1
|
Wang C, Guo L, Zhu J, Zhu L, Li C, Zhu H, Song A, Lu L, Teng GJ, Navab N, Jiang Z. Review of robotic systems for thoracoabdominal puncture interventional surgery. APL Bioeng 2024; 8:021501. [PMID: 38572313 PMCID: PMC10987197 DOI: 10.1063/5.0180494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/11/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer, with high morbidity and high mortality, is one of the major burdens threatening human health globally. Intervention procedures via percutaneous puncture have been widely used by physicians due to its minimally invasive surgical approach. However, traditional manual puncture intervention depends on personal experience and faces challenges in terms of precisely puncture, learning-curve, safety and efficacy. The development of puncture interventional surgery robotic (PISR) systems could alleviate the aforementioned problems to a certain extent. This paper attempts to review the current status and prospective of PISR systems for thoracic and abdominal application. In this review, the key technologies related to the robotics, including spatial registration, positioning navigation, puncture guidance feedback, respiratory motion compensation, and motion control, are discussed in detail.
Collapse
Affiliation(s)
- Cheng Wang
- Hanglok-Tech Co. Ltd., Hengqin 519000, People's Republic of China
| | - Li Guo
- Hanglok-Tech Co. Ltd., Hengqin 519000, People's Republic of China
| | | | - Lifeng Zhu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | - Chichi Li
- School of Computer Science and Engineering, Macau University of Science and Technology, Macau, 999078, People's Republic of China
| | - Haidong Zhu
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | - Aiguo Song
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Lab of Remote Measurement and Control, School of Instrument Science and Engineering, Southeast University, Nanjing 210096, People's Republic of China
| | | | - Gao-Jun Teng
- Center of Interventional Radiology and Vascular Surgery, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, People's Republic of China
| | | | - Zhongliang Jiang
- Computer Aided Medical Procedures, Technical University of Munich, Munich 80333, Germany
| |
Collapse
|
2
|
Park J, Ghanim R, Rahematpura A, Gerage C, Abramson A. Electromechanical convective drug delivery devices for overcoming diffusion barriers. J Control Release 2024; 366:650-667. [PMID: 38190971 PMCID: PMC10922834 DOI: 10.1016/j.jconrel.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/10/2024]
Abstract
Drug delivery systems which rely on diffusion for mass transport, such as hydrogels and nanoparticles, have enhanced drug targeting and extended delivery profiles to improve health outcomes for patients suffering from diseases including cancer and diabetes. However, diffusion-dependent systems often fail to provide >0.01-1% drug bioavailability when transporting macromolecules across poorly permeable physiological tissues such as the skin, solid tumors, the blood-brain barrier, and the gastrointestinal walls. Convection-enabling robotic ingestibles, wearables, and implantables physically interact with tissue walls to improve bioavailability in these settings by multiple orders of magnitude through convective mass transfer, the process of moving drug molecules via bulk fluid flow. In this Review, we compare diffusive and convective drug delivery systems, highlight engineering techniques that enhance the efficacy of convective devices, and provide examples of synergies between the two methods of drug transport.
Collapse
Affiliation(s)
- Jihoon Park
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Ramy Ghanim
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Adwik Rahematpura
- The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Caroline Gerage
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| | - Alex Abramson
- School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; The Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA; Division of Digestive Diseases, Emory University School of Medicine, Atlanta, GA 30322, USA.
| |
Collapse
|
3
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional probing of neurochemical activity in deep brain structures of rodents. Biosens Bioelectron 2023; 241:115625. [PMID: 37708685 PMCID: PMC10591823 DOI: 10.1016/j.bios.2023.115625] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 08/17/2023] [Accepted: 08/19/2023] [Indexed: 09/16/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemicals from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼10 μm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single-entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single-entry insertion but only allow measurements along the axis of insertion. Horizontally configured arrays inflict separate penetrations for each individual channel. We tested functional performance of our CFET arrays in vivo for recording dopamine and for providing lateral spread to multiple distributed sites in the rat striatum. Spatial spread was further characterized in agar brain phantoms as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Busra Nur Agca
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Tomoko Yoshida
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh, USA
| | - Kade Bose
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh, USA
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, USA
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh, USA; Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD, USA.
