1
|
Zhang W, Hu Y, Feng P, Li Z, Zhang H, Zhang B, Xu D, Qi J, Wang H, Xu L, Li Z, Xia M, Li J, Chai R, Tian L. Structural Color Colloidal Photonic Crystals for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403173. [PMID: 39083316 PMCID: PMC11423208 DOI: 10.1002/advs.202403173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 07/10/2024] [Indexed: 09/26/2024]
Abstract
Photonic crystals are a new class of optical microstructure materials characterized by a dielectric constant that varies periodically with space and features a photonic bandgap. Inspired by natural photonic crystals such as butterfly scales, a series of artificial photonic crystals are developed for use in integrated photonic platforms, biosensing, communication, and other fields. Among them, colloidal photonic crystals (CPCs) have gained widespread attention due to their excellent optical properties and advantages, such as ease of preparation and functionalization. This work reviews the classification and self-assembly principles of CPCs, details some of the latest biomedical applications of large-area, high-quality CPCs prepared using advanced self-assembly methods, summarizes the existing challenges in CPC construction and application, and anticipates future development directions and optimization strategy. With further advancements, CPCs are expected to play a more critical role in biosensors, drug delivery, cell research, and other fields, bringing significant benefits to biomedical research and clinical practice.
Collapse
Affiliation(s)
- Wenhui Zhang
- School of Design and Arts, Beijing Institute of Technology, Beijing, 100081, China
| | - Yangnan Hu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
| | - Pan Feng
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Zhe Li
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Hui Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Bin Zhang
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Dongyu Xu
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Huan Wang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Lei Xu
- Department of Otolaryngology-Head and Neck Surgery, Shandong Provincial ENT Hospital, Shandong University, Jinan, 250022, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ming Xia
- Department of Otolaryngology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250117, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace Clinical College, Beijing, 100049, China
| | - Renjie Chai
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
- Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, 226001, China
- Department of Neurology, Aerospace Center Hospital, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China
- Department of Otolaryngology Head and Neck Surgery, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Southeast University Shenzhen Research Institute, Shenzhen, 518063, China
| | - Lei Tian
- State Key Laboratory of Digital Medical Engineering, Department of Otolaryngology Head and Neck Surgery, Zhongda Hospital, School of Medicine, Advanced Institute for Life and Health, Jiangsu Province High-Tech Key Laboratory for Bio-Medical Research, Southeast University, Nanjing, 210096, China
| |
Collapse
|
2
|
Nam SK, Amstad E, Kim SH. Hydrogel-Encased Photonic Microspheres with Enhanced Color Saturation and High Suspension Stability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58761-58769. [PMID: 38084724 DOI: 10.1021/acsami.3c14364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
Regular arrays of colloidal particles can produce striking structural colors without the need for any chemical pigments. Regular arrays of colloidal particles can be processed into microparticles via emulsion templates for use as structural colorants. Photonic microparticles, however, suffer from intense incoherent scattering and lack of suspension stability. We propose a microfluidic technique to generate hydrogel-shelled photonic microspheres that display enhanced color saturation and suspension stability. We created these microspheres using oil-in-water-in-oil (O/W/O) double-emulsion droplets with well-defined dimensions with a capillary microfluidic device. The inner oil droplet contains silica particles in a photocurable monomer, while the middle water droplet carries the hydrogel precursor. Within the inner oil droplet, silica particles arrange into crystalline arrays due to solvation-layer-induced interparticle repulsion. UV irradiation solidifies the inner photonic core and the outer hydrogel shell. The hydrogel shell reduces white scattering and enhances the suspension stability in water. Notably, the hydrogel precursor in the water droplet aids in maintaining the solvation layer, resulting in enhanced crystallinity and richer colors compared with microspheres from O/W single-emulsion droplets. These hydrogel-encased photonic microspheres show promise as structural colorants in water-based inks and polymer composites.
Collapse
Affiliation(s)
- Seong Kyeong Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Esther Amstad
- Institute of Materials, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Shin-Hyun Kim
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| |
Collapse
|
3
|
Zhou L, Fei J, Fang W, Shao L, Liu Q, He H, Ma M, Shi Y, Chen S, Wang X. A true color palette: binary metastable photonic pigments. NANOSCALE HORIZONS 2022; 7:890-898. [PMID: 35815919 DOI: 10.1039/d2nh00232a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Different from the traditional concept that binary photonic crystals can only reproduce mixed colors due to the simple superposition of the photonic band gaps, precisely addressable "true colors" obtained from volume fraction deviation of binary photonic crystals with metastable structures are reported here. Inspired by the mussels' adhesion and longhorn beetles' photonic scales, a binary metastable amorphous photonic crystal was obtained by enhancing the driving forces and customizing the surface roughness of building blocks to regulate the thermodynamic and dynamic factors simultaneously. By controlling the volume fraction of two building blocks, the tunable photonic bandgap varies linearly in the visible region. Furthermore, the "true violet" that cannot be obtained by conventional color mixing is reproduced with the particular ultraviolet characteristics of red photonic pigment's metastable structures, which complement the palette effect of "true colors". Meanwhile, due to the self-adhesion and post-modification of building blocks, the stability of photonic pigments is further improved. The binary photonic pigments not only solve the dilemma of mixed colors, but also realize the tunability and multiplicity of "true colors", offering a new choice for the color palette of the world.
