1
|
Song S, Han H, Wang J, Pu Y, Shao J, Xie J, Che H, van Hest JCM, Cao S. Polymersome-based nanomotors: preparation, motion control, and biomedical applications. Chem Sci 2025:d4sc08283d. [PMID: 40206551 PMCID: PMC11976864 DOI: 10.1039/d4sc08283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
Polymersome-based nanomotors represent a cutting-edge development in nanomedicine, merging the unique vesicular properties of polymersomes with the active propulsion capabilities of synthetic nanomotors. As a vesicular structure enclosed by a bilayer membrane, polymersomes can encapsulate both hydrophilic and hydrophobic cargoes. In addition, their physical-chemical properties such as size, morphology, and surface chemistry are highly tunable, which makes them ideal for various biomedical applications. The integration of motility into polymersomes enables them to actively navigate biological environments and overcome physiological barriers, offering significant advantages over passive delivery platforms. Recent breakthroughs in fabrication techniques and motion control strategies, including chemically, enzymatically, and externally driven propulsion, have expanded their potential for drug delivery, biosensing, and therapeutic interventions. Despite these advancements, key challenges remain in optimizing propulsion efficiency, biocompatibility, and in vivo stability to translate these systems into clinical applications. In this perspective, we discuss recent advancements in the preparation and motion control strategies of polymersome-based nanomotors, as well as their biomedical-related applications. The molecular design, fabrication approaches, and nanomedicine-related utilities of polymersome-based nanomotors are highlighted, to envisage the future research directions and further development of these systems into effective, precise, and smart nanomedicines capable of addressing critical biomedical challenges.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz Mainz 55128 Germany
| | - Hao Han
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jianhong Wang
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Yubin Pu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University Chengdu 610041 China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University Shanghai 200444 China
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute of Complex Molecular Systems, Eindhoven University of Technology Helix, P. O. Box 513 Eindhoven 5600 MB The Netherlands
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University Chengdu 610065 PR China
| |
Collapse
|
2
|
Song S, Ivanov T, Doan-Nguyen TP, da Silva LC, Xie J, Landfester K, Cao S. Synthetic Biomolecular Condensates: Phase-Separation Control, Cytomimetic Modelling and Emerging Biomedical Potential. Angew Chem Int Ed Engl 2025; 64:e202418431. [PMID: 39575859 DOI: 10.1002/anie.202418431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Indexed: 01/24/2025]
Abstract
Liquid-liquid phase separation towards the formation of synthetic coacervate droplets represents a rapidly advancing frontier in the fields of synthetic biology, material science, and biomedicine. These artificial constructures mimic the biophysical principles and dynamic features of natural biomolecular condensates that are pivotal for cellular regulation and organization. Via adapting biological concepts, synthetic condensates with dynamic phase-separation control provide crucial insights into the fundamental cell processes and regulation of complex biological pathways. They are increasingly designed with the ability to display more complex and ambitious cell-like features and behaviors, which offer innovative solutions for cytomimetic modeling and engineering active materials with sophisticated functions. In this minireview, we highlight recent advancements in the design and construction of synthetic coacervate droplets; including their biomimicry structure and organization to replicate life-like properties and behaviors, and the dynamic control towards engineering active coacervates. Moreover, we highlight the unique applications of synthetic coacervates as catalytic centers and promising delivery vehicles, so that these biomimicry assemblies can be translated into practical applications.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, 55128, Mainz, Germany
| | - Tsvetomir Ivanov
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
| | - Thao P Doan-Nguyen
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- International Center for Young Scientists, National Institute for Materials Science, 1-2-1 Sengen, Tsukuba, Ibaraki, 305-0047, Japan
| | - Lucas Caire da Silva
- Max Planck Institute for Polymer Research, 55128, Mainz, Germany
- Department of Chemistry, McGill University, Montreal, H3A 0B8, Canada
| | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, PR China
| | | | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, PR China
| |
Collapse
|
3
|
Wang S, Li Z, Zhao L, Lin Y, Che H. Polycarbonate-Based Polymersome Photosensitizers with Cell-Penetrating Properties for Improved Killing of Cancer Cells. Biomacromolecules 2025; 26:1251-1259. [PMID: 39812017 DOI: 10.1021/acs.biomac.4c01571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Polymer-based photosensitizers have found various applications in photodynamic therapy (PDT). However, the absence of targeting ability commonly results in a substantial reduction in photosensitizer accumulation at the tumor site, significantly limiting the therapeutic efficacy of the system. In addition, the development of biodegradable polymeric photosensitizers is of critical importance for biological applications. In this work, we present the development of guanidine-functionalized biodegradable photosensitizers based on poly(trimethylene carbonate) (PTMC) block copolymers, which can self-assemble into polymersomes. The presence of guanidine groups on the surface of polymersomes can significantly enhance the cellular uptake efficiency of photosensitizers, thereby improving the intracellular production of reactive oxygen species (ROS). The in vitro study demonstrates that the guanidinylated polymersome photosensitizers can promote the killing of cancer cells compared to unfunctionalized polymersomes in the presence of light irradiation. The guanidine-functionalized PTMC-based polymersome photosensitizers, with the integration of cell-targeting ability and biodegradability, are anticipated to provide a novel strategy for developing advanced biomedical polymer systems for PDT.
