the working mechanism of the nervous system and limited assessments available are imperative to prevent or treat neurological disorders. In particular, nanoengineered neural interfaces can provide a solution to this technological barrier. This review covers recent surface engineering approaches, including nanoscale surface coatings, and a range of topographies from the microscale to the nanoscale, primarily focusing on neural-interfaced biosystems. Specifically, the immobilization of bioactive molecules to fertilize the neural cell lineage, topographical engineering to induce mechanotransduction in neural cells, and enhanced cell-chip coupling using three-dimensional structured surfaces are highlighted. Advances in neural interface design will help us understand the nervous system, thereby achieving the effective treatments for neurological disorders. STATEMENT OF SIGNIFICANCE: • This review focuses on designing bioactive neural interface with a nanoscale chemical modification and topographical engineering at multiscale perspective. • Versatile nanoscale surface coatings and topographies for neural interface are summarized. • Recent advances in bioactive materials applicable for neural cell culture, electrophysiological sensing, and neural implants are reviewed.
Collapse
Affiliation(s)
- Younghak Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea
| | - Yunyoung Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Hyejeong Seong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, Republic of Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology (UST), Seoul, Republic of Korea.
| |
Collapse
|
5
|
Han S, Kim J, Kim SH, Youn W, Kim J, Ji GY, Yang S, Park J, Lee GM, Kim Y, Choi IS. In vitro induction of in vivo-relevant stellate astrocytes in 3D brain-derived, decellularized extracellular matrices. Acta Biomater 2023; 172:218-233. [PMID: 37788738 DOI: 10.1016/j.actbio.2023.09.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/25/2023] [Accepted: 09/26/2023] [Indexed: 10/05/2023]
Abstract
In vitro fabrication of 3D cell culture systems that could provide in vivo tissue-like, structural, and biochemical environments to neural cells is essential not only for fundamental studies on brain function and behavior, but also for tissue engineering and regenerative medicine applicable to neural injury and neurodegenerative diseases. In particular, for astrocytes-which actively respond to the surroundings and exhibit varied morphologies based on stimuli (e.g., stiffness and chemicals) in vitro, as well as physiological or pathological conditions in vivo-it is crucial to establish an appropriate milieu in in vitro culture platforms. Herein, we report the induction of in vivo-relevant, stellate-shaped astrocytes derived from cortices of Rattus norvegicus by constructing the 3D cell culture systems of brain-derived, decellularized extracellular matrices (bdECMs). The bdECM hydrogels were mechanically stable and soft, and the bdECM-based 3D scaffolds supplied biochemically active environments that astrocytes could interact with, leading to the development of in vivo-like stellate structures. In addition to the distinct morphology with actively elongated endfeet, the astrocytes, cultured in 3D bdECM scaffolds, would have neurosupportive characteristics, indicated by the accelerated neurite outgrowth in the astrocyte-conditioned media. Furthermore, next-generation sequencing showed that the gene expression profiles of astrocytes cultured in bdECMs were significantly different from those cultured on 2D surfaces. The stellate-shaped astrocytes in the bdECMs were analyzed to have reached a more mature state, for instance, with decreased expression of genes for scaffold ECMs, actin filaments, and cell division. The results suggest that the bdECM-based 3D culture system offers an advanced platform for culturing primary cortical astrocytes and their mixtures with other neural cells, providing a brain-like, structural and biochemical milieu that promotes the maturity and in vivo-like characteristics of astrocytes in both form and gene expression. STATEMENT OF SIGNIFICANCE: Decellularized extracellular matrices (dECMs) have emerged as strong candidates for the construction of three-dimensional (3D) cell cultures in vitro, owing to the potential to provide native biochemical and physical environments. In this study, we fabricated hydrogels of brain-derived dECMs (bdECMs) and cultured primary astrocytes within the bdECM hydrogels in a 3D context. The cultured astrocytes exhibited a stellate morphology distinct from conventional 2D cultures, featuring tridimensionally elongated endfeet. qRT-PCR and NGS-based transcriptomic analyses revealed gene expression patterns indicative of a more mature state, compared with the 2D culture. Moreover, astrocytes cultured in bdECMs showed neurosupportive characteristics, as demonstrated by the accelerated neurite outgrowth in astrocyte-conditioned media. We believe that the bdECM hydrogel-based culture system can serve as an in vitro model system for astrocytes and their coculture with other neural cells, holding significant potential for neural engineering and therapeutic applications.
Collapse
Affiliation(s)
- Sol Han
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jungnam Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Su Hyun Kim
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Jihoo Kim
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gil Yong Ji
- Cannabis Medical, Inc., Asan 31418, South Korea
| | - Seoin Yang
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Joohyouck Park
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea
| | - Gyun Min Lee
- Department of Biological Sciences, KAIST, Daejeon 34141, South Korea
| | | | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry, KAIST, Daejeon 34141, South Korea; Department of Bio and Brain Engineering, KAIST, Daejeon 34141, South Korea.
| |
Collapse
|
6
|
Villanueva-Flores F, Garcia-Atutxa I, Santos A, Armendariz-Borunda J. Toward a New Generation of Bio-Scaffolds for Neural Tissue Engineering: Challenges and Perspectives. Pharmaceutics 2023; 15:1750. [PMID: 37376198 DOI: 10.3390/pharmaceutics15061750] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/04/2023] [Accepted: 06/13/2023] [Indexed: 06/29/2023] Open
Abstract
Neural tissue engineering presents a compelling technological breakthrough in restoring brain function, holding immense promise. However, the quest to develop implantable scaffolds for neural culture that fulfill all necessary criteria poses a remarkable challenge for material science. These materials must possess a host of desirable characteristics, including support for cellular survival, proliferation, and neuronal migration and the minimization of inflammatory responses. Moreover, they should facilitate electrochemical cell communication, display mechanical properties akin to the brain, emulate the intricate architecture of the extracellular matrix, and ideally allow the controlled release of substances. This comprehensive review delves into the primary requisites, limitations, and prospective avenues for scaffold design in brain tissue engineering. By offering a panoramic overview, our work aims to serve as an essential resource, guiding the creation of materials endowed with bio-mimetic properties, ultimately revolutionizing the treatment of neurological disorders by developing brain-implantable scaffolds.