Collapse
Affiliation(s)
- Likang Zhou
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Junhao Fei
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Wei Fang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Luqing Shao
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, College of Optical Science and Engineering, College of Optical Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Qianjiang Liu
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Huiwen He
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Meng Ma
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yanqin Shi
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Si Chen
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xu Wang
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Bian F, Sun L, Chen H, Wang Y, Wang L, Shang L, Zhao Y. Bioinspired Perovskite Nanocrystals-Integrated Photonic Crystal Microsphere Arrays for Information Security. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105278. [PMID: 35048564 PMCID: PMC8948562 DOI: 10.1002/advs.202105278] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Indexed: 05/19/2023]
Abstract
Information security occupies an important position in the era of big data. Attempts to improve the security performance tend to impart them with more additional encryption strategies. Herein, inspired by the wettability feature of Stenocara beetle elytra and signal model of traffic light, a novel array of perovskite nanocrystals (PNs)-integrated PhC microsphere for information security is presented. The photoluminescent PNs are encapsulated in angle-independent PhC microspheres to impart them with binary optical signals as coding information. Through the multimask superposition approach, PNs-integrated PhC microspheres with different codes are placed into fluorosilane-treated PDMS substrate to form different arrays. These arrays could converge moisture on PhC microspheres in wet environment, which avoids the ions loss of the PNs and effectively prevented mutual contamination. In addition, the fluorescence of the PNs inside PhC microspheres could reversibly quench or recover in response to the environmental moisture. Based on these features, it is demonstrated that the PNs-integrated PhC microsphere arrays could realize various information encryption modes, which indicate their excellent values in information security fields.
Collapse
Affiliation(s)
- Feika Bian
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Lingyu Sun
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Hanxu Chen
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
| | - Li Wang
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospitaland the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and TechnologyInstitutes of Biomedical Sciences)Fudan UniversityShanghai200433China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryInstitute of Translational MedicineThe Affiliated Drum Tower Hospital of Nanjing University Medical SchoolNanjing210008China
- State Key Laboratory of BioelectronicsSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
5
|
Jiang M, Chattopadhyay AN, Geng Y, Rotello VM. An array-based nanosensor for detecting cellular responses in macrophages induced by femtomolar levels of pesticides. Chem Commun (Camb) 2022; 58:2890-2893. [PMID: 35141736 PMCID: PMC10587896 DOI: 10.1039/d1cc07100a] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Environmental agents can induce cellular responses at concentrations far below the limits of detection for current viability and biomarker-based cell sensing platforms. Hypothesis-free cell sensor platforms can be engineered to maximize sensitivity to phenotypic changes, providing a tool for lowering the threshold for detecting cellular changes. Pesticides are one of the most prevalent sources of chemical exposure due to their use in food and agriculture fields. We report here a FRET-based nanosensor array engineered to maximize responses to changes at cell surfaces after pesticide exposure. This sensor array robustly detected macrophage responses to femtomolar concentrations of common pesticides-orders of magnitude lower concentrations than traditional toxicological and biomarker-based strategies. Significantly, this platform was able to classify these responses by pesticide class, demonstrating the ability to distinguish between changes induced by these different agents. Taken together, hypothesis-free cell surface sensing is a promising tool for detecting the effects of ultra-trace environmental chemicals on human health, as well as detecting threshold responses for use in drug discovery and diagnostics.
Collapse
Affiliation(s)
- Mingdi Jiang
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Aritra Nath Chattopadhyay
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Yingying Geng
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| | - Vincent M Rotello
- Department of Chemistry, University of Massachusetts Amherst, 710 N. Pleasant St, Amherst, MA 01003, USA.
| |
Collapse
|
6
|
Wang Y, Fang Y, Zhu Y, Bi S, Liu Y, Ju H. Single cell multi-miRNAs quantification with hydrogel microbeads for liver cancer cell subtypes discrimination. Chem Sci 2022; 13:2062-2070. [PMID: 35308856 PMCID: PMC8848760 DOI: 10.1039/d1sc05304c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/26/2022] [Indexed: 12/03/2022] Open
Abstract
The simultaneous quantification of multi-miRNAs in single cells reveals cellular heterogeneity, and benefits the subtypes discrimination of cancer cells . Though micro-droplet techniques enable successful single cell encapsulation, the isolated and restricted reaction space of microdroplets causes cross-reactions and inaccuracy for simultaneous multi-miRNAs quantification. Herein, we develop a hydrogel microbead based strategy for the simultaneous sensitive quantification of miRNA-21, 122 and 222 in single cells. Single cells are encapsulated and undergo cytolysis in hydrogel microbeads. The three target miRNAs are retained in the microbead by pre-immobilized capture probes, and activate rolling circle amplification (RCA) reactions. The RCA products are hybridized with corresponding dye labelled DNA reporters, and the respective fluorescence intensities are recorded for multi-miRNA quantification. The porous structure of the hydrogel microbeads allows the free diffusion of reactants and easy removal of unreacted DNA strands, which effectively avoids nonspecific cross-reactions. Clear differentiation of cellular heterogeneity and subpopulation discrimination are achieved for three kinds of liver cancer cells and one normal liver cell. A single cell multi-miRNAs quantification strategy is reported. Single cells are encapsulated and undergo cytolysis in hydrogel microbeads, then the quantitative analysis of three miRNAs is used to achieve sub-populations discrimination for liver cells.![]()
Collapse
Affiliation(s)
- Yingfei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 PR China
| | - Yanyun Fang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 PR China
| | - Yu Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 PR China
| | - Shiyi Bi
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 PR China
| | - Ying Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 PR China.,Chemistry and Biomedicine Innovation Center, Nanjing University Nanjing 210023 China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University Nanjing 210023 PR China
| |
Collapse
|
7
|
Zhao T, Gao Y, Wang J, Cui Y, Niu S, Xu S, Luo X. From Passive Signal Output to Intelligent Response: "On-Demand" Precise Imaging Controlled by Near-Infrared Light. Anal Chem 2021; 93:12329-12336. [PMID: 34474564 DOI: 10.1021/acs.analchem.1c02048] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