Collapse
Affiliation(s)
- Suzhen Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Zhezhe Li
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lili Zhao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yuerong Lin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hailong Che
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
4
|
Song S, Ivanov T, Yuan D, Wang J, da Silva LC, Xie J, Cao S. Peptide-Based Biomimetic Condensates via Liquid-Liquid Phase Separation as Biomedical Delivery Vehicles. Biomacromolecules 2024; 25:5468-5488. [PMID: 39178343 DOI: 10.1021/acs.biomac.4c00814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
Biomolecular condensates are dynamic liquid droplets through intracellular liquid-liquid phase separation that function as membraneless organelles, which are highly involved in various complex cellular processes and functions. Artificial analogs formed via similar pathways that can be integrated with biological complexity and advanced functions have received tremendous research interest in the field of synthetic biology. The coacervate droplet-based compartments can partition and concentrate a wide range of solutes, which are regarded as attractive candidates for mimicking phase-separation behaviors and biophysical features of biomolecular condensates. The use of peptide-based materials as phase-separating components has advantages such as the diversity of amino acid residues and customized sequence design, which allows for programming their phase-separation behaviors and the physicochemical properties of the resulting compartments. In this Perspective, we highlight the recent advancements in the design and construction of biomimicry condensates from synthetic peptides relevant to intracellular phase-separating protein, with specific reference to their molecular design, self-assembly via phase separation, and biorelated applications, to envisage the use of peptide-based droplets as emerging biomedical delivery vehicles.
Collapse
Affiliation(s)
- Siyu Song
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz 55128, Germany
| | | | - Dandan Yuan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianqiang Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | | | - Jing Xie
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - Shoupeng Cao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
5
|
Li Z, Wang S, Zhao L, Feng S, Che H. Synthesis and Characterization of Guanidinylated CO-Releasing Micelles Based on Biodegradable Polycarbonate. Biomacromolecules 2024; 25:5149-5159. [PMID: 39045816 DOI: 10.1021/acs.biomac.4c00542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
As one of the gaseous signals in living cells, carbon monoxide (CO) not only participates in many biological activities but also serves as a therapeutic agent for the treatment of diseases. However, the limited applicability of CO in gas therapy emerges from the inconvenience of direct administration of CO. Here we reported the construction of guanidinylated CO-releasing micelles, which are composed of poly(trimethylene carbonate) (PTMC)-based CO donors. The in vitro studies demonstrated that micelles in the presence of light irradiation can induce cancer death, whereas no obvious toxicity to normal cells was observed. Moreover, the functionalization of guanidine groups imparts improved cellular uptake efficiency to micelles owing to the specific interactions with the surface of cells, which synergistically increase the anticancer capacity of the system. The guanidine-functionalized CO-releasing micelles provide a new strategy for the construction of CO-releasing nanocarriers, which are expected to find applications in gas therapeutics.