Collapse
Affiliation(s)
- Francisca Villanueva-Flores
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Chihuahua, Av. Heroico Colegio Militar 4700, Nombre de Dios, Chihuahua 31300, Chihuahua, Mexico
| | - Igor Garcia-Atutxa
- Máster en Bioinformática y Bioestadística, Universitat Oberta de Catalunya, Rambla del Poblenou, 156, 08018 Barcelona, Spain
| | - Arturo Santos
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
| | - Juan Armendariz-Borunda
- Escuela de Medicina y Ciencias de la Salud, Tecnologico de Monterrey, Campus Guadalajara, Av. Gral Ramón Corona No 2514, Colonia Nuevo México, Zapopan 45201, Jalisco, Mexico
- Instituto de Biología Molecular en Medicina y Terapia Génica, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Sierra Mojada 950, Independencia Oriente, Guadalajara 44340, Jalisco, Mexico
| |
Collapse
|
7
|
Harati J, Liu K, Shahsavarani H, Du P, Galluzzi M, Deng K, Mei J, Chen HY, Bonakdar S, Aflatoonian B, Hou G, Zhu Y, Pan H, Wong RCB, Shokrgozar MA, Song W, Wang PY. Defined Physicochemical Cues Steering Direct Neuronal Reprogramming on Colloidal Self-Assembled Patterns (cSAPs). ACS NANO 2022; 17:1054-1067. [PMID: 36583476 DOI: 10.1021/acsnano.2c07473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Direct neuronal reprogramming of somatic cells into induced neurons (iNs) has been recently established as a promising approach to generating neuron cells. Previous studies have reported that the biophysical cues of the in vitro microenvironment are potent modulators in the cell fate decision; thus, the present study explores the effects of a customized pattern (named colloidal self-assembled patterns, cSAPs) on iN generation from human fibroblasts using small molecules. The result revealed that the cSAP, composed of binary particles in a hexagonal-close-packed (hcp) geometry, is capable of improving neuronal reprogramming efficiency and steering the ratio of the iN subtypes. Cells exhibited distinct cell morphology, upregulated cell adhesion markers (i.e., SDC1 and ITGAV), enriched signaling pathways (i.e., Hippo and Wnt), and chromatin remodeling on the cSAP compared to those on the control substrates. The result also showed that the iN subtype specification on cSAP was surface-dependent; therefore, the defined physicochemical cue from each cSAP is exclusive. Our findings show that direct cell reprogramming can be manipulated through specific biophysical cues on the artificial matrix, which is significant in cell transdifferentiation and lineage conversion.
Collapse
Affiliation(s)
- Javad Harati
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran1316943551, Iran
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang325000, People's Republic of China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, People's Republic of China
- University of Chinese Academy of Science, Beijing101408, People's Republic of China
| | - Kun Liu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, People's Republic of China
| | - Hosein Shahsavarani
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran1316943551, Iran
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang325000, People's Republic of China
- Department of Cell and Molecular Biology, Faculty of Life Science and Biotechnology, Shahid Beheshti University, Tehran1983969411, Iran
| | - Ping Du
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, People's Republic of China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, People's Republic of China
| | - Ke Deng
- School of Food and Bioengineering, Xihua University, Chengdu610097, People's Republic of China
| | - Jei Mei
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang325000, People's Republic of China
| | - Hsien-Yeh Chen
- Department of Chemical Engineering, National Taiwan University, Taipei10617, Taiwan
| | - Shahin Bonakdar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran1316943551, Iran
| | - Behrouz Aflatoonian
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd8916188635, Iran
| | - Guoqiang Hou
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong518055, People's Republic of China
| | - Yingjie Zhu
- Shenzhen Key Laboratory of Drug Addiction, Shenzhen Neher Neural Plasticity Laboratory, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, Guangdong518055, People's Republic of China
| | - Haobo Pan
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, People's Republic of China
| | - Raymond C B Wong
- Centre for Eye Research Australia, Department of Surgery, University of Melbourne, Parkville, Victoria3002, Australia
| | - Mohammad Ali Shokrgozar
- Lab Regenerative Medicine and Biomedical Innovations, Pasteur Institute of Iran, Tehran1316943551, Iran
| | - Weihong Song
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang325000, People's Republic of China
| | - Peng-Yuan Wang
- Oujiang Laboratory, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of Aging, Wenzhou Medical University, Wenzhou, Zhejiang325000, People's Republic of China
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong518055, People's Republic of China
| |
Collapse
|
8
|
Shao X, Liu Z, Mao S, Han L. Unraveling the Mechanobiology Underlying Traumatic Brain Injury with Advanced Technologies and Biomaterials. Adv Healthc Mater 2022; 11:e2200760. [PMID: 35841392 DOI: 10.1002/adhm.202200760] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/27/2022] [Indexed: 01/27/2023]
Abstract
Traumatic brain injury (TBI) is a worldwide health and socioeconomic problem, associated with prolonged and complex neurological aftermaths, including a variety of functional deficits and neurodegenerative disorders. Research on the long-term effects has highlighted that TBI shall be regarded as a chronic health condition. The initiation and exacerbation of TBI involve a series of mechanical stimulations and perturbations, accompanied by mechanotransduction events within the brain tissues. Mechanobiology thus offers a unique perspective and likely promising approach to unravel the underlying molecular and biochemical mechanisms leading to neural cells dysfunction after TBI, which may contribute to the discovery of novel targets for future clinical treatment. This article investigates TBI and the subsequent brain dysfunction from a lens of neuromechanobiology. Following an introduction, the mechanobiological insights are examined into the molecular pathology of TBI, and then an overview is given of the latest research technologies to explore neuromechanobiology, with particular focus on microfluidics and biomaterials. Challenges and prospects in the current field are also discussed. Through this article, it is hoped that extensive technical innovation in biomedical devices and materials can be encouraged to advance the field of neuromechanobiology, paving potential ways for the research and rehabilitation of neurotrauma and neurological diseases.