"On-demand" accurate imaging of multiple intracellular miRNAs will significantly improve the detection reliability and accuracy. However, the "always-active" design of traditional multicomponent detection probes enables them to passively recognize and output signals as soon as they encounter targets, which will inevitably impair the detection accuracy and, inevitably, result in false-positive signals. To address this scientific problem, in this work, we developed a near-infrared (NIR) light-activated multicomponent detection intelligent nanoprobe for spatially and temporally controlled on-demand accurate imaging of multiple intracellular miRNAs. The proposed intelligent nanoprobe is composed of a rationally designed UV light-responsive triangular DNA nano sucker (TDS) and upconversion nanoparticles (UCNPs), named UCNPs@TDS (UTDS), which can enter cells autonomously through endocytosis and enable remote regulation of on-demand accurate imaging for multiple intracellular miRNAs using NIR light illumination at a chosen time and place. It is worth noting that the most important highlight of the UTDS we designed in this work is that it can resist nonspecific activation as well as effectively avoid false-positive signals and improve the accuracy of imaging of multiple intracellular miRNAs. Moreover, distinguishing different kinds of cell lines with different miRNA expressions levels can be also achieved through this NIR light-activated intelligent UTDS, showing feasible prospects in precise imaging and disease diagnosis.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yuhuan Gao
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Jun Wang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Yanyun Cui
- College of Chemistry and Materials Engineering, Beijing Technology and Business University, Beijing 100048, P. R. China
| | - Shuyan Niu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Shenghao Xu
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| | - Xiliang Luo
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE; College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, P. R. China
| |
Collapse
|
8
|
Bian F, Sun L, Wang Y, Zhang D, Li Z, Zhao Y. Microfluidic generation of barcodes with in situ synthesized perovskite quantum dot encapsulation. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1007-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
9
|
Wang J, Pinkse PWH, Segerink LI, Eijkel JCT. Bottom-Up Assembled Photonic Crystals for Structure-Enabled Label-Free Sensing. ACS NANO 2021; 15:9299-9327. [PMID: 34028246 PMCID: PMC8291770 DOI: 10.1021/acsnano.1c02495] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/19/2021] [Indexed: 05/10/2023]
Abstract
Photonic crystals (PhCs) display photonic stop bands (PSBs) and at the edges of these PSBs transport light with reduced velocity, enabling the PhCs to confine and manipulate incident light with enhanced light-matter interaction. Intense research has been devoted to leveraging the optical properties of PhCs for the development of optical sensors for bioassays, diagnosis, and environmental monitoring. These applications have furthermore benefited from the inherently large surface area of PhCs, giving rise to high analyte adsorption and the wide range of options for structural variations of the PhCs leading to enhanced light-matter interaction. Here, we focus on bottom-up assembled PhCs and review the significant advances that have been made in their use as label-free sensors. We describe their potential for point-of-care devices and in the review include their structural design, constituent materials, fabrication strategy, and sensing working principles. We thereby classify them according to five sensing principles: sensing of refractive index variations, sensing by lattice spacing variations, enhanced fluorescence spectroscopy, surface-enhanced Raman spectroscopy, and configuration transitions.
Collapse
Affiliation(s)
- Juan Wang
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Pepijn W. H. Pinkse
- Complex
Photonic Systems Group, MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands
| | - Loes I. Segerink
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| | - Jan C. T. Eijkel
- BIOS
Lab on a Chip Group, MESA+ Institute for Nanotechnology, Technical
Medical Centre & Max Planck Center for Complex Fluid Dynamics, University of Twente, 7522 NB Enschede, The Netherlands
| |
Collapse
|
10
|
Cai Z, Li Z, Ravaine S, He M, Song Y, Yin Y, Zheng H, Teng J, Zhang A. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications. Chem Soc Rev 2021; 50:5898-5951. [PMID: 34027954 DOI: 10.1039/d0cs00706d] [Citation(s) in RCA: 152] [Impact Index Per Article: 50.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Over the last three decades, photonic crystals (PhCs) have attracted intense interests thanks to their broad potential applications in optics and photonics. Generally, these structures can be fabricated via either "top-down" lithographic or "bottom-up" self-assembly approaches. The self-assembly approaches have attracted particular attention due to their low cost, simple fabrication processes, relative convenience of scaling up, and the ease of creating complex structures with nanometer precision. The self-assembled colloidal crystals (CCs), which are good candidates for PhCs, have offered unprecedented opportunities for photonics, optics, optoelectronics, sensing, energy harvesting, environmental remediation, pigments, and many other applications. The creation of high-quality CCs and their mass fabrication over large areas are the critical limiting factors for real-world applications. This paper reviews the state-of-the-art techniques in the self-assembly of colloidal particles for the fabrication of large-area high-quality CCs and CCs with unique symmetries. The first part of this review summarizes the types of defects commonly encountered in the fabrication process and their effects on the optical properties of the resultant CCs. Next, the mechanisms of the formation of cracks/defects are discussed, and a range of versatile fabrication methods to create large-area crack/defect-free two-dimensional and three-dimensional CCs are described. Meanwhile, we also shed light on both the advantages and limitations of these advanced approaches developed to fabricate high-quality CCs. The self-assembly routes and achievements in the fabrication of CCs with the ability to open a complete photonic bandgap, such as cubic diamond and pyrochlore structure CCs, are discussed as well. Then emerging applications of large-area high-quality CCs and unique photonic structures enabled by the advanced self-assembly methods are illustrated. At the end of this review, we outlook the future approaches in the fabrication of perfect CCs and highlight their novel real-world applications.
Collapse
Affiliation(s)
- Zhongyu Cai
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China. and Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117576, Singapore and Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Zhiwei Li
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Serge Ravaine
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Mingxin He
- Department of Physics, Center for Soft Matter Research, New York University, New York, NY 10003, USA
| | - Yanlin Song
- Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Green Printing, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, CA 92521, USA
| | - Hanbin Zheng
- CNRS, Univ. Bordeaux, CRPP, UMR 5031, F-33600 Pessac, France
| | - Jinghua Teng
- Institute of Materials Research and Engineering, Agency for Science, Technology, and Research (A*STAR), 2 Fusionopolis Way, Innovis, #08-03, Singapore 138634, Singapore.
| | - Ao Zhang
- Research Institute for Frontier Science, Beijing Advanced Innovation Center for Biomedical Engineering, School of Space and Environment, Beihang University, Beijing 100191, China.