Collapse
Affiliation(s)
- Zhezhe Li
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Suzhen Wang
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lili Zhao
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shaofeng Feng
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hailong Che
- Department of Chemical Engineering, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
6
|
Abstract
The recent emergence of nanomedicine has revolutionized the therapeutic landscape and necessitated the creation of more sophisticated drug delivery systems. Polymeric nanoparticles sit at the forefront of numerous promising drug delivery designs, due to their unmatched control over physiochemical properties such as size, shape, architecture, charge, and surface functionality. Furthermore, polymeric nanoparticles have the ability to navigate various biological barriers to precisely target specific sites within the body, encapsulate a diverse range of therapeutic cargo and efficiently release this cargo in response to internal and external stimuli. However, despite these remarkable advantages, the presence of polymeric nanoparticles in wider clinical application is minimal. This review will provide a comprehensive understanding of polymeric nanoparticles as drug delivery vehicles. The biological barriers affecting drug delivery will be outlined first, followed by a comprehensive description of the various nanoparticle designs and preparation methods, beginning with the polymers on which they are based. The review will meticulously explore the current performance of polymeric nanoparticles against a myriad of diseases including cancer, viral and bacterial infections, before finally evaluating the advantages and crucial challenges that will determine their wider clinical potential in the decades to come.
Collapse
Affiliation(s)
- Maximilian
A. Beach
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Umeka Nayanathara
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yanting Gao
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Changhe Zhang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yijun Xiong
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Yufu Wang
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Georgina K. Such
- School
of Chemistry, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
7
|
Chen J, Xie Y, Li Y, Chen X, Fu M, Liu Y, Zhang Z. Assessment of degradability and endothelialization of modified poly L-lactic acid (PLLA) atrial septal defect (ASD) occluders over time in vivo. J Cardiothorac Surg 2023; 18:283. [PMID: 37817186 PMCID: PMC10566106 DOI: 10.1186/s13019-023-02401-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 09/30/2023] [Indexed: 10/12/2023] Open
Abstract
OBJECTIVE To evaluate the fiber-degradation and endothelialization of a modified poly L-lactic acid (PLLA) atrial septal defect (ASD) occluder for a long time in vivo. METHODS A total of 57 New Zealand rabbits were selected to establish the vasculature implantation model, which would be used to characterize the mechanical properties and pathological reaction of PLLA filaments (a raw polymer of ASD occluder). In total, 27 Experimental piglets were used to create the ASD model for the catheter implantation of PLLA ASD occluders. Then, X-ray imaging, transthoracic echocardiography, histopathology, and scanning electron microscope (SEM) were performed in the experimental animals at 3, 6, 12, and 24 months after implantation. RESULTS In the rabbit models, the fibrocystic grade was 0 and the inflammatory response was grade 2 at 6 months after vasculature implantation of the PLLA filaments. The mass loss of PLLA filaments increased appreciably with the increasing duration of implantation, but their mechanical strength was decreased without broken. In the porcine models, the cardiac gross anatomy showed that all PLLA ASD occluders were stable in the interatrial septum without any vegetation or thrombus formation. At 24 months, the occluders had been embedded into endogenous host tissue nearly. Pathological observations suggested that the occluders degraded gradually without complications at different periods. SEM showed that the occluders were endothelialized completely and essentially became an integral part of the body over time. CONCLUSION In the animal model, the modified PLLA ASD occluders exhibited good degradability and endothelialization in this long-term follow-up study.
Collapse
Affiliation(s)
- Jun Chen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China
- Danzhou People's Hospital, Danzhou, 571700, Hainan, China
| | - Yumei Xie
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China
| | - Yifan Li
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China
| | - Xianmiao Chen
- Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Mingjuan Fu
- Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Yanfen Liu
- Lifetech Scientific (Shenzhen) Co., Ltd., Shenzhen, 518057, Guangdong, China
| | - Zhiwei Zhang
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou, 510515, Guangdong, China.