Collapse
Affiliation(s)
- Xiaowei Shao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China.,Suzhou Research Institute, Shandong University, Suzhou, Jiangsu, 215123, China
| | - Zhongqian Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Shijie Mao
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| | - Lin Han
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China
| |
Collapse
|
9
|
Patel M, Ahn S, Koh WG. Topographical pattern for neuronal tissue engineering. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.07.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
10
|
Zhang A, Fang J, Li X, Wang J, Chen M, Chen HJ, He G, Xie X. Cellular nanointerface of vertical nanostructure arrays and its applications. NANOSCALE ADVANCES 2022; 4:1844-1867. [PMID: 36133409 PMCID: PMC9419580 DOI: 10.1039/d1na00775k] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 11/28/2021] [Indexed: 06/16/2023]
Abstract
Vertically standing nanostructures with various morphologies have been developed with the emergence of the micro-/nanofabrication technology. When cells are cultured on them, various bio-nano interfaces between cells and vertical nanostructures would impact the cellular activities, depending on the shape, density, and height of nanostructures. Many cellular pathway activation processes involving a series of intracellular molecules (proteins, RNA, DNA, enzymes, etc.) would be triggered by the cell morphological changes induced by nanostructures, affecting the cell proliferation, apoptosis, differentiation, immune activation, cell adhesion, cell migration, and other behaviors. In addition, the highly localized cellular nanointerface enhances coupled stimulation on cells. Therefore, understanding the mechanism of the cellular nanointerface can not only provide innovative tools for regulating specific cell functions but also offers new aspects to understand the fundamental cellular activities that could facilitate the precise monitoring and treatment of diseases in the future. This review mainly describes the fabrication technology of vertical nanostructures, analyzing the formation of cellular nanointerfaces and the effects of cellular nanointerfaces on cells' fates and functions. At last, the applications of cellular nanointerfaces based on various nanostructures are summarized.
Collapse
Affiliation(s)
- Aihua Zhang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Jiaru Fang
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Xiangling Li
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- School of Biomedical Engineering, Sun Yat-Sen University Guangzhou 510006 China
| | - Ji Wang
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| | - Meiwan Chen
- Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Hui-Jiuan Chen
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
| | - Gen He
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- Key Laboratory of Molecular Target & Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University Guangzhou 511436 P. R. China
| | - Xi Xie
- State Key Laboratory of Optoelectronic Materials and Technologies, Key Laboratory of Display Material and Technology, School of Electronics and Information Technology, Sun Yat-Sen University Guangzhou 510006 Guangdong Province China
- The First Affiliated Hospital of Sun Yat-Sen University Guangzhou 510080 China
| |
Collapse
|
11
|
Bang S, Hwang KS, Jeong S, Cho IJ, Choi N, Kim J, Kim HN. Engineered neural circuits for modeling brain physiology and neuropathology. Acta Biomater 2021; 132:379-400. [PMID: 34157452 DOI: 10.1016/j.actbio.2021.06.024] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 05/16/2021] [Accepted: 06/14/2021] [Indexed: 12/14/2022]
Abstract
The neural circuits of the central nervous system are the regulatory pathways for feeling, motion control, learning, and memory, and their dysfunction is closely related to various neurodegenerative diseases. Despite the growing demand for the unraveling of the physiology and functional connectivity of the neural circuits, their fundamental investigation is hampered because of the inability to access the components of neural circuits and the complex microenvironment. As an alternative approach, in vitro human neural circuits show principles of in vivo human neuronal circuit function. They allow access to the cellular compartment and permit real-time monitoring of neural circuits. In this review, we summarize recent advances in reconstituted in vitro neural circuits using engineering techniques. To this end, we provide an overview of the fabrication techniques and methods for stimulation and measurement of in vitro neural circuits. Subsequently, representative examples of in vitro neural circuits are reviewed with a particular focus on the recapitulation of structures and functions observed in vivo, and we summarize their application in the study of various brain diseases. We believe that the in vitro neural circuits can help neuroscience and the neuropharmacology. STATEMENT OF SIGNIFICANCE: Despite the growing demand to unravel the physiology and functional connectivity of the neural circuits, the studies on the in vivo neural circuits are frequently limited due to the poor accessibility. Furthermore, single neuron-based analysis has an inherent limitation in that it does not reflect the full spectrum of the neural circuit physiology. As an alternative approach, in vitro engineered neural circuit models have arisen because they can recapitulate the structural and functional characteristics of in vivo neural circuits. These in vitro neural circuits allow the mimicking of dysregulation of the neural circuits, including neurodegenerative diseases and traumatic brain injury. Emerging in vitro engineered neural circuits will provide a better understanding of the (patho-)physiology of neural circuits.
Collapse
Affiliation(s)
- Seokyoung Bang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea
| | - Kyeong Seob Hwang
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sohyeon Jeong
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Il-Joo Cho
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; School of Electrical and Electronics Engineering, Yonsei University, Seoul 03722, Republic of Korea; Yonsei-KIST Convergence Research Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Nakwon Choi
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea; KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul 02841, Republic of Korea.
| | - Jongbaeg Kim
- School of Mechanical Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
12
|
Zhang Y, Chen S, Xiao Z, Liu X, Wu C, Wu K, Liu A, Wei D, Sun J, Zhou L, Fan H. Magnetoelectric Nanoparticles Incorporated Biomimetic Matrix for Wireless Electrical Stimulation and Nerve Regeneration. Adv Healthc Mater 2021; 10:e2100695. [PMID: 34176235 DOI: 10.1002/adhm.202100695] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2021] [Revised: 06/03/2021] [Indexed: 02/05/2023]
Abstract
Electrical stimulation is regarded pivotal to promote repair of nerve injuries, however, failed to get extensive application in vivo due to the challenges in noninvasive electrical loading accompanying with construction of biomimetic cell niche. Herein, a new concept of magneto responsive electric 3D matrix for remote and wireless electrical stimulation is demonstrated. By the preparation of magnetoelectric core/shell structured Fe3 O4 @BaTiO3 NPs-loaded hyaluronan/collagen hydrogels, which recapitulate considerable magneto-electricity and vital features of native neural extracellular matrix, the enhancement of neurogenesis both in cellular level and spinal cord injury in vivo with external pulsed magnetic field applied is proved. The findings pave the way for a novel class of remote controlling and delivering electricity through extracellular niches-mimicked hydrogel network, arising prospects not only in neurogenesis but also in human-computer interaction with higher resolution.
