1
|
Wu J, Wang K, Wei C, Ma J, Xu H, Zheng W, Zhu R. Ideal Photothermal Materials Based on Ge Subwavelength Structure. Molecules 2024; 29:5008. [PMID: 39519649 PMCID: PMC11547708 DOI: 10.3390/molecules29215008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Photothermal materials often prioritize solar absorption while neglecting thermal radiation losses, which diminishes thermal radiation conversion efficiency. This study addresses this gap by introducing a germanium (Ge) subwavelength structure (SWS) designed to optimize both solar absorption and infrared emissivity. Using a self-masked reactive ion etching (RIE) technique, we achieved a peak absorption of 98.8% within the 300 nm to 1800 nm range, with an infrared emissivity as low as 0.32. Under solar illumination of 1000 W/m2, the structure's temperature increased by 50 °C, generating a heating power of 800 W/m2. Additionally, it demonstrated good mechanical and thermal stability at high temperatures and possessed a hydrophobic angle of 132°, ensuring effective self-cleaning. These characteristics make the Ge SWS suitable for application in solar panels, displays, sensors, and other optoelectronic devices.
Collapse
Affiliation(s)
- Jingjun Wu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Kaixuan Wang
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Cong Wei
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Jun Ma
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Hongbo Xu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Wanguo Zheng
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| | - Rihong Zhu
- School of Electronic and Optical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; (J.W.); (K.W.); (C.W.); (W.Z.); (R.Z.)
| |
Collapse
|
2
|
Wang H. A Review of Nanotechnology in microRNA Detection and Drug Delivery. Cells 2024; 13:1277. [PMID: 39120308 PMCID: PMC11311607 DOI: 10.3390/cells13151277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/10/2024] Open
Abstract
MicroRNAs (miRNAs) are small, non-coding RNAs that play a crucial role in regulating gene expression. Dysfunction in miRNAs can lead to various diseases, including cancers, neurological disorders, and cardiovascular conditions. To date, approximately 2000 miRNAs have been identified in humans. These small molecules have shown promise as disease biomarkers and potential therapeutic targets. Therefore, identifying miRNA biomarkers for diseases and developing effective miRNA drug delivery systems are essential. Nanotechnology offers promising new approaches to addressing scientific and medical challenges. Traditional miRNA detection methods include next-generation sequencing, microarrays, Northern blotting, and reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Nanotechnology can serve as an effective alternative to Northern blotting and RT-qPCR for miRNA detection. Moreover, nanomaterials exhibit unique properties that differ from larger counterparts, enabling miRNA therapeutics to more effectively enter target cells, reduce degradation in the bloodstream, and be released in specific tissues or cells. This paper reviews the application of nanotechnology in miRNA detection and drug delivery systems. Given that miRNA therapeutics are still in the developing stages, nanotechnology holds great promise for accelerating miRNA therapeutics development.
Collapse
Affiliation(s)
- Hsiuying Wang
- Institute of Statistics, National Yang Ming Chiao Tung University, Hsinchu 300093, Taiwan
| |
Collapse
|
3
|
Chernysheva MG, Shen T, Badun GA, Mikheev IV, Chaschin IS, Tsygankov YM, Britikov DV, Hugaev GA, Bakuleva NP. Tritium-Labeled Nanodiamonds as an Instrument to Analyze Bioprosthetic Valve Coatings: A Case of Using a Nanodiamond Containing Coating on a Pork Aorta. Molecules 2024; 29:3078. [PMID: 38999030 PMCID: PMC11243069 DOI: 10.3390/molecules29133078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 06/23/2024] [Accepted: 06/25/2024] [Indexed: 07/14/2024] Open
Abstract
Coatings with xenogenic materials, made of detonation nanodiamonds, provide additional strength and increase elasticity. A functionally developed surface of nanodiamonds makes it possible to apply antibiotics. Previous experiments show the stability of such coatings; however, studies on stability in the bloodstream and calcification of the material in natural conditions have yet to be conducted. Tritium-labeled nanodiamonds (negative and positive) were obtained by the tritium activation method and used to develop coatings for a pork aorta to analyze their stability in a pig's bloodstream using a radiotracer technique. A chitosan layer was applied from a solution of carbonic acid under high-pressure conditions to prevent calcification. The obtained materials were used to prepare a porcine conduit, which was surgically stitched inside the pig's aorta for four months. The aorta samples, including nanodiamond-coated and control samples, were analyzed for nanodiamond content and calcium, using the radiotracer and ICP-AES methods. A histological analysis of the materials was also performed. The obtained coatings illustrate a high in vivo stability and low levels of calcification for all types of nanodiamonds. Even though we did not use additional antibiotics in this case, the development of infection was not observed for negatively charged nanodiamonds, opening up prospects for their use in developing coatings.