| |
Collapse
|
11
|
Wang Y, Chen C, He J, Cao Y, Fang X, Chi X, Yi J, Wu J, Guo Q, Masoomi H, Wu C, Ye J, Gu H, Xu H. Precisely Encoded Barcodes through the Structure-Fluorescence Combinational Strategy: A Flexible, Robust, and Versatile Multiplexed Biodetection Platform with Ultrahigh Encoding Capacities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2100315. [PMID: 33817970 DOI: 10.1002/smll.202100315] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/12/2021] [Indexed: 06/12/2023]
Abstract
With the rapid development of suspension array technology, microbeads-based barcodes as the core element with sufficient encoding capacity are urgently required for high-throughput multiplexed detection. Here, a novel structure-fluorescence combinational encoding strategy is proposed for the first time to establish a barcode library with ultrahigh encoding capacities. Based on the never revealed transformability of the structural parameters (e.g., porosity and matrix component) of mesoporous microbeads into scattering signals in flow cytometry, the enlargement of codes number has been successfully realized in combination with two other fluorescent elements of fluorescein isothiocyanate isomer I (FITC) and quantum dots (QDs). The barcodes are constructed with precise architectures including FITC encapsulated within mesopores and magnetic nanoparticles as well as QDs immobilized on the outer surface to achieve the ultrahigh encoding level of 300 accompanied with superparamagnetism. To the best of knowledge, it is the highest record of single excitation laser-based encoding capacity up to now. Moreover, a ten-plexed tumor markers bioassay based on the tailored-designed barcodes has been evaluated to confirm their feasibility and effectiveness, and the results indicate that the barcodes platform is a promising and robust tool for practical multiplexed biodetection.
Collapse
Affiliation(s)
- Yao Wang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Cang Chen
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jing He
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yimei Cao
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaoxia Fang
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Xiaomei Chi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jingwei Yi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jiancong Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Qingsheng Guo
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hajar Masoomi
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Chongzhao Wu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jian Ye
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hongchen Gu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hong Xu
- Shanghai Jiao Tong University Affiliated Sixth People's Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
12
|
Jet T, Gines G, Rondelez Y, Taly V. Advances in multiplexed techniques for the detection and quantification of microRNAs. Chem Soc Rev 2021; 50:4141-4161. [PMID: 33538706 DOI: 10.1039/d0cs00609b] [Citation(s) in RCA: 142] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
MicroRNA detection is currently a crucial analytical chemistry challenge: almost 2000 papers were referenced in PubMed in 2018 and 2019 for the keywords "miRNA detection method". MicroRNAs are potential biomarkers for multiple diseases including cancers, neurodegenerative and cardiovascular diseases. Since miRNAs are stably released in bodily fluids, they are of prime interest for the development of non-invasive diagnosis methods, such as liquid biopsies. Their detection is however challenging, as high levels of sensitivity, specificity and robustness are required. The analysis also needs to be quantitative, since the aim is to detect miRNA concentration changes. Moreover, a high multiplexing capability is also of crucial importance, since the clinical potential of miRNAs probably lays in our ability to perform parallel mapping of multiple miRNA concentrations and recognize typical disease signature from this profile. A plethora of biochemical innovative detection methods have been reported recently and some of them provide new solutions to the problem of sensitive multiplex detection. In this review, we propose to analyze in particular the new developments in multiplexed approaches to miRNA detection. The main aspects of these methods (including sensitivity and specificity) will be analyzed, with a particular focus on the demonstrated multiplexing capability and potential of each of these methods.
Collapse
Affiliation(s)
- Thomas Jet
- Centre de Recherche des Cordeliers, INSERM, Sorbonne Université, Université de Paris, CNRS SNC5096, Equipe Labellisée Ligue Nationale Contre le Cancer, F-75006 Paris, France.
| | | | | | | |
Collapse
|
13
|
Si Y, Xu L, Deng T, Zheng J, Li J. Catalytic Hairpin Self-Assembly-Based SERS Sensor Array for the Simultaneous Measurement of Multiple Cancer-Associated miRNAs. ACS Sens 2020; 5:4009-4016. [PMID: 33284591 DOI: 10.1021/acssensors.0c01876] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The abnormal expression of some miRNAs is often closely related to the development of tumors. Available detection methods or biosensors that can simultaneously quantify multiple miRNAs in a single sample have rarely been reported. Herein, a novel catalytic hairpin self-assembly (CHA)-based surface-enhanced Raman scattering (SERS) sensor array was developed to simultaneously measure multiple miRNAs associated with cancer in one sample. The sensor array with four different sensing units was constructed by immobilizing one of four different hairpin-structured DNA sequence 1 (hp1) onto one of four Au/Ag alloy nanoparticle (AuAgNP)-coated detection wells. When target miRNA is present, the SERS tags, which were prepared by modifying AuAgNPs with a Raman reporter molecule of 4-mercaptobenzonitrile (MPBN) and the related hairpin-structured DNA sequence 2 (hp2), were captured onto the corresponding sensor unit through a repeated specific CHA reaction. This generated many "hot spots" because of interactions between the SERS tags and the AuAgNP layer-coated surface of the sensor, which ultimately produced a strong SERS signal that allowed the detection of target miRNAs with the detection limit of 0.15 pM. Using this SERS sensor array, multiple cancer-associated miRNAs (miR-1246, miR-221, miR-133a, and miR-21) were successfully determined in buffer, serum, and cellular RNA extracts.