Collapse
Affiliation(s)
- Yusheng Zhang
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Suping Chen
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Zhanwen Xiao
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Xiaoyin Liu
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Chengheng Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Kai Wu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Amin Liu
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Dan Wei
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Jing Sun
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| | - Liangxue Zhou
- Department of Neurosurgery West China Medical School West China Hospital Sichuan University Chengdu Sichuan 610064 China
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials College of Biomedical Engineering Sichuan University Chengdu Sichuan 610064 China
| |
Collapse
|
13
|
Vinzons LU, Lin SP. Facile fabrication of ordered discontinuous nanotopography on photosensitive substrates for enhanced neuronal differentiation. NANOTECHNOLOGY 2021; 32:365301. [PMID: 34015777 DOI: 10.1088/1361-6528/ac0381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Controlling the development and morphology of neurons is important for basic neuroscience research as well as for applications in nerve regeneration and neural interfaces. Various studies have shown that nanoscale topographies can promote the development of neuronal cells and the differentiation of neural stem cells; however, the fabrication of these nanotopographical features often involves expensive and sophisticated techniques. Here, we employ nanosphere lens lithography combined with UV-LED technology to create nanopatterns on an SU-8 photoresist. We develop a facile method to create a reusable polystyrene nanosphere (PS-NS) lens array by the spontaneous formation of a hexagonal close-packed array of PS-NSs at a water-air interface and its subsequent transfer to a polydimethylsiloxane carrier film without using any special equipment. We show that this simple technique can create ordered arrays of nanodots on an SU-8 film, the dimensions of which can be controlled by the size of the PS-NSs. When used as a substrate for the neuronal differentiation of pheochromocytoma (PC12) cells, the nanopatterned SU-8 films exhibit enhanced differentiation parameters with respect to conventional tissue culture plastic as compared with their flat counterparts. The method proposed here can greatly facilitate the nanopatterning of various photosensitive substrates for the development of implants for nerve regeneration and neural interfacing.
Collapse
Affiliation(s)
- Lester U Vinzons
- PhD Program in Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Shu-Ping Lin
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan
| |
Collapse
|
14
|
Fan S, Qi L, Li J, Pan D, Zhang Y, Li R, Zhang C, Wu D, Lau P, Hu Y, Bi G, Ding W, Chu J. Guiding the Patterned Growth of Neuronal Axons and Dendrites Using Anisotropic Micropillar Scaffolds. Adv Healthc Mater 2021; 10:e2100094. [PMID: 34019723 DOI: 10.1002/adhm.202100094] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 04/27/2021] [Indexed: 12/31/2022]
Abstract
The patterning of axonal and dendritic growth is an important topic in neural tissue engineering and critical for generating directed neuronal networks in vitro. Evidence shows that artificial micro/nanotopography can better mimic the environment for neuronal growth in vivo. However, the potential mechanisms by which neurons interact with true three dimensional (3D) topographical cues and form directional networks are unclear. Herein, 3D micropillar scaffolds are designed to guide the growth of neural stem cells and hippocampal neurons in vitro. Discontinuous and anisotropic micropillars are fabricated by femtosecond direct laser writing to form patterned scaffolds with various spacings and heights, which are found to affect the branching and orientation of axons and dendrites. Interestingly, axons and dendrites tend to grow on an array of 3D micropillar scaffolds of the same height and form functionally connected neuronal networks, as reflected by synchronous neuronal activity visualized by calcium imaging. This method may represent a promising tool for studying neuron behavior and directed neuronal networks in a 3D environment.
Collapse
Affiliation(s)
- Shengying Fan
- Center for Biomedical Engineering Department of Electronic Science and Technology University of Science and Technology of China Hefei 230026 China
| | - Lei Qi
- CAS Key Laboratory of Brain Function and Disease School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Jiawen Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Deng Pan
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Yiyuan Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Rui Li
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Cong Zhang
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Dong Wu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Pakming Lau
- CAS Key Laboratory of Brain Function and Disease School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Yanlei Hu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| | - Guoqiang Bi
- CAS Key Laboratory of Brain Function and Disease School of Life Sciences Division of Life Sciences and Medicine University of Science and Technology of China Hefei 230026 China
- Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China Hefei 230026 China
| | - Weiping Ding
- Center for Biomedical Engineering Department of Electronic Science and Technology University of Science and Technology of China Hefei 230026 China
| | - Jiaru Chu
- Key Laboratory of Precision Scientific Instrumentation of Anhui Higher Education Institutes CAS Key Laboratory of Mechanical Behavior and Design of Materials Department of Precision Machinery and Precision Instrumentation University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
15
|
Joshi A, Kaur T, Singh N. Exploiting Substrate Cues for Co-Culturing Cells in a Micropattern. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4933-4942. [PMID: 33870690 DOI: 10.1021/acs.langmuir.1c00170] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Spatial distribution of cells and their interactions between neighboring cells in native microenvironments are of fundamental importance in determining cell fate decisions such as migration, growth, and differentiation. Controlling the spatial distribution of different cell types in defined geometries can replicate these native environments, which can be a useful model for several studies. While spatiotemporal control over multiple cell arrangements is required to achieve the complex tissue architecture, unfortunately, conventional cell patterning techniques usually allow only single patterning with a single cell type. In the present study, we introduce a simple lithographic method to pattern multiple cell types in a spatially controlled manner by utilizing the biophysical cues present at the corners of the patterned geometry. By fabricating micropatterns of different shapes, we demonstrate how the cell can be constrained to pattern along the corners of patterned geometries owing to the presence of topographical cues, leaving empty voids in the center that can be further utilized for patterning a second cell type. We also demonstrate that the cell alignment along the pattern is a dynamic process and the cells migrate from a more uniform cell-adhesive region toward the topographical cues. The cytoskeleton arrangement was geometry-dependent, which was confirmed through a series of in vitro evaluations, such as scanning electron microscopy and fluorescence microscopy. These findings have not only helped us in exploring the importance of these cues in guiding the cell fate but have also allowed us to develop a technique, which self-patterns the cells without any expensive exogenous cues and can be used as a model protocol to eventually organize cells into a specific pattern with micron-scale precision in vitro.