Collapse
Affiliation(s)
- Maria G. Chernysheva
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Tianyi Shen
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Gennadii A. Badun
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Ivan V. Mikheev
- Chemistry Department, M.V. Lomonosov Moscow State University, 3, bld. 1, Leninskie Gory, Moscow 119991, Russia; (T.S.); (G.A.B.); (I.V.M.)
| | - Ivan S. Chaschin
- A. N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, 28, bld. 1, Vavilova St., Moscow 119334, Russia;
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Yuriy M. Tsygankov
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Dmitrii V. Britikov
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Georgii A. Hugaev
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| | - Natalia P. Bakuleva
- A. N. Bakulev Scientific Center for Cardiovascular Surgery, 135, Rublevskoe Sh., Moscow 121552, Russia; (Y.M.T.); (D.V.B.); (G.A.H.); (N.P.B.)
| |
Collapse
|
4
|
Wang R, Huang X, Chen X, Zhang Y. Nanoparticle-Mediated Immunotherapy in Triple-Negative Breast Cancer. ACS Biomater Sci Eng 2024; 10:3568-3598. [PMID: 38815129 PMCID: PMC11167598 DOI: 10.1021/acsbiomaterials.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/05/2024] [Accepted: 05/07/2024] [Indexed: 06/01/2024]
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subtype with the worst prognosis and highest recurrence rates. The treatment choices are limited due to the scarcity of endocrine and HER2 targets, except for chemotherapy. However, the side effects of chemotherapy restrict its long-term usage. Immunotherapy shows potential as a promising therapeutic strategy, such as inducing immunogenic cell death, immune checkpoint therapy, and immune adjuvant therapy. Nanotechnology offers unique advantages in the field of immunotherapy, such as improved delivery and targeted release of immunotherapeutic agents and enhanced bioavailability of immunomodulators. As well as the potential for combination therapy synergistically enhanced by nanocarriers. Nanoparticles-based combined application of multiple immunotherapies is designed to take the tactics of enhancing immunogenicity and reversing immunosuppression. Moreover, the increasing abundance of biomedical materials holds more promise for the development of this field. This review summarizes the advances in the field of nanoparticle-mediated immunotherapy in terms of both immune strategies for treatment and the development of biomaterials and presents challenges and hopes for the future.
Collapse
Affiliation(s)
- Ruoyi Wang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xu Huang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Xiaoxi Chen
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| | - Yingchao Zhang
- Department of Breast
Surgery, The Second Norman Bethune Hospital
of Jilin University, Changchun 130021, P.R.C
| |
Collapse
|
5
|
Alexander E, Leong KW. Nanodiamonds in biomedical research: Therapeutic applications and beyond. PNAS NEXUS 2024; 3:pgae198. [PMID: 38983694 PMCID: PMC11231952 DOI: 10.1093/pnasnexus/pgae198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 05/06/2024] [Indexed: 07/11/2024]
Abstract
Nanodiamonds (NDs) comprise a family of carbon-based nanomaterials (i.e. diameter <100 nm) with the same sp3 lattice structure that gives natural diamonds their exceptional hardness and electrical insulating properties. Among all carbon nanomaterials-e.g. carbon nanotubes, nanodots, and fullerenes-NDs are of particular interest for biomedical applications because they offer high biocompatibility, stability in vivo, and a dynamic surface chemistry that can be manipulated to perform a seemingly limitless variety of ultra-specific tasks. NDs are already deepening our understanding of basic biological processes, while numerous laboratories continue studying these nanomaterials with an aim of making seismic improvements in the prevention, diagnosis, and treatment of human diseases. This review surveys approximately 2,000 the most recent articles published in the last 5 years and includes references to more than 150 of the most relevant publications on the biomedical applications of NDs. The findings are categorized by contemporary lines of investigation based on potential applications, namely: genetics and gene editing, drug delivery systems, neural interfacing, biomedical sensors, synthetic biology, and organ and tissue regeneration. This review also includes a brief background of NDs and the methods currently developed for their synthesis and preparation. Finally, recommendations for future investigations are offered.
Collapse
Affiliation(s)
- Elena Alexander
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| | - Kam W Leong
- Department of Biomedical Engineering, Columbia University, New York, NY 10032, USA
| |
Collapse
|
6
|
Abate M, Lombardi A, Luce A, Porru M, Leonetti C, Bocchetti M, Campani V, De Rosa G, Graziano SF, Nele V, Cardile F, Marino FZ, Franco R, Ronchi A, Scrima M, Sperlongano R, Alfano R, Misso G, Amler E, Caraglia M, Zappavigna S. Fluorescent nanodiamonds as innovative delivery systems for MiR-34a replacement in breast cancer. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 33:127-141. [PMID: 37449042 PMCID: PMC10336355 DOI: 10.1016/j.omtn.2023.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Accepted: 06/14/2023] [Indexed: 07/18/2023]
Abstract
Nanodiamonds are innovative nanocrystalline carbon particles able to deliver chemically conjugated miRNAs. In oncology, the use of miRNA-based therapies may represent an advantage, based on their ability to simultaneously target multiple intracellular oncogenic targets. Here, nanodiamonds were tested and optimized to deliver miR-34a, a miRNA playing a key role in inhibiting tumor development and progression in many cancers. The physical-chemical properties of nanodiamonds were investigated suggesting electrical stability and uniformity of structure and size. Moreover, we evaluated nanodiamond cytotoxicity on two breast cancer cell models and confirmed their excellent biocompatibility. Subsequently, nanodiamonds were conjugated with miR-34a, using the chemical crosslinker polyethyleneimine; real-time PCR analysis revealed a higher level of miR-34a in cancer cells treated with the different formulations of nanodiamonds than with commercial transfectant. A significant and early nanodiamond-miR-34a uptake was recorded by FACS and fluorescence microscopy analysis in MCF7 and MDA-MB-231 cells. Moreover, nanodiamond-miR-34a significantly inhibited both cell proliferation and migration. Finally, a remarkable anti-tumor effect of miR-34a-conjugated nanodiamonds was observed in both heterotopic and orthotopic murine xenograft models. In conclusion, this study provides a rationale for the development of new therapeutic strategies based on use of miR-34a delivered by nanodiamonds to improve the clinical treatment of neoplasms.