- Department of Pediatric Cardiology, Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangdong Provincial Key Laboratory of South China Structural Heart Disease, No. 106 Zhongshan Second Road, Yuexiu District, Guangzhou, 510100, Guangdong, China.
| |
Collapse
|
8
|
Kerr A, Sagita E, Mansfield EDH, Nguyen TH, Feeney OM, Pouton CW, Porter CJH, Sanchis J, Perrier S. Polymeric Nanotubes as Drug Delivery Vectors─Comparison of Covalently and Supramolecularly Assembled Constructs. Biomacromolecules 2022; 23:2315-2328. [PMID: 35582852 PMCID: PMC9198979 DOI: 10.1021/acs.biomac.2c00063] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Rod-shaped nanoparticles have been identified as promising drug delivery candidates. In this report, the in vitro cell uptake and in vivo pharmacokinetic/bio-distribution behavior of molecular bottle-brush (BB) and cyclic peptide self-assembled nanotubes were studied in the size range of 36-41 nm in length. It was found that BB possessed the longest plasma circulation time (t1\2 > 35 h), with the cyclic peptide system displaying an intermediate half-life (14.6 h), although still substantially elevated over a non-assembling linear control (2.7 h). The covalently bound BB underwent substantial distribution into the liver, whereas the cyclic peptide nanotube was able to mostly circumvent organ accumulation, highlighting the advantage of the inherent degradability of the cyclic peptide systems through their reversible aggregation of hydrogen bonding core units.
Collapse
Affiliation(s)
- Andrew Kerr
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K
| | - Erny Sagita
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | | | - Tri-Hung Nguyen
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Orlagh M Feeney
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Colin W Pouton
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Christopher J H Porter
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Joaquin Sanchis
- Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia
| | - Sébastien Perrier
- Department of Chemistry, The University of Warwick, Coventry CV4 7AL, U.K.,Drug Delivery Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville 3052, VIC, Australia.,Warwick Medical School, The University of Warwick, Coventry CV4 7AL, U.K
| |
Collapse
|
9
|
Cook AB, Clemons TD. Bottom‐Up versus Top‐Down Strategies for Morphology Control in Polymer‐Based Biomedical Materials. ADVANCED NANOBIOMED RESEARCH 2021. [DOI: 10.1002/anbr.202100087] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
- Alexander B. Cook
- Laboratory of Nanotechnology for Precision Medicine Istituto Italiano di Tecnologia Via Morego 30 Genova 16163 Italy
| | - Tristan D. Clemons
- School of Polymer Science and Engineering University of Southern Mississippi Hattiesburg MS 39406 USA
| |
Collapse
|
10
|
Kapate N, Clegg JR, Mitragotri S. Non-spherical micro- and nanoparticles for drug delivery: Progress over 15 years. Adv Drug Deliv Rev 2021; 177:113807. [PMID: 34023331 DOI: 10.1016/j.addr.2021.05.017] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 05/13/2021] [Accepted: 05/16/2021] [Indexed: 12/11/2022]
Abstract
Shape of particulate drug carries has been identified as a key parameter in determining their biological outcome. In this review, we analyze the field of particle shape as it shifts from fundamental investigations to contemporary applications for disease treatment, while highlighting outstanding remaining questions. We summarize fabrication and characterization methods and discuss in depth how particle shape influences biological interactions with cells, transport in the vasculature, targeting in the body, and modulation of the immune response. As the field moves from discoveries to applications, further attention needs to be paid to factors such as characterization and quality control, selection of model organisms, and disease models. Taken together, these aspects will provide a conceptual foundation for designing future non-spherical drug carriers to overcome biological barriers and improve therapeutic efficacy.
Collapse
Affiliation(s)
- Neha Kapate
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - John R Clegg
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Samir Mitragotri
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
11
|
Cao S, Xia Y, Shao J, Guo B, Dong Y, Pijpers IAB, Zhong Z, Meng F, Abdelmohsen LKEA, Williams DS, van Hest JCM. Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photo-Dynamic Therapy. Angew Chem Int Ed Engl 2021; 60:17629-17637. [PMID: 34036695 PMCID: PMC8361757 DOI: 10.1002/anie.202105103] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 05/23/2021] [Indexed: 01/26/2023]
Abstract
Biodegradable nanostructures displaying aggregation-induced emission (AIE) are desirable from a biomedical point of view, due to the advantageous features of loading capacity, emission brightness, and fluorescence stability. Herein, biodegradable polymers comprising poly (ethylene glycol)-block-poly(caprolactone-gradient-trimethylene carbonate) (PEG-P(CLgTMC)), with tetraphenylethylene pyridinium-TMC (PAIE) side chains have been developed, which self-assembled into well-defined polymersomes. The resultant AIEgenic polymersomes are intrinsically fluorescent delivery vehicles. The presence of the pyridinium moiety endows the polymersomes with mitochondrial targeting ability, which improves the efficiency of co-encapsulated photosensitizers and improves therapeutic index against cancer cells both in vitro and in vivo. This contribution showcases the ability to engineer AIEgenic polymersomes with structure inherent fluorescence and targeting capacity for enhanced photodynamic therapy.