| |
Collapse
|
4
|
Xia M, Agca BN, Yoshida T, Choi J, Amjad U, Bose K, Keren N, Zukerman S, Cima MJ, Graybiel AM, Schwerdt HN. Scalable, flexible carbon fiber electrode thread arrays for three-dimensional spatial profiling of neurochemical activity in deep brain structures of rodents. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.15.537033. [PMID: 37131810 PMCID: PMC10153108 DOI: 10.1101/2023.04.15.537033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
We developed a flexible "electrode-thread" array for recording dopamine neurochemical activity from a lateral distribution of subcortical targets (up to 16) transverse to the axis of insertion. Ultrathin (∼ 10 µm diameter) carbon fiber (CF) electrode-threads (CFETs) are clustered into a tight bundle to introduce them into the brain from a single entry point. The individual CFETs splay laterally in deep brain tissue during insertion due to their innate flexibility. This spatial redistribution allows navigation of the CFETs towards deep brain targets spreading horizontally from the axis of insertion. Commercial "linear" arrays provide single entry insertion but only allow measurements along the axis of insertion. Horizontally configured neurochemical recording arrays inflict separate penetrations for each individual channel (i.e., electrode). We tested functional performance of our CFET arrays in vivo for recording dopamine neurochemical dynamics and for providing lateral spread to multiple distributed sites in the striatum of rats. Spatial spread was further characterized using agar brain phantoms to measure electrode deflection as a function of insertion depth. We also developed protocols to slice the embedded CFETs within fixed brain tissue using standard histology techniques. This method allowed extraction of the precise spatial coordinates of the implanted CFETs and their recording sites as integrated with immunohistochemical staining for surrounding anatomical, cytological, and protein expression labels. Neurochemical recording operations tested here can be integrated with already widely established capabilities of CF-based electrodes to record single neuron activity and local field potentials, to enable multi-modal recording functions. Our CFET array has the potential to unlock a wide range of applications, from uncovering the role of neuromodulators in synaptic plasticity, to addressing critical safety barriers in clinical translation towards diagnostic and adaptive treatment in Parkinson's disease and major mood disorders.
Collapse
Affiliation(s)
- Mingyi Xia
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Busra Nur Agca
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Tomoko Yoshida
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Jiwon Choi
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| | - Usamma Amjad
- Department of Bioengineering, University of Pittsburgh
| | - Kade Bose
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Nikol Keren
- Department of Bioengineering, University of Pittsburgh
| | | | - Michael J Cima
- Koch Institute for Integrative Cancer Research and Department of Materials Science, Massachusetts Institute of Technology
| | - Ann M Graybiel
- McGovern Institute and Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology
| | - Helen N Schwerdt
- Department of Bioengineering, University of Pittsburgh
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Chevy Chase, MD
| |
Collapse
|
5
|
Secoli R, Matheson E, Pinzi M, Galvan S, Donder A, Watts T, Riva M, Zani DD, Bello L, Rodriguez y Baena F. Modular robotic platform for precision neurosurgery with a bio-inspired needle: System overview and first in-vivo deployment. PLoS One 2022; 17:e0275686. [PMID: 36260553 PMCID: PMC9581417 DOI: 10.1371/journal.pone.0275686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 09/22/2022] [Indexed: 11/23/2022] Open
Abstract
Over the past 10 years, minimally invasive surgery (MIS) has shown significant benefits compared to conventional surgical techniques, with reduced trauma, shorter hospital stays, and shorter patient recovery times. In neurosurgical MIS procedures, inserting a straight tool (e.g. catheter) is common practice in applications ranging from biopsy and laser ablation, to drug delivery and fluid evacuation. How to handle tissue deformation, target migration and access to deep-seated anatomical structures remain an open challenge, affecting both the preoperative planning phase and eventual surgical intervention. Here, we present the first neurosurgical platform in the literature, able to deliver an implantable steerable needle for a range of diagnostic and therapeutic applications, with a short-term focus on localised drug delivery. This work presents the system's architecture and first in vivo deployment with an optimised surgical workflow designed for pre-clinical trials with the ovine model, which demonstrate appropriate function and safe implantation.
Collapse
Affiliation(s)
- Riccardo Secoli
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
- * E-mail:
| | - Eloise Matheson
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Marlene Pinzi
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Stefano Galvan
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Abdulhamit Donder
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Thomas Watts
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| | - Marco Riva
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Istituto di Ricovero e Cura a Carattere Scientifico Humanitas Research Hospital Rozzano, Rozzano, Italy
| | - Davide Danilo Zani
- Department of Veterinary Medicine, Universitá degli Studi di Milano, Lodi, Italy
| | - Lorenzo Bello
- Department of Oncology and Hematology-Oncology, Universitá degli Studi di Milano, Milan, Italy
| | - Ferdinando Rodriguez y Baena
- The Mechatronics in Medicine Lab, Department of Mechanical Engineering, Imperial College London, London, United Kingdom
| |
Collapse
|
6
|
Park Y, Chung TS, Lee G, Rogers JA. Materials Chemistry of Neural Interface Technologies and Recent Advances in Three-Dimensional Systems. Chem Rev 2021; 122:5277-5316. [PMID: 34739219 DOI: 10.1021/acs.chemrev.1c00639] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Advances in materials chemistry and engineering serve as the basis for multifunctional neural interfaces that span length scales from individual neurons to neural networks, neural tissues, and complete neural systems. Such technologies exploit electrical, electrochemical, optical, and/or pharmacological modalities in sensing and neuromodulation for fundamental studies in neuroscience research, with additional potential to serve as routes for monitoring and treating neurodegenerative diseases and for rehabilitating patients. This review summarizes the essential role of chemistry in this field of research, with an emphasis on recently published results and developing trends. The focus is on enabling materials in diverse device constructs, including their latest utilization in 3D bioelectronic frameworks formed by 3D printing, self-folding, and mechanically guided assembly. A concluding section highlights key challenges and future directions.