Collapse
Affiliation(s)
- Yanmei Si
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, P. R. China
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Lan Xu
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Ting Deng
- Institute of Applied Chemistry, School of Science, Central South University of Forestry and Technology, Changsha 410004, P. R. China
| | - Jing Zheng
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| | - Jishan Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, P. R. China
| |
Collapse
|
14
|
Liu Y, Wang Y, Wang Y, Shu Y, Tan H, Zhao Y. Bioinspired structural color particles with multi-layer graphene oxide encapsulated nanoparticle components. Bioact Mater 2020; 5:917-923. [PMID: 32637754 PMCID: PMC7330439 DOI: 10.1016/j.bioactmat.2020.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Revised: 05/28/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022] Open
Abstract
Because of the unique features of spherical symmetry, angle-independency, good monodispersity, controllable components and morphologies, structural color particles (SCPs) have found great significances in various fields such as sensing, monitoring, biological assays, etc. Here, inspired by the melanosome-derived bright structural colors and the self-adhesivity of mussels, we present a kind of bioinspired SCPs assembled from polydopamine (PDA)-adhered multi-layer graphene oxide (GO) encapsulated silica nanoparticles (SNs). It is demonstrated that compared with traditional SCPs, the designed particles possess brighter and more vibrant structural colors, and no complicated modification is required during the functionalization process due to the abundant inherent functional groups of GO. The resultant SCPs are verified to be capable for direct hybridization chain reaction and multiplexed nucleic acid assays. These properties indicate the promising prospects of our designed SCPs.
Collapse
Affiliation(s)
- Yuxiao Liu
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institute of Biomedical Sciences, Fudan University, Shanghai, 200031, China
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuetong Wang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institute of Biomedical Sciences, Fudan University, Shanghai, 200031, China
| | - Hui Tan
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
| | - Yuanjin Zhao
- Department of Neurosurgery, Health Science Center, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518035, China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT Hospital, State Key Laboratory of Medical Neurobiology, Institute of Biomedical Sciences, Fudan University, Shanghai, 200031, China
- Department of Clinical Laboratory, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
15
|
Lin P, Chen H, Li A, Zhuang H, Chen Z, Xie Y, Zhou H, Mo S, Chen Y, Lu X, Cheng Z. Bioinspired Multiple Stimuli-Responsive Optical Microcapsules Enabled by Microfluidics. ACS APPLIED MATERIALS & INTERFACES 2020; 12:46788-46796. [PMID: 32935962 DOI: 10.1021/acsami.0c14698] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Optical microcapsules encapsulating optical materials inside a symmetric spherical confinement are significant elements for the construction of optical units and the integration of optical arrays. However, the multiple stimuli-responsive characteristic of optical microcapsules still remains a challenge due to the insuperable physical barrier between the optical material core and the outside shell and the lack of effective mechanisms to trigger the dynamic switch of the encapsulated optical materials. Inspired by the dual-mode optical modulation of chameleon skins, a novel biomimetic binary optical microcapsule that combines the visible light reflection of chiral nematic liquid crystals and photoluminescence emission of rare-earth complexes is assembled by microfluidic emulsification and interfacial polymerization. The reflected color, fluorescent intensity, and size of the optical microcapsules are facilely controlled in the microfluidic chip by adjusting the composition and flow rate of the injected fluids. Most importantly, the biomimetic binary optical microcapsules demonstrate three reversible responsive behaviors, thermotropic reflection evolution, temperature-dependent fluorescence emission, and Fredericks electro-optical response. The bioinspired multiple stimuli-responsive optical microcapsules enabled by microfluidics provide a templated strategy to manufacture the next generation of intelligent optical units and to achieve the dynamic response of hybrid photonic devices.
Collapse
Affiliation(s)
- Pengcheng Lin
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Hongbin Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ang Li
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoquan Zhuang
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Zeting Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Yongji Xie
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Hanguo Zhou
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Songping Mo
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Ying Chen
- Guangdong Provincial Key Laboratory on Functional Soft Condensed Matter, School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiang Lu
- Key Laboratory of Polymer Processing Engineering of the Ministry of Education, National Engineering Research Center of Novel Equipment for Polymer Processing, Guangdong Key Laboratory of Technique and Equipment for Macromolecular Advanced Manufacturing, South China University of Technology, Guangzhou 510641, China
| | - Zhengdong Cheng
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
16
|
Park S, Hwang H, Kim M, Moon JH, Kim SH. Colloidal assembly in droplets: structures and optical properties. NANOSCALE 2020; 12:18576-18594. [PMID: 32909568 DOI: 10.1039/d0nr04608f] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Colloidal assembly in emulsion drops provides fundamental tools for studying optimum particle arrangement under spherical confinement and practical means for producing photonic microparticles. Recent progress has revealed that energetically favored cluster configurations are different from conventional supraballs, which could enhance optical performance. This paper reviews state-of-the-art emulsion-templated colloidal clusters, and particularly focuses on recently reported novel structures such as icosahedral, decahedral, and single-crystalline face-centered cubic (fcc) clusters. We classify the clusters according to the number of component particles as small (N < O(102)), medium (O(102) ≤N≤O(104)), and large (N≥O(105)). For each size of clusters, we discuss the detailed structures, mechanisms of cluster formation, and optical properties and potential applications. Finally, we outline current challenges and questions that require further investigation.
Collapse
Affiliation(s)
- Sanghyuk Park
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| | | | | | | | | |
Collapse
|
17
|
Bian F, Sun L, Cai L, Wang Y, Zhao Y. Bioinspired MXene-integrated colloidal crystal arrays for multichannel bioinformation coding. Proc Natl Acad Sci U S A 2020; 117:22736-22742. [PMID: 32868413 PMCID: PMC7502735 DOI: 10.1073/pnas.2011660117] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Information coding strategies are becoming increasingly crucial due to the storage demand brought by the information explosion. In particular, bioinformation coding has attracted great attention for its advantages of excellent storage capacity and long lifetime. Herein, we present an innovative bioinspired MXene-integrated photonic crystal (PhC) array for multichannel bioinformation coding. PhC arrays with similar structure to Stenocara beetle's back are utilized as the substrate, exhibiting properties of high throughput and stability. MXene nanosheets are further integrated on the PhC array's substrate with the assistance of the adhesion capacity of mussel-inspired dopamine (DA). Benefitting from their fluorescence resonance energy transfer effect, MXene nanosheets can quench the fluorescence signals of quantum dot (QD) modified DNA probes unless the corresponding targets exist. Additionally, these black MXene nanosheets can enhance the contrast of structural color. In this case, the encrypted information can be easily read out by simply observing the fluorescence signal of DNA probes. It is demonstrated that this strategy based on bioinspired MXene-integrated PhC arrays can realize high-throughput information encoding and encryption, which opens a chapter of bioinformation coding.