Collapse
Affiliation(s)
- Shoupeng Cao
- Bio-Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO 3.41), 5600MBEindhovenThe Netherlands
| | - Yifeng Xia
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Jingxin Shao
- Bio-Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO 3.41), 5600MBEindhovenThe Netherlands
| | - Beibei Guo
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Imke A. B. Pijpers
- Bio-Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO 3.41), 5600MBEindhovenThe Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and ApplicationCollege of Chemistry Chemical Engineering and Materials ScienceSoochow UniversitySuzhou215123P. R. China
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO 3.41), 5600MBEindhovenThe Netherlands
| | - David S. Williams
- School of Cellular and Molecular MedicineUniversity of BristolBristolUK
| | - Jan C. M. van Hest
- Bio-Organic ChemistryInstitute for Complex Molecular SystemsEindhoven University of TechnologyP.O. Box 513 (STO 3.41), 5600MBEindhovenThe Netherlands
| |
Collapse
|
12
|
Cao S, Xia Y, Shao J, Guo B, Dong Y, Pijpers IAB, Zhong Z, Meng F, Abdelmohsen LKEA, Williams DS, Hest JCM. Biodegradable Polymersomes with Structure Inherent Fluorescence and Targeting Capacity for Enhanced Photo‐Dynamic Therapy. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105103] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Shoupeng Cao
- Bio-Organic Chemistry Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41), 5600 MB Eindhoven The Netherlands
| | - Yifeng Xia
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Jingxin Shao
- Bio-Organic Chemistry Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41), 5600 MB Eindhoven The Netherlands
| | - Beibei Guo
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Yangyang Dong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Imke A. B. Pijpers
- Bio-Organic Chemistry Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41), 5600 MB Eindhoven The Netherlands
| | - Zhiyuan Zhong
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Fenghua Meng
- Biomedical Polymers Laboratory and Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application College of Chemistry Chemical Engineering and Materials Science Soochow University Suzhou 215123 P. R. China
| | - Loai K. E. A. Abdelmohsen
- Bio-Organic Chemistry Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41), 5600 MB Eindhoven The Netherlands
| | - David S. Williams
- School of Cellular and Molecular Medicine University of Bristol Bristol UK
| | - Jan C. M. Hest
- Bio-Organic Chemistry Institute for Complex Molecular Systems Eindhoven University of Technology P.O. Box 513 (STO 3.41), 5600 MB Eindhoven The Netherlands
| |
Collapse
|
13
|
Cao S, Shao J, Wu H, Song S, De Martino MT, Pijpers IAB, Friedrich H, Abdelmohsen LKEA, Williams DS, van Hest JCM. Photoactivated nanomotors via aggregation induced emission for enhanced phototherapy. Nat Commun 2021; 12:2077. [PMID: 33824321 PMCID: PMC8024279 DOI: 10.1038/s41467-021-22279-w] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 02/25/2021] [Indexed: 02/08/2023] Open
Abstract
Aggregation-induced emission (AIE) has, since its discovery, become a valuable tool in the field of nanoscience. AIEgenic molecules, which display highly stable fluorescence in an assembled state, have applications in various biomedical fields—including photodynamic therapy. Engineering structure-inherent, AIEgenic nanomaterials with motile properties is, however, still an unexplored frontier in the evolution of this potent technology. Here, we present phototactic/phototherapeutic nanomotors where biodegradable block copolymers decorated with AIE motifs can transduce radiant energy into motion and enhance thermophoretic motility driven by an asymmetric Au nanoshell. The hybrid nanomotors can harness two photon near-infrared radiation, triggering autonomous propulsion and simultaneous phototherapeutic generation of reactive oxygen species. The potential of these nanomotors to be applied in photodynamic therapy is demonstrated in vitro, where near-infrared light directed motion and reactive oxygen species induction synergistically enhance efficacy with a high level of spatial control. Induced motion has emerged as a method to increase the efficacy of delivery and therapeutic outcomes using nanomaterials. Here, the authors report on a Janus gold shell polymersome with aggregation-induced emission molecules for phototactic and photodynamic therapy applications.