Collapse
Affiliation(s)
- Marianna Abate
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Angela Lombardi
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Amalia Luce
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Manuela Porru
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, E Chianesi 53, 00144 Rome, Italy
| | - Carlo Leonetti
- Translational Oncology Research Unit, IRCCS Regina Elena National Cancer Institute, E Chianesi 53, 00144 Rome, Italy
| | - Marco Bocchetti
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Virginia Campani
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Giuseppe De Rosa
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Sossio Fabio Graziano
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Valeria Nele
- Department of Pharmacy, University of Naples Federico II, D. Montesano 49, 80131 Naples, Italy
| | - Francesco Cardile
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Federica Zito Marino
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli,” 80138 Naples, Italy
| | - Renato Franco
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli,” 80138 Naples, Italy
| | - Andrea Ronchi
- Department of Mental and Physical Health and Preventive Medicine, Pathology Unit, University of Campania “Luigi Vanvitelli,” 80138 Naples, Italy
| | - Marianna Scrima
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Rossella Sperlongano
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Roberto Alfano
- Department of Advanced Medical and Surgical Sciences “DAMSS,” University of Campania “Luigi Vanvitelli,” Via S. M. di Costantinopoli 104, 80138 Naples, Italy
| | - Gabriella Misso
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| | - Evzen Amler
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Institute of Biophysics, 2nd Faculty of Medicine, Charles University, V Uvalu 84, 15006 Prague, Czech Republic
| | - Michele Caraglia
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
- Laboratory of Precision and Molecular Oncology, Biogem Scarl, Institute of Genetic Research, Contrada Camporeale, 83031 Ariano Irpino, Italy
| | - Silvia Zappavigna
- Department of Precision Medicine, University of Campania “Luigi Vanvitelli,” Via L. De Crecchio 7, 80138 Naples, Italy
| |
Collapse
|
7
|
Jeong J, Jeon S, Kim S, Lee S, Kim G, Bae E, Ha Y, Lee SW, Kim JS, Kim DJ, Cho WS. Effect of sp 3/sp 2 carbon ratio and hydrodynamic size on the biodistribution kinetics of nanodiamonds in mice via intravenous injection. Part Fibre Toxicol 2023; 20:33. [PMID: 37605240 PMCID: PMC10440929 DOI: 10.1186/s12989-023-00545-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
BACKGROUND Nanodiamonds (NDs) have gained a rapidly growing interest in biomedical applications; however, little is known regarding their biokinetics owing to difficulties in measurements and limited synthesis/purification technologies. In this study, we investigated the distribution kinetics of detonation-synthesized NDs in mice via intravenous injection to evaluate the parameters that determine the behavior of the particles. We prepared two distinctive NDs that controlled the sp3/sp2 carbon ratio and particle size by coating them with serum proteins. The four control samples were intravenously injected into mice, and tissue distribution and clearance were evaluated at 30 min and 1, 7, and 28 days post-injection. RESULTS The sp3/sp2 carbon ratio showed no correlation with the organ distribution of the NDs. However, hydrodynamic size showed an excellent correlation with organ distribution levels: a negative correlation in the liver and positive correlations in the spleen and lungs. Furthermore, the deposition levels of NDs in the lung suggest that particles smaller than 300 nm could avoid lung deposition. Finally, a similar organ distribution pattern was observed in mice injected with carbon black nanoparticles controlled hydrodynamic size. CONCLUSIONS In conclusion, the tissue distribution of NDs is modulated not by the sp3/sp2 carbon ratio but by the hydrodynamic size, which can provide helpful information for targeting the tissue of NDs. Furthermore, the organ distribution pattern of the NDs may not be specific to NDs but also can apply to other nanoparticles, such as carbon black.
Collapse
Affiliation(s)
- Jiyoung Jeong
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Soyeon Jeon
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Songyeon Kim
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Sinuk Lee
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Gyuri Kim
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Eunsol Bae
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Yeonjeong Ha
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea
| | - Seung Whan Lee
- Plasma Technology Research Center, National Fusion Research Institute, Gunsan-si, 54004, Republic of Korea
| | - Ji-Su Kim
- Primate Resources Center (PRC), Korea Research Institute of Bioscience and Biotechnology (KRIBB), Jeongeup, 56216, Republic of Korea
| | - Dong-Jae Kim
- Laboratory Animal Resource Center, DGIST, Daegu, 42988, Republic of Korea
| | - Wan-Seob Cho
- Lab of Toxicology, Department of Health Sciences, Dong-A University, Busan, 49315, Republic of Korea.