Collapse
Affiliation(s)
- Yoonseok Park
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - Ted S Chung
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States
| | - Geumbee Lee
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States
| | - John A Rogers
- Querrey Simpson Institute for Bioelectronics, Northwestern University, Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Electrical Engineering and Computer Science, Northwestern University, Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.,Department of Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, United States.,Department of Neurological Surgery, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
7
|
Su B, Yu S, Yan H, Hu YD, Buzurovic I, Liu D, Liu L, Teng Y, Tang J, Wang J, Liu W. Biopsy Needle System With a Steerable Concentric Tube and Online Monitoring of Electrical Resistivity and Insertion Forces. IEEE Trans Biomed Eng 2021; 68:1702-1713. [PMID: 33606624 DOI: 10.1109/tbme.2021.3060541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Biopsies are the gold standard for clinical diagnosis. However, a discrepancy between the biopsy sample and target tissue because of misplacement of the biopsy spoon can lead to errors in the diagnosis and subsequent treatment. Thus, correctly determining whether the needle tip is in the tumor is crucial for accurate biopsy results. METHODS A biopsy needle system was designed with a steerable, flexible, and superelastic concentric tube; electrodes to monitor the electrical resistivity; and load cells to monitor the insertion force. The degrees of freedom were analyzed for two working modes: straight-line and deflection. RESULTS Experimental results showed that the system could perceive the tissue type in online based on the electrical resistivity. In addition, changes in the insertion force indicated transitions between the interfaces of adjacent tissue layers. CONCLUSION The two monitoring methods guarantee that the biopsy spoon is at the desired position inside the tumor during an operation. SIGNIFICANCE The proposed biopsy needle system can be integrated into an autonomous robotic biopsy system.
Collapse
|
8
|
Raman R, Rousseau EB, Wade M, Tong A, Cotler MJ, Kuang J, Lugo AA, Zhang E, Graybiel AM, White FM, Langer R, Cima MJ. Platform for micro-invasive membrane-free biochemical sampling of brain interstitial fluid. SCIENCE ADVANCES 2020; 6:eabb0657. [PMID: 32978160 PMCID: PMC7518871 DOI: 10.1126/sciadv.abb0657] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 08/11/2020] [Indexed: 05/11/2023]
Abstract
Neurochemical dysregulation underlies many pathologies and can be monitored by measuring the composition of brain interstitial fluid (ISF). Existing in vivo tools for sampling ISF do not enable measuring large rare molecules, such as proteins and neuropeptides, and thus cannot generate a complete picture of the neurochemical connectome. Our micro-invasive platform, composed of a nanofluidic pump coupled to a membrane-free probe, enables sampling multiple neural biomarkers in parallel. This platform outperforms the state of the art in low-flow pumps by offering low volume control (single stroke volumes, <3 nl) and bidirectional fluid flow (<100 nl/min) with negligible dead volume (<30 nl) and has been validated in vitro, ex vivo, and in vivo in rodents. ISF samples (<1.5 μL) can be processed via liquid chromatography-tandem mass spectrometry. These label-free liquid biopsies of the brain could yield a deeper understanding of the onset, mechanism, and progression of diverse neural pathologies.
Collapse
Affiliation(s)
- Ritu Raman
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Erin B Rousseau
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael Wade
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Allison Tong
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Max J Cotler
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Harvard-MIT Program in Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jenevieve Kuang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alejandro Aponte Lugo
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Elizabeth Zhang
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Ann M Graybiel
- McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Forest M White
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Center for Precision Cancer Medicine, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Robert Langer
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Michael J Cima
- Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
9
|
Computationally Guided Intracerebral Drug Delivery via Chronically Implanted Microdevices. Cell Rep 2020; 31:107734. [PMID: 32521259 DOI: 10.1016/j.celrep.2020.107734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 02/24/2020] [Accepted: 05/13/2020] [Indexed: 11/21/2022] Open
Abstract
Treatments for neurologic diseases are often limited in efficacy due to poor spatial and temporal control over their delivery. Intracerebral delivery partially overcomes this by directly infusing therapeutics to the brain. Brain structures, however, are nonuniform and irregularly shaped, precluding complete target coverage by a single bolus without significant off-target effects and possible toxicity. Nearly complete coverage is crucial for effective modulation of these structures. We present a framework with computational mapping algorithms for neural drug delivery (COMMAND) to guide multi-bolus targeting of brain structures that maximizes coverage and minimizes off-target leakage. Custom-fabricated chronic neural implants leverage rational fluidic design to achieve multi-bolus delivery in rodents through a single infusion of radioactive tracer (Cu-64). The resulting spatial distributions replicate computed spatial coverage with 5% error in vivo, as detected by positron emission tomography. COMMAND potentially enables accurate, efficacious targeting of discrete brain regions.
Collapse
|
10
|
Ramadi KB, Cima MJ. Materials and Devices for Micro-invasive Neural Interfacing. ACTA ACUST UNITED AC 2019. [DOI: 10.1557/adv.2019.424] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
|