Collapse
Affiliation(s)
- Shoupeng Cao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Jingxin Shao
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Hanglong Wu
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Shidong Song
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Maria Teresa De Martino
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Imke A B Pijpers
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands
| | - Heiner Friedrich
- Center for Multiscale Electron Microscopy (CMEM) and Department of Chemical Engineering and Chemistry, Physical Chemistry, Institute for Complex Molecular Systems (ICMS), Eindhoven University of Technology, MB, Eindhoven, The Netherlands
| | - Loai K E A Abdelmohsen
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands.
| | - David S Williams
- Department of Chemistry, College of Science, Swansea University, Swansea, UK.
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513, MB, Eindhoven, The Netherlands.
| |
Collapse
|
14
|
van Stevendaal MHME, Vasiukas L, Yewdall NA, Mason AF, van Hest JCM. Engineering of Biocompatible Coacervate-Based Synthetic Cells. ACS APPLIED MATERIALS & INTERFACES 2021; 13:7879-7889. [PMID: 33587612 PMCID: PMC7908014 DOI: 10.1021/acsami.0c19052] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
Polymer-stabilized complex coacervate microdroplets have emerged as a robust platform for synthetic cell research. Their unique core-shell properties enable the sequestration of high concentrations of biologically relevant macromolecules and their subsequent release through the semipermeable membrane. These unique properties render the synthetic cell platform highly suitable for a range of biomedical applications, as long as its biocompatibility upon interaction with biological cells is ensured. The purpose of this study is to investigate how the structure and formulation of these coacervate-based synthetic cells impact the viability of several different cell lines. Through careful examination of the individual synthetic cell components, it became evident that the presence of free polycation and membrane-forming polymer had to be prevented to ensure cell viability. After closely examining the structure-toxicity relationship, a set of conditions could be found whereby no detrimental effects were observed, when the artificial cells were cocultured with RAW264.7 cells. This opens up a range of possibilities to use this modular system for biomedical applications and creates design rules for the next generation of coacervate-based, biomedically relevant particles.
Collapse
Affiliation(s)
- Marleen H. M. E. van Stevendaal
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| | - Laurynas Vasiukas
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| | - N. Amy Yewdall
- Institute
for Molecules and Materials, Radboud University, 6525 AJ Nijmegen, The Netherlands
| | - Alexander F. Mason
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| | - Jan C. M. van Hest
- Institute
for Complex Molecular Systems, Eindhoven
University of Technology, P. O. Box 513
(STO 3.41), 5600MB Eindhoven, The Netherlands
| |
Collapse
|
15
|
Hu H, Wang C, Zhang R, Xiao C, Lai C, Li Z, Xu D. Branched worm-like nanoparticles featured with programmed drug release for synergistic castration-resistant prostate cancer therapy. JOURNAL OF MATERIALS SCIENCE 2020; 55:6992-7008. [DOI: 10.1007/s10853-020-04495-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Accepted: 02/20/2020] [Indexed: 03/28/2025]
|
16
|
Ridolfo R, Arends JJ, van Hest JCM, Williams DS. Wormlike Nanovector with Enhanced Drug Loading Using Blends of Biodegradable Block Copolymers. Biomacromolecules 2020; 21:2199-2207. [PMID: 32208660 DOI: 10.1021/acs.biomac.0c00169] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of nanoparticles comprising amphiphilic block copolymers for the delivery of drugs is a subject of great interest as they hold promise for more effective and selective therapies. In order to achieve this ambition, it is of critical importance to develop our understanding of the self-assembly mechanisms by which block copolymers undergo so that we can control their morphology, tune their ability to be loaded with biofunctional cargoes, and optimize their interactions with target cells. To this end, we have developed a strategy by which blends of (biocompatible) amphiphilic block copolymers generate nonspherical nanovectors, simultaneously enhancing drug loading without the need for subsequent purification owing to the use of the biocompatible direct hydration approach. The principal morphology achieved using this blending strategy are wormlike nanovectors (nanoworms, NWs), with an elongated form known to have a profound effect on flow behavior and interactions with cells. Unloaded nanoworms are not toxic toward human retinal (ARPE-19) cells and can be effectively endocytosed even after varying the surface charge. In terms of drug loading, we demonstrate that uptake of dexamethasone (DEX; a clinically relevant therapeutic agent) in nanoworms (DEX@NWs) can be enhanced using this process, increasing drug content up to 0.5 mg/mL (10 wt % in particles). Furthermore, such nanoworms are stable for at least 5 months and are, therefore, a promising platform for nanomedicine applications.