| |
Collapse
|
8
|
Yu C, Li L, Wang S, Xu Y, Wang L, Huang Y, Hieawy A, Liu H, Ma J. Advances in nanomaterials for the diagnosis and treatment of head and neck cancers: A review. Bioact Mater 2023; 25:430-444. [PMID: 37056270 PMCID: PMC10087112 DOI: 10.1016/j.bioactmat.2022.08.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 11/24/2022] Open
Abstract
Nanomaterials (NMs) have increasingly been used for the diagnosis and treatment of head and neck cancers (HNCs) over the past decade. HNCs can easily infiltrate surrounding tissues and form distant metastases, meaning that most patients with HNC are diagnosed at an advanced stage and often have a poor prognosis. Since NMs can be used to deliver various agents, including imaging agents, drugs, genes, vaccines, radiosensitisers, and photosensitisers, they play a crucial role in the development of novel technologies for the diagnosis and treatment of HNCs. Indeed, NMs have been reported to enhance delivery efficiency and improve the prognosis of patients with HNC by allowing targeted delivery, controlled release, responses to stimuli, and the delivery of multiple agents. In this review, we consider recent advances in NMs that could be used to improve the diagnosis, treatment, and prognosis of patients with HNC and the potential for future research.
Collapse
Affiliation(s)
- Cheng Yu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Long Li
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shiwen Wang
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yuanhang Xu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Lu Wang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yongbiao Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ahmed Hieawy
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - He Liu
- Division of Endodontics, Department of Oral Biological and Medical Sciences, Faculty of Dentistry, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Jingzhi Ma
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| |
Collapse
|
9
|
Wang X, Sang D, Zou L, Ge S, Yao Y, Fan J, Wang Q. Multiple Bioimaging Applications Based on the Excellent Properties of Nanodiamond: A Review. Molecules 2023; 28:molecules28104063. [PMID: 37241802 DOI: 10.3390/molecules28104063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 05/09/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Nanodiamonds (NDs) are emerging as a promising candidate for multimodal bioimaging on account of their optical and spectroscopic properties. NDs are extensively utilized for bioimaging probes due to their defects and admixtures in their crystal lattice. There are many optically active defects presented in NDs called color centers, which are highly photostable, extremely sensitive to bioimaging, and capable of electron leap in the forbidden band; further, they absorb or emit light when leaping, enabling the nanodiamond to fluoresce. Fluorescent imaging plays a significant role in bioscience research, but traditional fluorescent dyes have some drawbacks in physical, optical and toxicity aspects. As a novel fluorescent labeling tool, NDs have become the focus of research in the field of biomarkers in recent years because of their various irreplaceable advantages. This review primarily focuses on the recent application progress of nanodiamonds in the field of bioimaging. In this paper, we will summarize the progress of ND research from the following aspects (including fluorescence imaging, Raman imaging, X-ray imaging, magnetic modulation fluorescence imaging, magnetic resonance imaging, cathodoluminescence imaging, and optical coherence tomography imaging) and expect to supply an outlook contribution for future nanodiamond exploration in bioimaging.
Collapse
Affiliation(s)
- Xinyue Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Dandan Sang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Shandong Liaocheng Laixin Powder Materials Science and Technology Co., Ltd., Liaocheng 252000, China
| | - Liangrui Zou
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Shunhao Ge
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Yu Yao
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
| | - Jianchao Fan
- Shandong Liaocheng Laixin Powder Materials Science and Technology Co., Ltd., Liaocheng 252000, China
| | - Qinglin Wang
- Shandong Key Laboratory of Optical Communication Science and Technology, School of Physics Science and Information Technology, Liaocheng University, Liaocheng 252000, China
- Shandong Liaocheng Laixin Powder Materials Science and Technology Co., Ltd., Liaocheng 252000, China
| |
Collapse
|
10
|
Cui X, Ruan Q, Zhuo X, Xia X, Hu J, Fu R, Li Y, Wang J, Xu H. Photothermal Nanomaterials: A Powerful Light-to-Heat Converter. Chem Rev 2023. [PMID: 37133878 DOI: 10.1021/acs.chemrev.3c00159] [Citation(s) in RCA: 268] [Impact Index Per Article: 134.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
All forms of energy follow the law of conservation of energy, by which they can be neither created nor destroyed. Light-to-heat conversion as a traditional yet constantly evolving means of converting light into thermal energy has been of enduring appeal to researchers and the public. With the continuous development of advanced nanotechnologies, a variety of photothermal nanomaterials have been endowed with excellent light harvesting and photothermal conversion capabilities for exploring fascinating and prospective applications. Herein we review the latest progresses on photothermal nanomaterials, with a focus on their underlying mechanisms as powerful light-to-heat converters. We present an extensive catalogue of nanostructured photothermal materials, including metallic/semiconductor structures, carbon materials, organic polymers, and two-dimensional materials. The proper material selection and rational structural design for improving the photothermal performance are then discussed. We also provide a representative overview of the latest techniques for probing photothermally generated heat at the nanoscale. We finally review the recent significant developments of photothermal applications and give a brief outlook on the current challenges and future directions of photothermal nanomaterials.