Collapse
Affiliation(s)
- Feika Bian
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- Department of Clinical Laboratory, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Lingyu Sun
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Lijun Cai
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Yu Wang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, 210008 Nanjing, China;
- Department of Clinical Laboratory, Institute of Translational Medicine, Nanjing Drum Tower Hospital, Clinical College of Xuzhou Medical University, 210008 Nanjing, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 210096 Nanjing, China
| |
Collapse
|
18
|
Xiang Y, Yan H, Zheng B, Faheem A, Hu Y. Microorganism@UiO-66-NH 2 Composites for the Detection of Multiple Colorectal Cancer-Related microRNAs with Flow Cytometry. Anal Chem 2020; 92:12338-12346. [PMID: 32657574 DOI: 10.1021/acs.analchem.0c02017] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
High-throughput analyses of multitarget markers can facilitate rapid and accurate clinical diagnosis. Suspension array assays, a flow cytometry-based analysis technology, are among some of the most promising multicomponent analysis methods for clinical diagnostics and research purposes. These assays are appropriate for examining low-volume, complex samples having trace amounts of analytes due to superior elimination of background. Physical shape is an important and promising code system, which uses a set of visually distinct patterns to identify different assay particles. Here, we presented a morphology recognizable suspension arrays based on the microorganisms with different morphologies. In this study, UiO-66-NH2 (UiO stands for University of Oslo) metal-organic frameworks (MOFs), was wrapped on the microorganism surface to form an innovative class of microorganism@UiO-66-NH2 composites for suspension array assays. The use of microorganisms endowed composites barcoding ability with their different morphology and size. Meanwhile, the UiO-66-NH2 provided a stable rigid shell, large specific surface area, and metal(IV) ions with multiple binding sites, which could simplify the protein immobilization procedure and enhance detection sensitivity. With this method, simultaneous detection of three colorectal cancer-related microRNA (miRNA), including miRNA-21, miRNA-17, and miRNA-182, could be easily achieved with femtomolar sensitivity by using a commercial flow cytometer. The synergy between microorganisms and MOFs make the composites a prospective barcoding candidate with excellent characteristics for multicomponent analysis, offering great potential for the development of high throughput and accurate diagnostics.
Collapse
Affiliation(s)
- Yuqiang Xiang
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Huaduo Yan
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Bingjie Zheng
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Aroosha Faheem
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| | - Yonggang Hu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China.,College of Life Science and Technology, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
19
|
Shang L, Wang Y, Cai L, Shu Y, Zhao Y. Structural color barcodes for biodiagnostics. VIEW 2020. [DOI: 10.1002/viw2.8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Affiliation(s)
- Luoran Shang
- Zhongshan∼Xuhui Hospital, Institutes of Biomedical SciencesFudan University Shanghai China
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- The Shanghai Key Laboratory of Medical Epigenetics, the International Co‐laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical SciencesFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuetong Wang
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Lijun Cai
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| | - Yilai Shu
- ENT Institute and Otorhinolaryngology Department of the Affiliated Eye and ENT HospitalState Key Laboratory of Medical NeurobiologyFudan University Shanghai China
- NHC Key Laboratory of Hearing MedicineFudan University Shanghai China
| | - Yuanjin Zhao
- Department of Clinical LaboratoryThe Affiliated Drum Tower Hospital of Nanjing University Medical School Nanjing China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical EngineeringSoutheast University Nanjing China
| |
Collapse
|
20
|
Wang Y, Li Y, Zhang Y, Ren K, Ju H, Liu Y. Express and sensitive detection of multiple miRNAs via DNA cascade reactors functionalized photonic crystal array. Sci China Chem 2020. [DOI: 10.1007/s11426-020-9712-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Guo Q, Wang Y, Chen C, Wei D, Fu J, Xu H, Gu H. Multiplexed Luminescence Oxygen Channeling Immunoassay Based on Dual-Functional Barcodes with a Host-Guest Structure: A Facile and Robust Suspension Array Platform. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1907521. [PMID: 32174029 DOI: 10.1002/smll.201907521] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/08/2020] [Accepted: 02/19/2020] [Indexed: 05/24/2023]
Abstract
The development of a powerful immunoassay platform with capacities of both simplicity and high multiplexing is promising for disease diagnosis. To meet this urgent need, for the first time, a multiplexed luminescent oxygen channeling immunoassay (multi-LOCI) platform by implementation of LOCI with suspension array technology is reported. As the microcarrier of the platform, a unique dual-functional barcode with a host-guest structure composed of a quantum dot host bead (QDH) and LOCI acceptor beads (ABs) is designed, in which QDH provides function of high coding capacity while ABs facilitate the LOCI function. The analytes bridge QDH@ABs and LOCI donor beads (DBs) into a close proximity, forming a QDH@ABs-DBs "host-guest-satellite" superstructure that generates both barcode signal from QDH and LOCI signal induced by singlet oxygen channeling between ABs and DBs. Through imaging-based decoding, different barcodes are automatically distinguished and colocalized with LOCI signals. Importantly, the assay achieves simultaneous detection of multiple analytes within one reaction, simply by following a "mix-and-measure" protocol without the need for tedious washing steps. Furthermore, the multi-LOCI platform is validated for real sample measurements. With the advantages of robustness, simplicity, and high multiplexing, the platform holds great potential for the development of point-of-care diagnostics.