Collapse
Affiliation(s)
- Roxane Ridolfo
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - Jeanrick J Arends
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Bio-Organic Chemistry, Institute for Complex Molecular Systems, Eindhoven University of Technology, P.O. Box 513 (STO 3.41), 5600 MB Eindhoven, The Netherlands
| | - David S Williams
- Department of Chemistry, College of Science, Swansea University, Swansea, United Kingdom
| |
Collapse
|
17
|
Ouyang X, Wang X, Kraatz HB, Ahmadi S, Gao J, Lv Y, Sun X, Huang Y. A Trojan horse biomimetic delivery strategy using mesenchymal stem cells for PDT/PTT therapy against lung melanoma metastasis. Biomater Sci 2019; 8:1160-1170. [PMID: 31848537 DOI: 10.1039/c9bm01401b] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Mesenchymal stem cell (MSC)-based biomimetic delivery has been actively explored for drug accumulation and penetration into tumors by taking advantage of the tumor-tropic and penetration properties of MSCs. In this work, we further demonstrated the feasibility of MSC-mediated nano drug delivery, which was characterized by the "Trojan horse"-like transport via an endocytosis-exocytosis-endocytosis process between MSCs and cancer cells. Chlorin e6 (Ce6)-conjugated polydopamine nanoparticles (PDA-Ce6) were developed and loaded into the MSCs. Phototherapeutic agents are safe to the MSCs, and their very low dark toxicity causes no impairment of the inherent properties of MSCs, including tumor-homing ability. The MSCs loaded with PDA-Ce6 (MSC-PDA-Ce6) were able to target and penetrate into tumors and exocytose 60% of the payloads in 72 h. The released PDA-Ce6 NPs could penetrate deep and be re-endocytosed by the cancer cells. MSC-PDA-Ce6 tended to accumulate in the lungs and delivered PDA-Ce6 into the tumors after intravenous injection in the mouse model with lung melanoma metastasis. Phototoxicity can be selectively triggered in the tumors by sequentially treating with near-infrared irradiation to induce photodynamic therapy (PDT) and photothermal therapy (PTT). The MSC-based biomimetic delivery of PDA-Ce6 nanoparticles is a potential method for dual phototherapy against lung melanoma metastasis.
Collapse
Affiliation(s)
- Xumei Ouyang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China. and Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, China and Department of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xiaoling Wang
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China. and Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Heinz-Bernhard Kraatz
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Soha Ahmadi
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, Toronto, ON M1C 1A4, Canada
| | - Jianqing Gao
- Department of Pharmacy, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325035, China
| | - Yuanyuan Lv
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.
| | - Xiaoyi Sun
- Department of Pharmacy, Zhejiang University City College, Hangzhou 310015, China.
| | - Yongzhuo Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 501 Haike Rd, Shanghai, 201203, China.