Collapse
Affiliation(s)
- Akshay Joshi
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Tejinder Kaur
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
- Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| |
Collapse
|
16
|
Seo J, Lanara C, Choi JY, Kim J, Cho H, Chang Y, Kang K, Stratakis E, Choi IS. Neuronal Migration on Silicon Microcone Arrays with Different Pitches. Adv Healthc Mater 2021; 10:e2000583. [PMID: 32815647 DOI: 10.1002/adhm.202000583] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 06/22/2020] [Indexed: 11/10/2022]
Abstract
Neuronal migration is a complicated but fundamental process for proper construction and functioning of neural circuits in the brain. Many in vivo studies have suggested the involvement of environmental physical features of a neuron in its migration, but little effort has been made for the in vitro demonstration of topography-driven neuronal migration. This work investigates migratory behaviors of primary hippocampal neurons on a silicon microcone (SiMC) array that presents 14 different pitch domains (pitch: 2.5-7.3 µm). Neuronal migration becomes the maximum at the pitch of around 3 µm, with an upper migration threshold of about 4 µm. Immunocytochemical studies indicate that the speed and direction of migration, as well as its probability of occurrence, are correlated with the morphology of the neuron, which is dictated by the pitch and shape of underlying SiMC structures. In addition to the effects on neuronal migration, the real-time imaging of migrating neurons on the topographical substrate reveals new in vitro modes of neuronal migration, which have not been observed on the conventional flat culture plate, but been suggested by in vivo studies.
Collapse
Affiliation(s)
- Jeongyeon Seo
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Christina Lanara
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Ji Yu Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Hyeoncheol Cho
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
| | - Young‐Tae Chang
- Department of Chemistry POSTECH Center for Self‐Assembly and Complexity Institute for Basic Science (IBS) Pohang 37673 Korea
| | - Kyungtae Kang
- Department of Applied Chemistry Kyung Hee University Yongin Gyeonggi 17104 Korea
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser Foundation for Research and Technology Hellas (FORTH) Nikolaou Plastira 100 Heraklion Crete GR‐70013 Greece
| | - Insung S. Choi
- Center for Cell‐Encapsulation Research Department of Chemistry KAIST Daejeon 34141 Korea
- Department of Bio and Brain Engineering KAIST Daejeon 34141 Korea
| |
Collapse
|
17
|
Leclech C, Villard C. Cellular and Subcellular Contact Guidance on Microfabricated Substrates. Front Bioeng Biotechnol 2020; 8:551505. [PMID: 33195116 PMCID: PMC7642591 DOI: 10.3389/fbioe.2020.551505] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 09/21/2020] [Indexed: 12/14/2022] Open
Abstract
Topography of the extracellular environment is now recognized as a major biophysical regulator of cell behavior and function. The study of the influence of patterned substrates on cells, named contact guidance, has greatly benefited from the development of micro and nano-fabrication techniques, allowing the emergence of increasingly diverse and elaborate engineered platforms. The purpose of this review is to provide a comprehensive view of the process of contact guidance from cellular to subcellular scales. We first classify and illustrate the large diversity of topographies reported in the literature by focusing on generic cellular responses to diverse topographical cues. Subsequently, and in a complementary fashion, we adopt the opposite approach and highlight cell type-specific responses to classically used topographies (arrays of pillars or grooves). Finally, we discuss recent advances on the key subcellular and molecular players involved in topographical sensing. Throughout the review, we focus particularly on neuronal cells, whose unique morphology and behavior have inspired a large body of studies in the field of topographical sensing and revealed fascinating cellular mechanisms. We conclude by using the current understanding of the cell-topography interactions at different scales as a springboard for identifying future challenges in the field of contact guidance.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR 7646, Ecole Polytechnique, Palaiseau, France
| | - Catherine Villard
- Physico-Chimie Curie, CNRS UMR 168, Université PSL, Sorbonne Université, Paris, France
| |
Collapse
|
18
|
Moon HC, Choi H, Kikionis S, Seo J, Youn W, Ioannou E, Han SY, Cho H, Roussis V, Choi IS. Fabrication and Characterization of Neurocompatible Ulvan-Based Layer-by-Layer Films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:11610-11617. [PMID: 32964713 DOI: 10.1021/acs.langmuir.0c02173] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Construction of extracellular matrix-mimetic nanofilms has considerable potential in biomedical and nanomedicinal fields. In this work, we fabricated neurocompatible layer-by-layer (LbL) films based on ulvan (ULV), a highly sulfated polysaccharide having compositional similarity to glycosaminoglycans that play important functional roles in the brain. ULV was durably assembled as a film with chitosan, another marine-derived polysaccharide, and the film enabled the stable adhesion of primary hippocampal neurons with high viability, comparable to the conventional poly-d-lysine surface. Notably, the ULV-based LbL films accelerated neurite outgrowth and selectively suppressed the adhesion of astrocytes, highlighting its potential as an advanced platform for neural implants and devices.
Collapse
Affiliation(s)
- Hee Chul Moon
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Hyunwoo Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Stefanos Kikionis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Jeongyeon Seo
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| | - Efstathia Ioannou
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | | | | | - Vassilios Roussis
- Section of Pharmacognosy and Chemistry of Natural Products, Department of Pharmacy, National and Kapodistrian University of Athens, Panepistimiopolis Zografou, Athens 15771, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon 34141, Korea
| |
Collapse
|
19
|
Chemla Y, Avraham ES, Markus A, Teblum E, Slotky A, Kostikov Y, Farah N, Telkhozhayeva M, Shoval I, Nessim GD, Mandel Y. Carbon nanostructures as a scaffold for human embryonic stem cell differentiation toward photoreceptor precursors. NANOSCALE 2020; 12:18918-18930. [PMID: 32910131 DOI: 10.1039/d0nr02256j] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Carbon nanomaterials have been introduced as a scaffold for various biological applications due to their unique physical and electrical properties. Here we studied carbon nanotubes (CNTs) and carbon nanofibers (CNFs) as scaffold materials for the differentiation of human embryonic stem cells (hESCs) towards photoreceptor precursor cells (PRPs). We report on their cytoxicity, their effect on cell morphology, cell-surface interface and the differentiation process. To this end, hESCs were differentiated into PRPs on carbon nanofibers (CNFs), long horizontal CNTs (LHCNTs), vertically aligned CNTs (VACNTs) or glass (control) surfaces. The differentiated cells were investigated by immunohistochemistry, fluorescence imaging and electron microscopy. Our results revealed that the investigated nanomaterials were not cytotoxic to the cells during the differentiation process. The surface interface effect on the cells was apparent, affecting cell directionality, migration and morphology. Interestingly, cell fate was not dependent on the substrate type, as inferred from the similar dynamics of the loss of pluripotency and the comparable expression levels of the photoreceptor marker Crx for all investigated substrates. These results are important for better understanding the effect of nanomaterial surface interaction with differentiating neural cells in general, and for future use of these materials as scaffolds for differentiating photoreceptors for vision restoration in particular.