Collapse
Affiliation(s)
- Qingsheng Guo
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Yao Wang
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Cang Chen
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Dan Wei
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Jianping Fu
- Department of Mechanical Engineering, Department of Biomedical Engineering, Department of Cell and Developmental Biology, University of Michiga Ann Arbor, Ann Arbor, MI, 48109, USA
| | - Hong Xu
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| | - Hongchen Gu
- Shanghai Jiao Tong University Affiliated Sixth Hospital, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, P. R. China
| |
Collapse
|
22
|
Wei X, Bian F, Cai X, Wang Y, Cai L, Yang J, Zhu Y, Zhao Y. Multiplexed Detection Strategy for Bladder Cancer MicroRNAs Based on Photonic Crystal Barcodes. Anal Chem 2020; 92:6121-6127. [PMID: 32227890 DOI: 10.1021/acs.analchem.0c00630] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xiaowei Wei
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiaoxiao Cai
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Jian Yang
- Department of Urology, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210011, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
23
|
Guo R, Wang DN, Wei YY, Zhang YZ, Yang CG, Xu ZR. Colloidal photonic crystal array chip based on nanoparticle self-assembly on patterned hydrophobic surface for signal-enhanced fluorescent assay of adenosine. Mikrochim Acta 2020; 187:194. [DOI: 10.1007/s00604-020-4164-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Accepted: 02/13/2020] [Indexed: 12/15/2022]
|
24
|
Bian F, Sun L, Cai L, Wang Y, Wang Y, Zhao Y. Colloidal Crystals from Microfluidics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e1903931. [PMID: 31515951 DOI: 10.1002/smll.201903931] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/25/2019] [Indexed: 06/10/2023]
Abstract
Colloidal crystals are of great interest to researchers because of their excellent optical properties and broad applications in barcodes, sensors, displays, drug delivery, and other fields. Therefore, the preparation of high quality colloidal crystals in large quantities with high speed is worth investigating. After decades of development, microfluidics have been developed that provide new choices for many fields, especially for the generation of functional materials in microscale. Through the design of microfluidic chips, colloidal crystals can be prepared controllably with the advantages of fast speed and low cost. In this Review, research progress on colloidal crystals from microfluidics is discussed. After summarizing the classifications, the generation of colloidal crystals from microfluidics is discussed, including basic colloidal particles preparation, and their assembly inside or outside of microfluidic devices. Then, applications of the achieved colloidal crystals from microfluidics are illustrated. Finally, the future development and prospects of microfluidic-based colloidal crystals are summarized.
Collapse
Affiliation(s)
- Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuetong Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| |
Collapse
|
25
|
Zhang D, Cai L, Bian F, Kong T, Zhao Y. Label-Free Quantifications of Multiplexed Mycotoxins by G-Quadruplex Based on Photonic Barcodes. Anal Chem 2020; 92:2891-2895. [PMID: 32013396 DOI: 10.1021/acs.analchem.9b05213] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Multiplexed quantification of mycotoxins is of great significance in food safety. Here, novel photonic crystal (PhC) barcodes with G-quadruplex aptamer encapsulated for label-free multiplex mycotoxins quantification are developed. The probes are immobilized on PhC barcodes to form a molecular beacon (MB), which contains the sequences of mycotoxin aptamers and a G-quadruplex. In the presence of the target, the hairpin structure of MB would open and the region of the G-quadruplex is exposed, which subsequently combines with Thioflavin T (ThT) to produce fluorescence. The relative fluorescence intensity increased as the mycotoxins concentration increased in a linear range from 1.0 pg/mL to 100 ng/mL. Moreover, the multiplexed mycotoxins quantification could be achieved by tuning the structural color of the PhC barcodes. We demonstrate that this method with high accuracy and specificity for multiplexed detection of mycotoxins, with the sensitivity of the detection as low as 0.70 pg/mL. Our results show that G-quadruplex-encapsulated PhC barcodes offer a novel simple and label-free pathway toward the multiplex screen assay of mycotoxins for food safety.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, School of Medicine , Shenzhen University , Shenzhen 518060 , China.,State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering , Southeast University , Nanjing 210096 , China
| |
Collapse
|
26
|
Guo Z, Liu H, Dai W, Lei Y. Responsive principles and applications of smart materials in biosensing. SMART MATERIALS IN MEDICINE 2020; 1:54-65. [PMID: 33349813 PMCID: PMC7371594 DOI: 10.1016/j.smaim.2020.07.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 05/03/2023]
Abstract
Biosensing is a rising analytical field for detection of biological indicators using transducing systems. Smart materials can response to external stimuli, and translate the stimuli from biological domains into signals that are readable and quantifiable. Smart materials, such as nanomaterials, photonic crystals and hydrogels have been widely used for biosensing purpose. In this review, we illustrate the incorporation of smart materials in biosensing systems, including the design of responsive materials, their responsive mechanism of biosensing, and their applications in detection of four types of common biomolecules (including glucose, nucleic acids, proteins, and enzymes). In the end, we also illustrate the current challenges and prospective of using smart materials in biosensing research fields.
Collapse
Affiliation(s)
- Zhaoyang Guo
- School of Power and Mechanical Engineering & the Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Haiyang Liu
- School of Power and Mechanical Engineering & the Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| | - Wubin Dai
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yifeng Lei
- School of Power and Mechanical Engineering & the Institute of Technological Science, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
27
|
Li J, Heng H, Lv J, Jiang T, Wang Z, Dai Z. Graphene Oxide-Assisted and DNA-Modulated SERS of AuCu Alloy for the Fabrication of Apurinic/Apyrimidinic Endonuclease 1 Biosensor. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1901506. [PMID: 31062520 DOI: 10.1002/smll.201901506] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Fabrication of high-performance surface-enhanced Raman scattering (SERS) biosensors relies on the coordination of SERS substrates and sensing strategies. Herein, a SERS active AuCu alloy with a starfish-like structure is prepared using a surfactant-free method. By covering the anisotropic AuCu alloy with graphene oxide (GO), enhanced SERS activity is obtained owing to graphene-enhanced Raman scattering and assembly of Raman reporters. Besides, stability of SERS is promoted based on the protection of GO to the AuCu alloy. Meanwhile, it is found that SERS activity of AuCu/GO can be regulated by DNA. The regulation is sequence and length dual-dependent, and short polyT reveals the strongest ability of enhancing the SERS activity. Relying on this phenomenon, a SERS biosensor is designed to quantify apurinic/apyrimidinic endonuclease 1 (APE1). Because of the APE1-induced cycling amplification, the biosensor is able to detect APE1 sensitively and selectively. In addition, APE1 in human serum is analyzed by the SERS biosensor and enzyme-linked immunosorbent assay (ELISA). The data from the SERS method are superior to that from ELISA, indicating great potential of this biosensor in clinical applications.