| |
Collapse
|
18
|
Ke W, Lu N, Japir AAWMM, Zhou Q, Xi L, Wang Y, Dutta D, Zhou M, Pan Y, Ge Z. Length effect of stimuli-responsive block copolymer prodrug filomicelles on drug delivery efficiency. J Control Release 2019; 318:67-77. [PMID: 31837355 DOI: 10.1016/j.jconrel.2019.12.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2019] [Revised: 11/27/2019] [Accepted: 12/10/2019] [Indexed: 12/20/2022]
Abstract
Filomicelles possess some unique properties for improved in vivo drug delivery efficiency relative to commonly used spherical nanocarriers, which have attracted great interests. However, the length effect of the block copolymer prodrug-based filomicelles with a comparable cross-section diameter on the drug delivery efficiency and antitumor efficacy still need to be systematically studied. In this report, we prepare three optimized nanoparticles with a comparable cross-section diameter of ~40 nm, including long filomicelles (LFMs) with the length of ~2.5 μm, short filomicelles (SFMs) with the length of ~180 nm, and spherical micelles (SMs) with a diameter of ~40 nm. All of them are self-assembled from the pH and oxidation dual-responsive block copolymer prodrug, PEG-b-P(CPTKMA-co-PEMA), consisting of poly(ethylene glycol) (PEG) and a copolymerized block of thioketal-linked camptothecin methacrylate (CPTKMA) and 2-(pentamethyleneimino) ethyl methacrylate (PEMA). At pH 6.5, the nanoparticles are positively charged due to the protonation of PPEMA segments. Among them, SFMs are demonstrated to be internalized into cells most efficiently at pH 6.5 due to larger interaction areas with cell membranes relative to SMs. Moreover, SFMs show prolonged blood circulation similar to SMs as well as deepest tumor penetration and best antitumor efficacy among the three nanoparticles. LFMs show worst in vivo performance because their too long structure limits the cellular uptake and tumor accumulation. Therefore, the responsive polymer prodrug filomicelles with an optimized length show great potentials to overcome the physiological barriers and improve the drug delivery efficiency.
Collapse
Affiliation(s)
- Wendong Ke
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Nannan Lu
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Abd Al-Wali Mohammed M Japir
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Qinghao Zhou
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Longchang Xi
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Yuheng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Debabrata Dutta
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Min Zhou
- Neurocritical Care Unit, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Yueyin Pan
- Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China
| | - Zhishen Ge
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China; Department of Oncology, The First Affiliated Hospital of USTC, Division of Life Science and Medicine, University of Science and Technology of China, Hefei 230001, Anhui, China.
| |
Collapse
|
19
|
Altay Y, Cao S, Che H, Abdelmohsen LKEA, van Hest JCM. Adaptive Polymeric Assemblies for Applications in Biomimicry and Nanomedicine. Biomacromolecules 2019; 20:4053-4064. [PMID: 31642319 PMCID: PMC6852094 DOI: 10.1021/acs.biomac.9b01341] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
![]()
Dynamic and adaptive
self-assembly systems are able to sense an
external or internal (energy or matter) input and respond via chemical
or physical property changes. Nanomaterials that show such transient
behavior have received increasing interest in the field of nanomedicine
due to improved spatiotemporal control of the nanocarrier function.
In this regard, much can be learned from the field of systems chemistry
and bottom-up synthetic biology, in which complex and intelligent
networks of nanomaterials are designed that show transient behavior
and function to advance our understanding of the complexity of living
systems. In this Perspective, we highlight the recent advancements
in adaptive nanomaterials used for nanomedicine and trends in transient
responsive self-assembly systems to envisage how these fields can
be integrated for the formation of next-generation adaptive stimuli-responsive
nanocarriers in nanomedicine.
Collapse
Affiliation(s)
- Yigit Altay
- Eindhoven University of Technology , Institute for Complex Molecular Systems , P.O. Box 513 (STO 3.41), 5600 MB , Eindhoven , The Netherlands
| | - Shoupeng Cao
- Eindhoven University of Technology , Institute for Complex Molecular Systems , P.O. Box 513 (STO 3.41), 5600 MB , Eindhoven , The Netherlands
| | - Hailong Che
- Eindhoven University of Technology , Institute for Complex Molecular Systems , P.O. Box 513 (STO 3.41), 5600 MB , Eindhoven , The Netherlands
| | - Loai K E A Abdelmohsen
- Eindhoven University of Technology , Institute for Complex Molecular Systems , P.O. Box 513 (STO 3.41), 5600 MB , Eindhoven , The Netherlands
| | - Jan C M van Hest
- Eindhoven University of Technology , Institute for Complex Molecular Systems , P.O. Box 513 (STO 3.41), 5600 MB , Eindhoven , The Netherlands
| |
Collapse
|