Collapse
Affiliation(s)
- Ximin Cui
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Qifeng Ruan
- Ministry of Industry and Information Technology Key Lab of Micro-Nano Optoelectronic Information System & Guangdong Provincial Key Laboratory of Semiconductor Optoelectronic Materials and Intelligent Photonic Systems, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xiaolu Zhuo
- Guangdong Provincial Key Lab of Optoelectronic Materials and Chips, School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), Shenzhen 518172, China
| | - Xinyue Xia
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Jingtian Hu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Runfang Fu
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Yang Li
- State Key Laboratory of Radio Frequency Heterogeneous Integration, College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jianfang Wang
- Department of Physics, The Chinese University of Hong Kong, Shatin, Hong Kong SAR 999077, China
| | - Hongxing Xu
- School of Physics and Technology and School of Microelectronics, Wuhan University, Wuhan 430072, Hubei, China
- Henan Academy of Sciences, Zhengzhou 450046, Henan, China
- Wuhan Institute of Quantum Technology, Wuhan 430205, Hubei, China
| |
Collapse
|
11
|
Chen M, Li Y, Hou WX, Peng DY, Li JK, Zhang HX. The Antibacterial Effect, Biocompatibility, and Osteogenesis of Vancomycin-Nanodiamond Composite Scaffold for Infected Bone Defects. Int J Nanomedicine 2023; 18:1365-1380. [PMID: 36974073 PMCID: PMC10039664 DOI: 10.2147/ijn.s397316] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/02/2023] [Indexed: 03/29/2023] Open
Abstract
Purpose The repair and treatment of infected bone defects (IBD) is a common challenge faced by orthopedic clinics, medical materials science, and tissue engineering. Methods Based on the treatment requirements of IBD, we utilized multidisciplinary knowledge from clinical medicine, medical materials science, and tissue engineering to construct a high-efficiency vancomycin sustained-release system with nanodiamond (ND) and prepare a composite scaffold. Its effect on IBD treatment was assessed from materials, cytology, bacteriology, and zoology perspectives. Results The results demonstrated that the Van-ND-45S5 scaffold exhibited an excellent antibacterial effect, biocompatibility, and osteogenesis in vitro. Moreover, an efficient animal model of IBD was established, and a Van-ND-45S5 scaffold was implanted into the IBD. Radiographic and histological analyses and bone repair-related protein expression, confirmed that the Van-ND-45S5 scaffold had good biocompatibility and osteogenic and anti-infective activities in vivo. Conclusion Collectively, our findings support that the Van-ND-45S5 scaffold is a promising new material and approach for treating IBD with good antibacterial effects, biocompatibility, and osteogenesis.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Yang Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Wen-Xiu Hou
- Department of Spine Surgery, Shandong University Qilu Hospital, Jinan, Shandong, 250000, People’s Republic of China
| | - Da-Yong Peng
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Jing-Kun Li
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
| | - Hao-Xuan Zhang
- Department of Orthopedic Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong Province, 250014, People’s Republic of China
- Department of Orthopedic Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong Province, 250014, People’s Republic of China
- Correspondence: Hao-Xuan Zhang, Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University, No. 16766, Lixia District, Jingshi Road, Jinan, Shandong Province, 250014, People’s Republic of China, Tel/Fax +86531-89268540, Email
| |
Collapse
|
12
|
Burkert SC, He X, Shurin GV, Nefedova Y, Kagan VE, Shurin MR, Star A. Nitrogen-Doped Carbon Nanotube Cups for Cancer Therapy. ACS APPLIED NANO MATERIALS 2022; 5:13685-13696. [PMID: 36711215 PMCID: PMC9879341 DOI: 10.1021/acsanm.1c03245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Carbon nanomaterials have attracted significant attention for a variety of biomedical applications including sensing and detection, photothermal therapy, and delivery of therapeutic cargo. The ease of chemical functionalization, tunable length scales and morphologies, and ability to undergo complete enzymatic degradation make carbon nanomaterials an ideal drug delivery system. Much work has been done to synthesize carbon nanomaterials ranging from carbon dots, graphene, and carbon nanotubes to carbon nanocapsules, specifically carbon nanohorns or nitrogen-doped carbon nanocups. Here, we analyze specific properties of nitrogen-doped carbon nanotube cups which have been designed and utilized as drug delivery systems with the focus on the loading of these nanocapsules with specific therapeutic cargo and the targeted delivery for cancer therapy. We also summarize our targeted synthesis of gold nanoparticles on the open edge of nitrogen-doped carbon nanotube cups to create loaded and sealed nanocarriers for the delivery of chemotherapeutic agents to myeloid regulatory cells responsible for the immunosuppressive properties of the tumor microenvironment and thus tumor immune escape.