Collapse
Affiliation(s)
- Yoav Chemla
- Faculty of Life Sciences, School of Optometry and Vision Science, Bar Ilan University, Ramat Gan, 5290002, Israel.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020; 59:15626-15632. [PMID: 32168409 PMCID: PMC7487060 DOI: 10.1002/anie.202002593] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 03/08/2020] [Indexed: 12/21/2022]
Abstract
We report a simple method based upon coaxial electrospinning for the fabrication of aligned microfibers engraved with nanoscale grooves to promote neurite outgrowth and cell migration. The success of this method relies on the immiscibility between poly(ϵ-caprolactone) (PCL) and poly(vinyl pyrrolidone) (PVP) in 2,2,2-trifluoroethanol (TFE) for the generation of PVP/TFE pockets on the surface of a PCL jet. The pockets are stretched and elongated along with the jet, eventually resulting in the formation of nanoscale grooves upon the removal of PVP. The presence of nanoscale grooves greatly enhances the outgrowth of neurites from both PC12 cells and chick embryonic dorsal root ganglia (DRG) bodies, as well as the migration of Schwann cells. The enhancements can be maximized by optimizing the dimensions of the grooves for potential use in applications involving neurite extension and wound closure.
Collapse
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA 30332, USA
- School of Chemistry and Biochemistry, School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
21
|
Seo J, Youn W, Choi JY, Cho H, Choi H, Lanara C, Stratakis E, Choi IS. Neuro-taxis: Neuronal movement in gradients of chemical and physical environments. Dev Neurobiol 2020; 80:361-377. [PMID: 32304173 DOI: 10.1002/dneu.22749] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 04/13/2020] [Indexed: 12/15/2022]
Abstract
Environmental chemical and physical cues dynamically interact with migrating neurons and sprouting axons, and in particular, the gradients of environmental cues are regarded as one of the factors intimately involved in the neuronal movement. Since a growth cone was first described by Cajal, more than one century ago, chemical gradients have been suggested as one of the mechanisms by which the neurons determine proper paths and destinations. However, the gradients of physical cues, such as stiffness and topography, which also interact constantly with the neurons and their axons as a component of the extracellular environments, have rarely been noted regarding the guidance of neurons, despite their gradually increasingly reported influences in the case of nonneuronal-cell migration. In this review, we discuss chemical (i.e., chemo- and hapto-) and physical (i.e., duro-) taxis phenomena on the movement of neurons including axonal elongation. In addition, we suggest topotaxis, the most recently proposed physical-taxis phenomenon, as another potential mechanism in the neuronal movement, based on the reports of neuronal recognition of and responses to nanotopography.
Collapse
Affiliation(s)
| | - Wongu Youn
- Department of Chemistry, KAIST, Daejeon, Korea
| | - Ji Yu Choi
- Department of Chemistry, KAIST, Daejeon, Korea
| | | | | | - Christina Lanara
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece
| | - Emmanuel Stratakis
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology-Hellas (FORTH), Heraklion, Crete, Greece.,Physics Department, University of Crete, Heraklion, Crete, Greece
| | - Insung S Choi
- Department of Chemistry, KAIST, Daejeon, Korea.,Department of Bio and Brain Engineering, KAIST, Daejeon, Korea
| |
Collapse
|
22
|
Wu T, Xue J, Xia Y. Engraving the Surface of Electrospun Microfibers with Nanoscale Grooves Promotes the Outgrowth of Neurites and the Migration of Schwann Cells. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002593] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Tong Wu
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Jiajia Xue
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
| | - Younan Xia
- The Wallace H. Coulter Department of Biomedical Engineering Georgia Institute of Technology and Emory University Atlanta GA 30332 USA
- School of Chemistry and Biochemistry School of Chemical and Biomolecular Engineering Georgia Institute of Technology Atlanta GA 30332 USA
| |
Collapse
|
23
|
Zhang YQ, Lin HA, Pan QC, Qian SH, Zhang SH, Qiu G, Luo SC, Yu HH, Zhu B. Tunable Protein/Cell Binding and Interaction with Neurite Outgrowth of Low-Impedance Zwitterionic PEDOTs. ACS APPLIED MATERIALS & INTERFACES 2020; 12:12362-12372. [PMID: 32057222 DOI: 10.1021/acsami.9b23025] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Zwitterionic poly(3,4-ethylenedioxythiophene) (PEDOT) is an effective electronic material for bioelectronics because it exhibits efficient electrical trade-off and diminishes immune response. To promote the use of zwitterionic PEDOTs in bioelectronic devices, especially for cell alignment control and close electrocoupling, features such as tunable interaction of PEDOTs with proteins/cells and spatially modulating cell behavior are required. However, there is a lack of reliable methods to assemble zwitterionic EDOTs with other functionalized EDOT materials, having different polarities and oxidation potentials, to prepare PEDOTs with the aforementioned surface properties. In this study, we have developed a surfactant-assisted electropolymerization to assemble phosphorylcholine (PC)-functionalized EDOT with other functionalized EDOTs. By adjusting compositions, the interaction of PEDOT copolymers with proteins/cells can be finely tuned; the composition adjustment has an ignorable influence on the impedance of the copolymers. We also demonstrate that the cell-repulsive force generated from PC can spatially guide the neurite outgrowth to form a neuron network at single-cell resolution and greatly enhance the neurite outgrowth by 179%, which is significantly more distinctive than the reported topography effect. We expect that the derived tunable protein/cell interaction and the PC-induced repulsive guidance for the neurite outgrowth can make low-impedance zwitterionic PEDOTs more useful in bioelectronics.