Collapse
Affiliation(s)
- Junyao Li
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hang Heng
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jianlin Lv
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Tingting Jiang
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhaoyin Wang
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhihui Dai
- Jiangsu Key Laboratory of Biofunctional Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing, 210023, P. R. China
- Center for Analysis and Testing, Nanjing Normal University, Nanjing, 210023, P. R. China
| |
Collapse
|
28
|
Zhang D, Bian F, Cai L, Wang T, Kong T, Zhao Y. Bioinspired photonic barcodes for multiplexed target cycling and hybridization chain reaction. Biosens Bioelectron 2019; 143:111629. [PMID: 31470170 DOI: 10.1016/j.bios.2019.111629] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/21/2019] [Accepted: 08/22/2019] [Indexed: 02/06/2023]
Abstract
Multiplexed detection of microRNA (miRNA) is of great value in clinical diagnosis. Here, a new type of polydopamine (PDA) encapsulated photonic crystal (PhC) barcodes are employed for target-triggering cycle amplification and hybridization chain reaction (HCR) to achieve multiplex miRNA quantification. The PDA-decorated PhC barcodes not only exhibit distinctive structural color for different encoding miRNAs, they also can immobilize biomolecules, allowing subsequent reaction with amino-modified hairpin probes (H1). When the PDA-decorated PhC barcodes are used in assays, target miRNAs can be circularly used to initiate HCR for cycle amplification. Therefore, by tuning the structural colors of the PDA-integrated PhC, the multiplexed miRNA quantification could be realized. We demonstrate that our strategy for multiplexed detection of miRNA is reasonably accurate, reliable and repeatable, with a detection limit as low as 8.0 fM. Our results show that PDA encapsulated PhC barcodes as a novel platform offer a pathway toward the multiplex analysis of low-abundance biomarkers for biomedical assays.
Collapse
Affiliation(s)
- Dagan Zhang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Tianfu Wang
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Tiantian Kong
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China.
| | - Yuanjin Zhao
- Guangdong Key Laboratory of Biomedical Measurements and Ultrasound Imaging, Department of Biomedical Engineering, Shenzhen University, Shenzhen, 518060, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
29
|
Bian F, Sun L, Cai L, Wang Y, Zhao Y. Quantum dots from microfluidics for nanomedical application. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2019; 11:e1567. [PMID: 31257723 DOI: 10.1002/wnan.1567] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 12/12/2022]
Abstract
Nanomedicine, with its advantages of rapid diagnosis, high sensitivity and high accuracy, has aroused extensive interest of researchers, as the cornerstone of nanomedicine, nanomaterials achieve extra attention and rapid development. Among nanomaterials, quantum dots stand out due to their long fluorescence lifetime and excellent antiphotobleaching performance. At present, quantum dots have been applied to the diagnosis and treatment of diseases and various strategies have been presented to fabricate quantum dots. Microfluidic is one promising strategy since microfluidic device can provide an effective platform for the diagnosis of trace disease markers. In this paper, research progress in the microfluidic synthesis of quantum dots and quantum dot-based nanomedical application is discussed. The classification of quantum dots is firstly introduced, and the researches on quantum dots synthesis based on microfluidic is then mainly described, including the sort, design, preparation of microfluidic synthesis device and its application in synthesis. Nanomedical applications of the quantum dots is especially described and emphasized. The prospects for future development of quantum dots from microfluidic for nanomedical application are finally presented. This article is categorized under: Diagnostic Tools > in vitro Nanoparticle-Based Sensing.
Collapse
Affiliation(s)
- Feika Bian
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Yuanjin Zhao
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
30
|
Bian F, Sun L, Cai L, Wang Y, Zhao Y, Wang S, Zhou M. Molybdenum disulfide-integrated photonic barcodes for tumor markers screening. Biosens Bioelectron 2019; 133:199-204. [PMID: 30933711 DOI: 10.1016/j.bios.2019.02.066] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/26/2019] [Accepted: 02/27/2019] [Indexed: 01/11/2023]
Abstract
As a new class of two-dimensional (2D) materials, molybdenum disulfide (MoS2) has huge potential in biomedical area; while its applications in multiplex bioassays are still a challenge. Here, we present novel MoS2-integrated silica colloidal crystal barcode (SCCB) for multiplex microRNA (miRNA) screening. MoS2 was adsorbed on SCCBs by electrostatic interaction, and quantum dots (QDs) decorated hairpin probes were coupled on MoS2 by covalent linkage. As the MoS2 could quench the QDs of the hairpin probes, they together formed a molecular beacon (MB) structure before the detection. When used in assays, target miRNA could form a double strand with the probe and made QDs keep away from MoS2 sheets to recovery their fluorescence. Because the released QDs were positively correlated with the concentration of the hybridized nucleic acid, the target miRNAs could be quantified by measuring the fluorescence signal of the QDs on the SCCBs. In addition, by utilizing different MoS2-integrated structural color encoded SCCBs, multiplexed miRNA quantification could also be realized. Based on this strategy, we have demonstrated that several pancreatic cancer-related miRNAs could be selectivity and sensitivity detected with a detection limit of 4.2 ± 0.3 nM. These features make the MoS2-integrated SCCB ideal for many potential applications.
Collapse
Affiliation(s)
- Feika Bian
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lingyu Sun
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Lijun Cai
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yu Wang
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Yuanjin Zhao
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China; State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China.
| | - Shuqi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310003, China.
| | - Mengtao Zhou
- Pancreatitis Center, Precision Medicine Center, and Key Laboratory of Diagnosis and Treatment of Severe Hepato-Pancreatic Diseases of Zhejiang Province, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|