Collapse
Affiliation(s)
- Seth C. Burkert
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Chemistry, Franklin & Marshall College, Lancaster, Pennsylvania 17604, United States
| | - Xiaoyun He
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Galina V. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Yulia Nefedova
- The Wistar Institute, Philadelphia, Pennsylvania 19104, United States
| | - Valerian E. Kagan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Environmental and Occupational Health, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Michael R. Shurin
- Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Department of Immunology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
| | - Alexander Star
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
- Department of Bioengineering, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania 15261, United States
- Corresponding author: Alexander Star —Department of Chemistry and Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States;
| |
Collapse
|
13
|
Chang SLY, Reineck P, Krueger A, Mochalin VN. Ultrasmall Nanodiamonds: Perspectives and Questions. ACS NANO 2022; 16:8513-8524. [PMID: 35605109 DOI: 10.1021/acsnano.2c00197] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Nanodiamonds are at the heart of a plethora of emerging applications in areas ranging from nanocomposites and tribology to nanomedicine and quantum sensing. The development of alternative synthesis methods, a better understanding, and the availability of ultrasmall nanodiamonds of less than 3 nm size with a precisely engineered composition, including the particle surface and atomic defects in the diamond crystal lattice, would mark a leap forward for many existing and future applications. Yet today, we are unable to accurately control nanodiamond composition at the atomic scale, nor can we reliably create and isolate particles in this size range. In this perspective, we discuss recent advances, challenges, and opportunities in the synthesis, characterization, and application of ultrasmall nanodiamonds. We particularly focus on the advantages of bottom-up synthesis of these particles and critically assess the physicochemical properties of ultrasmall nanodiamonds, which significantly differ from those of larger particles and bulk diamond.
Collapse
Affiliation(s)
- Shery L Y Chang
- Electron Microscope Unit, Mark Wainwright Analytical Centre, University of New South Wales, Sydney, NSW 2052, Australia
- School of Materials Science and Engineering, University of New South Wales, Sydney, NSW 2052, Australia
| | - Philipp Reineck
- ARC Centre of Excellence for Nanoscale BioPhotonics & School of Science, RMIT University, Melbourne, VIC 3001, Australia
| | - Anke Krueger
- Institute of Organic Chemistry, University of Stuttgart, Pfaffenwaldring 55, 70569 Stuttgart, Germany
| | - Vadym N Mochalin
- Department of Chemistry, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, Missouri 65409, United States
| |
Collapse
|
14
|
Yoo W, Lee W, Kim HN, Jeong J, Park HH, Ahn JH, Jung D, Lee J, Kim JS, Lee SW, Cho WS, Kim S. Nanodiamond as a Cytokine Sponge in Infectious Diseases. Front Bioeng Biotechnol 2022; 10:862495. [PMID: 35445003 PMCID: PMC9014093 DOI: 10.3389/fbioe.2022.862495] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 03/15/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokine release syndrome (CRS) is a systemic inflammatory response resulting in overexpression of cytokines in serum and tissues, which leads to multiple-organ failure. Due to rapid aggravation of symptoms, timely intervention is paramount; however, current therapies are limited in their capacity to address CRS. Here, we find that the intravenous injection of highly purified detonation-synthesized nanodiamonds (DND) can act as a therapeutic agent for treating CRS by adsorbing inflammatory cytokines. Highly purified DNDs successfully inactivated various key cytokines in plasma from CRS patients with pneumonia, septic shock, and coronavirus disease 2019 pandemic (COVID-19). The intravenous injection of the DND samples in a mouse sepsis model by cecal ligation and puncture significantly improved survival rates and prevented tissue damage by reducing the circulating inflammatory cytokines. The results of this study suggest that the clinical application of highly purified DND can provide survival benefits for CRS patients by adsorbing inflammatory cytokines.
Collapse
Affiliation(s)
- Wonbeak Yoo
- Environmental Disease Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, South Korea
| | - Wonhwa Lee
- Department of Chemistry, Sungkyunkwan University, Suwon, South Korea
| | - Hong Nam Kim
- Brain Science Institute, Korea Institute of Science and Technology (KIST), Seoul, South Korea; Division of Bio-Medical Science and Technology, KIST School, Korea University of Science and Technology, Seoul, South Korea
| | - Jiyoung Jeong
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Hee Ho Park
- Department of Bioengineering, Hanyang University, Seoul, South Korea
| | - June Hong Ahn
- Division of Pulmonology and Allergy, Department of Internal Medicine, College of Medicine, Yeungnam University and Regional Center for Respiratory Diseases, Yeungnam University Medical Center, Daegu, South Korea
| | - Dana Jung
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Juheon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
| | - Ji-su Kim
- Primate Resources Center, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, South Korea
| | - Seung Whan Lee
- Institute of Plasma Technology Research, Korea Institute of Fusion Energy, Gunsan-si, South Korea
- *Correspondence: Seung Whan Lee, ; Wan-Seob Cho, ; Seokho Kim,
| | - Wan-Seob Cho
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
- *Correspondence: Seung Whan Lee, ; Wan-Seob Cho, ; Seokho Kim,
| | - Seokho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, South Korea
- Department of Medicinal Biotechnology, College of Health Sciences, Dong-A University, Busan, South Korea
- *Correspondence: Seung Whan Lee, ; Wan-Seob Cho, ; Seokho Kim,
| |
Collapse
|
15
|
Hung SC, Ke LC, Lien TS, Huang HS, Sun DS, Cheng CL, Chang HH. Nanodiamond-Induced Thrombocytopenia in Mice Involve P-Selectin-Dependent Nlrp3 Inflammasome-Mediated Platelet Aggregation, Pyroptosis and Apoptosis. Front Immunol 2022; 13:806686. [PMID: 35444640 PMCID: PMC9013758 DOI: 10.3389/fimmu.2022.806686] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 03/09/2022] [Indexed: 02/04/2023] Open
Abstract
Nanodiamond (ND) has been developed as a carrier to conduct various in vivo diagnostic and therapeutic uses. Safety is one of the major considerations, while the hemocompatibility of ND is not clearly addressed. Here we found that, compared to the other sizes of ND with relatively inert properties, treatments of 50 nm ND induced stronger platelet aggregation, platelet pyroptosis, apoptosis and thrombocytopenia in mice. Blockage treatments of soluble P-selectin, reactive oxygen species (ROS), and Nlrp3 inflammasome inhibitors markedly suppressed such adverse effects, suggesting ND-induced platelet activation and pyroptosis involves surface P-selectin-mediated enhancement of mitochondrial superoxide levels and Nlrp3 inflammasome activation. In addition, challenges of NDs induced less platelet pyroptosis and displayed less thrombocytopenia in P-selectin (Selp-/-), Nlrp3 (Nlrp3-/-) and caspase-1 (Casp1-/-) mutants, as compared to the wild type mice. Blockers of P-selectin, ROS, and Nlrp3 inflammasome pathways could be considered as antidotes for ND induced platelet activation and thrombocytopenia.