Collapse
Affiliation(s)
- Ya-Qiong Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Hsing-An Lin
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Qi-Chao Pan
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Si-Hao Qian
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Shu-Hua Zhang
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| | - Gao Qiu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials & College of Materials Science and Engineering, Donghua University, 2999 Renmin North Road, Songjiang, Shanghai 201600, China
| | - Shyh-Chyang Luo
- Department of Materials Science and Engineering, National Taiwan University, No.1, Sec. 4, Roosevelt Road, Taipei 10617, Taiwan
| | - Hsiao-Hua Yu
- Institute of Chemistry Academia Sinica, 128 Academic Road, Sec. 2, Nankang, Taipei 11529, Taiwan
| | - Bo Zhu
- School of Materials Science and Engineering, Shanghai University, 99 Shangda Road, Baoshan, Shanghai 200444, China
| |
Collapse
|
24
|
Kim BJ, Choi JY, Choi H, Han S, Seo J, Kim J, Joo S, Kim HM, Oh C, Hong S, Kim P, Choi IS. Astrocyte-Encapsulated Hydrogel Microfibers Enhance Neuronal Circuit Generation. Adv Healthc Mater 2020; 9:e1901072. [PMID: 31957248 DOI: 10.1002/adhm.201901072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 12/23/2019] [Indexed: 12/18/2022]
Abstract
Astrocytes, the most representative glial cells in the brain, play a multitude of crucial functions for proper neuronal development and synaptic-network formation, including neuroprotection as well as physical and chemical support. However, little attention has been paid, in the neuroregenerative medicine and related fields, to the cytoprotective incorporation of astrocytes into neuron-culture scaffolds and full-fledged functional utilization of encapsulated astrocytes for controlled neuronal development. In this article, a 3D neurosupportive culture system for enhanced induction of neuronal circuit generation is reported, where astrocytes are confined in hydrogel microfibers and protected from the outside. The astrocyte-encapsulated microfibers significantly accelerate the neurite outgrowth and guide its directionality, and enhance the synaptic formation, without any physical contact with the neurons. This astrocyte-laden system provides a pivotal culture scaffold for advanced development of cell-based therapeutics for neural injuries, such as spinal cord injury.
Collapse
Affiliation(s)
- Beom Jin Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Ji Yu Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyunwoo Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sol Han
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jeongyeon Seo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Jungnam Kim
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Sunghoon Joo
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| | - Hyo Min Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Chungik Oh
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Seungbum Hong
- Department of Materials Science and EngineeringKAIST Daejeon 34141 Korea
| | - Pilnam Kim
- Department of Bio and Brain EngineeringKAIST Daejeon 34141 Korea
| | - Insung S. Choi
- Center for Cell‐Encapsulation ResearchDepartment of ChemistryKAIST Daejeon 34141 Korea
| |
Collapse
|
25
|
Zhao Q, Wang J, Wang Y, Cui H, Du X. A stage-specific cell-manipulation platform for inducing endothelialization on demand. Natl Sci Rev 2019; 7:629-643. [PMID: 34692082 PMCID: PMC8289041 DOI: 10.1093/nsr/nwz188] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 10/28/2019] [Accepted: 11/08/2019] [Indexed: 01/04/2023] Open
Abstract
Endothelialization is of great significance for vascular remodeling, as well as for the success of implanted vascular grafts/stents in cardiovascular disease treatment. However, desirable endothelialization on synthetic biomaterials remains greatly challenging owing to extreme difficulty in offering dynamic guidance on endothelial cell (EC) functions resembling the native extracellular matrix-mediated effects. Here, we demonstrate a bilayer platform with near-infrared-triggered transformable topographies, which can alter the geometries and functions of human ECs by tunable topographical cues in a remote-controlled manner, yet cause no damage to the cell viability. The migration and the adhesion/spreading of human ECs are respectively promoted by the temporary anisotropic and permanent isotropic topographies of the platform in turn, which appropriately meet the requirements of stage-specific EC manipulation for endothelialization. In addition to the potential of promoting the development of a new generation of vascular grafts/stents enabling rapid endothelialization, this stage-specific cell-manipulation platform also holds promise in various biomedical fields, since the needs for stepwise control over different cell functions are common in wound healing and various tissue-regeneration processes.
Collapse
Affiliation(s)
- Qilong Zhao
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Juan Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Yunlong Wang
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Huanqing Cui
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| | - Xuemin Du
- Institute of Biomedical & Health Engineering, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518035, China
| |
Collapse
|
26
|
Beckwith KS, Ullmann S, Vinje J, Sikorski P. Influence of Nanopillar Arrays on Fibroblast Motility, Adhesion, and Migration Mechanisms. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1902514. [PMID: 31464377 DOI: 10.1002/smll.201902514] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 07/25/2019] [Indexed: 06/10/2023]
Abstract
Surfaces decorated with high aspect ratio nanostructures are a promising tool to study cellular processes and design novel devices to control cellular behavior. However, little is known about the dynamics of cellular phenomenon such as adhesion, spreading, and migration on such surfaces. In particular, how these are influenced by the surface properties. In this work, fibroblast behavior is investigated on regular arrays of 1 µm high polymer nanopillars with varying pillar to pillar distance. Embryonic mouse fibroblasts (NIH-3T3) spread on all arrays, and on contact with the substrate engulf nanopillars independently of the array pitch. As the cells start to spread, different behavior is observed. On dense arrays which have a pitch equal or below 1 µm, cells are suspended on top of the nanopillars, making only sporadic contact with the glass support. Cells stay attached to the glass support and fully engulf nanopillars during spreading and migration on the sparse arrays which have a pitch of 2 µm and above. These alternate states have a profound effect on cell migration rates. Dynamic F-actin puncta colocalize with nanopillars during cell spreading and migration. Strong membrane association with engulfed nanopillars might explain the reduced migration rates on sparse arrays.