Collapse
Affiliation(s)
- Shih-Che Hung
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
| | - Lu-Chu Ke
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Te-Sheng Lien
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Hsuan-Shun Huang
- Center for Prevention and Therapy of Gynecological Cancers, Department of Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
| | - Der-Shan Sun
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
| | - Chia-Liang Cheng
- Department of Physics, National Dong Hwa University, Hualien, Taiwan
| | - Hsin-Hou Chang
- Institute of Medical Sciences, Tzu-Chi University, Hualien, Taiwan
- Department of Molecular Biology and Human Genetics, Tzu-Chi University, Hualien, Taiwan
- *Correspondence: Hsin-Hou Chang, ;
| |
Collapse
|
16
|
Rozhin P, Abdel Monem Gamal J, Giordani S, Marchesan S. Carbon Nanomaterials (CNMs) and Enzymes: From Nanozymes to CNM-Enzyme Conjugates and Biodegradation. MATERIALS (BASEL, SWITZERLAND) 2022; 15:1037. [PMID: 35160982 PMCID: PMC8838330 DOI: 10.3390/ma15031037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 01/20/2022] [Accepted: 01/26/2022] [Indexed: 01/27/2023]
Abstract
Carbon nanomaterials (CNMs) and enzymes differ significantly in terms of their physico-chemical properties-their handling and characterization require very different specialized skills. Therefore, their combination is not trivial. Numerous studies exist at the interface between these two components-especially in the area of sensing-but also involving biofuel cells, biocatalysis, and even biomedical applications including innovative therapeutic approaches and theranostics. Finally, enzymes that are capable of biodegrading CNMs have been identified, and they may play an important role in controlling the environmental fate of these structures after their use. CNMs' widespread use has created more and more opportunities for their entry into the environment, and thus it becomes increasingly important to understand how to biodegrade them. In this concise review, we will cover the progress made in the last five years on this exciting topic, focusing on the applications, and concluding with future perspectives on research combining carbon nanomaterials and enzymes.
Collapse
Affiliation(s)
- Petr Rozhin
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| | - Jada Abdel Monem Gamal
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
- Department of Chemistry, Faculty of Mathematical, Physical and Natural Sciences, University Sapienza of Rome, 00185 Rome, Italy
| | - Silvia Giordani
- School of Chemical Sciences, Faculty of Science & Health, Dublin City University, D09 E432 Dublin, Ireland;
| | - Silvia Marchesan
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy;
| |
Collapse
|
17
|
Singh M, Mazumder B. Recent Advancements in Nanodiamond Mediated Brain Targeted Drug Delivery and Bioimaging of Brain Ailments: A Holistic Review. Pharm Nanotechnol 2021; 10:42-55. [PMID: 34951376 DOI: 10.2174/2211738510666211222111938] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/29/2021] [Accepted: 12/07/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND The brain is a vital and composite organ. By nature, the innate make-up of the brain is such that in anatomical parlance, it is highly protected by the "Blood-Brain Barrier", which is a nexus of capillary endothelial cells, basement membrane, neuroglial membrane and glialpodocytes. The same barrier, which protects and isolates the interstitial fluid of the brain from capillary circulation, also restricts the therapeutic intervention. Many standing pharmaceutical formulations are ineffective in the treatment of inimical brain ailments because of the inability of the API to surpass and subsist inside the Blood Brain Barrier. OBJECTIVE This is an integrated review that emphasizes on the recent advancements in brain-targeted drug delivery utilizing nanodiamonds (NDs) as a carrier of therapeutic agents. NDs are a novel nanoparticulate drug delivery system, having carbon moieties as their building blocks and their surface tenability is remarkable. These neoteric carbon-based carriers have exceptional, mechanical, electrical, chemical, optical, and biological properties, which can be further rationally modified and augmented. CONCLUSION NDs could be the next"revolution "in the field of nanoscience for the treatment of neurodegenerative disorders, brain tumors, and other pernicious brain ailments. What sets them apart from other nanocarriers is their versatile properties like diverse size range and surface modification potential, which makes them efficient enough to move across certain biological barriers and offer a plethora of brain targeting and bioimaging abilities. Lay Summary: The blood-brain barrier (BBB) poses a major hurdle in the way of treating many serious brain ailments. A range of nanoparticle based drug delivering systems have been formulated, including solid lipid nanoparticles, liposomes, dendrimers, nanogels, polymeric NPs, metallic NPs (gold, platinum, andironoxide) and diamondoids (carbonnanotubes). Despite this development, only a few of these formulations have shown the ability to cross the BBB. Nanodiamonds, because of their small size, shape, and surface characteristics, have a potential in moving beyond the diverse and intricate BBB, and offer a plethora of brain targeting capabilities.