Collapse
Affiliation(s)
- Kai S Beckwith
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Sindre Ullmann
- Centre of Molecular Inflammation Research, Department of Molecular and Clinical Medicine, Faculty of Medicine and Health Sciences, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Jakob Vinje
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| | - Pawel Sikorski
- Department of Physics, Norwegian University of Science and Technology (NTNU), 7491, Trondheim, Norway
| |
Collapse
|
27
|
Kim S, Youn W, Choi IS, Park JH. Thickness-Tunable Eggshell Membrane Hydrolysate Nanocoating with Enhanced Cytocompatibility and Neurite Outgrowth. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:12562-12568. [PMID: 31448611 DOI: 10.1021/acs.langmuir.9b02055] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The eggshell membrane is one of the easily obtainable natural biomaterials, but has been neglected in the biomaterial community, compared with marine biomaterials and discarded as a food waste. In this work, we utilized the ESM hydrolysate (ESMH), which was obtained by the enzymochemical method, as a bioactive functional material for interfacial bioengineering, exemplified by thickness-tunable, layer-by-layer (LbL) nanocoating with the Fe(III)-tannic acid (TA) complex. [Fe(III)-TA/ESMH] LbL films, ending with the ESMH layer, showed great cytocompatiblility with HeLa cells and even primary hippocampal neuron cells. More importantly, the films were found to be neurochemically active, inducing the acceleration of neurite outgrowth for the long-term neuron culture. We believe that the ability for building cytocompatible ESMH films in a thickness-tunable manner would be applicable to a broad range of different nanomaterials in shape and size and would be utilized with multimodal functionalities for biomedical applications, such as bioencapsulation, theranostics, and regenerative medicine.
Collapse
Affiliation(s)
- Seulbi Kim
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| | - Wongu Youn
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Insung S Choi
- Center for Cell-Encapsulation Research, Department of Chemistry , KAIST , Daejeon 34141 , Korea
| | - Ji Hun Park
- Department of Science Education , Ewha Womans University , Seoul 03760 , Korea
| |
Collapse
|
28
|
Bjørge IM, Choi IS, Correia CR, Mano JF. Nanogrooved microdiscs for bottom-up modulation of osteogenic differentiation. NANOSCALE 2019; 11:16214-16221. [PMID: 31454016 DOI: 10.1039/c9nr06267j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Grooved topographical features have effectively modulated cell differentiation on two-dimensional substrates. To transpose patterning into a 3D environmment, nanogrooved microdiscs, "topodiscs", are produced as cell carriers for bottom-up cell-mediated assembly. While enhancing cell proliferation, topodiscs led to the formation of bone-like aggregates, even in culture medium lacking osteoinductive factors.
Collapse
Affiliation(s)
- Isabel M Bjørge
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Insung S Choi
- Korea Adv Inst Sci & Technol, Dept Chem, Ctr Cell Encapsulat Res, Daejeon 34141, South Korea
| | - Clara R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
29
|
Guryanov I, Naumenko E, Konnova S, Lagarkova M, Kiselev S, Fakhrullin R. Spatial manipulation of magnetically-responsive nanoparticle engineered human neuronal progenitor cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2019; 20:102038. [PMID: 31220595 DOI: 10.1016/j.nano.2019.102038] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/18/2019] [Accepted: 06/05/2019] [Indexed: 02/07/2023]
Abstract
Here we report a detailed investigation of the interaction of neuronal progenitor cells and neurons with polyelectrolyte-stabilized magnetic iron oxide nanoparticles. Human neuronal progenitor and neurons were differentiated in vitro from fibroblast-derived induced pluripotent stem cells. The cytotoxic effects of poly(allylamine hydrochloride) were determined on human skin fibroblasts and neuronal progenitor cells. Immunocytochemical staining of lamins A/C and B in cells treated separately with poly(allylamine hydrochloride) and magnetic nanoparticles allowed to exclude these nuclear components as targets of toxic effects. We demonstrate that magnetic nanoparticles accumulated in cytoplasm and on the surface of neuronal progenitor cells neither interacted with the nuclear envelope nor penetrated into the nuclei of neuronal cells. The possibility of guidance of magnetically functionalized neuronal progenitor cells under magnetic field was demonstrated. Magnetization of progenitor cells using poly(allylaminehydrochloride)-stabilized magnetic nanoparticles allows for successful managing their in vitro localization in a monolayer.
Collapse
Affiliation(s)
- Ivan Guryanov
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Ekaterina Naumenko
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Svetlana Konnova
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation
| | - Maria Lagarkova
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation; Scientific-Research Institute of Physical-Chemical Medicine, Moscow, Russian Federation
| | - Sergey Kiselev
- Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russian Federation
| | - Rawil Fakhrullin
- Institute of Fundamental Medicine and Biology, Kazan Federal University, Kazan, Republic of Tatarstan, Russian Federation.
| |
Collapse
|
30
|
Mateus JC, Lopes CDF, Cerquido M, Leitão L, Leitão D, Cardoso S, Ventura J, Aguiar P. Improved in vitro electrophysiology using 3D-structured microelectrode arrays with a micro-mushrooms islets architecture capable of promoting topotaxis. J Neural Eng 2019; 16:036012. [PMID: 30818300 DOI: 10.1088/1741-2552/ab0b86] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- José C Mateus
- INEB-Instituto de Engenharia Biomédica, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal. i3S-Instituto de Investigação e Inovação em Saúde, Universidade do Porto, R. Alfredo Allen, 4200-135 Porto, Portugal. Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, R. Jorge de Viterbo Ferreira, 4050-313 Porto, Portugal
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Zhang K, Xiao X, Wang X, Fan Y, Li X. Topographical patterning: characteristics of current processing techniques, controllable effects on material properties and co-cultured cell fate, updated applications in tissue engineering, and improvement strategies. J Mater Chem B 2019; 7:7090-7109. [DOI: 10.1039/c9tb01682a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Topographical patterning has recently attracted lots of attention in regulating cell fate, understanding the mechanism of cell–microenvironment interactions, and solving the great issues of regenerative medicine.
Collapse
Affiliation(s)
- Ke Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiongfu Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiumei Wang
- State Key Laboratory of New Ceramic and Fine Processing
- Tsinghua University
- Beijing 100084
- China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| | - Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education
- School of Biological Science and Medical Engineering
- Beihang University
- Beijing 100083
- China
| |
Collapse
|