Collapse
Affiliation(s)
- Mohini Singh
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| | - Bhaskar Mazumder
- Department of pharmaceutical sciences, Dibrugarh University, Dibrugarh-786004, Assam. India
| |
Collapse
|
18
|
Liu H, Chen J, Qiao S, Zhang W. Carbon-Based Nanomaterials for Bone and Cartilage Regeneration: A Review. ACS Biomater Sci Eng 2021; 7:4718-4735. [PMID: 34586781 DOI: 10.1021/acsbiomaterials.1c00759] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
As the main load-bearing structure in the human body, bone and cartilage are susceptible to damage in sports and other activities. The repair and regeneration of bone and articular cartilage have been extensively studied in the past decades. Traditional approaches have been widely applied in clinical practice, but the effect varies from person to person and may cause side effects. With the rapid development of tissue engineering and regenerative medicine, various biomaterials show great potential in the regeneration of bone and cartilage. Carbon-based nanomaterials are solid materials with different structures and properties composed of allotropes of carbon, which are classified into zero-, one-, and two-dimensional ones. This Review systemically summarizes the different types of carbon-based nanomaterials, including zero-dimensional (fullerene, carbon dots, nanodiamonds), one-dimensional (carbon nanotubes), and two-dimensional (graphenic materials) as well as their applications in bone, cartilage, and osteochondral regeneration. Current limitations and future perspectives of carbon-based nanomaterials are also discussed.
Collapse
Affiliation(s)
- Haoyang Liu
- School of Medicine, Southeast University, 210009 Nanjing, China
| | - Jialin Chen
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| | - Sen Qiao
- Department of Pharmacology, Center for Molecular Signaling (PZMS), Saarland University School of Medicine, 66421 Homburg, Germany
| | - Wei Zhang
- School of Medicine, Southeast University, 210009 Nanjing, China.,Jiangsu Key Laboratory for Biomaterials and Devices, Southeast University, 210096 Nanjing, China.,China Orthopedic Regenerative Medicine Group (CORMed), 310058 Hangzhou, China
| |
Collapse
|
19
|
Cui X, Liang Z, Lu J, Wang X, Jia F, Hu Q, Xiao X, Deng X, Wu Y, Sheng W. A multifunctional nanodiamond-based nanoplatform for the enhanced mild-temperature photothermal/chemo combination therapy of triple negative breast cancer via an autophagy regulation strategy. NANOSCALE 2021; 13:13375-13389. [PMID: 34477743 DOI: 10.1039/d1nr03161a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Owing to its aggressive biological behavior, the lack of specific targets, and the strong therapeutic resistance of triple negative breast cancer (TNBC), current therapeutic strategies are still limited. The combination of multiple treatments has been confirmed as a promising strategy for TNBC therapy. However, the efficacy of combination therapy can be restricted due to increasing therapeutic resistance to various treatments. Herein, we constructed a nanodiamond (ND)-based nanoplatform for augmented mild-temperature photothermal/chemo combination therapy against TNBC, weakening the therapeutic resistance via autophagy inhibition enabled by the NDs. A layer-by-layer self-assembly approach was utilized to construct the ND-based nanoplatform. First, the NDs were modified with protamine sulphate (PS). Meanwhile, the photosensitizer indocyanine green (ICG) and the HSP70 small molecule inhibitor apoptozole (APZ) could be synchronously incorporated to form positively charged PS@ND (ICG + APZ). Then negatively charged hyaluronic acid (HA) was assembled onto the outer face of PS@ND (ICG + APZ) to form the NPIAs. Finally, the positively charged small molecule anti-cancer drug doxorubicin (DOX) could be adsorbed onto the surface of the NPIAs through electrostatic interactions (NPIADs). The resulting NPIADs could be triggered by NIR laser irradiation to exhibit enhanced mild-temperature photothermal therapy (PTT) effects via suppressing the expression of HSP70, and PTT combined with chemotherapy could further enhance the anti-tumor efficacy. Subsequently, the sensitivity of MDA-MB-231 cells could be significantly improved through the weakening of the thermal/drug resistance via autophagy inhibition, leading to augmented combination therapy that is efficient both in vitro and in vivo. Furthermore, the NPIADs could be used as a theranostic nanoplatform for fluorescence (FL) and photoacoustic (PA) imaging. Taken together, this study demonstrated a multifunctional ND-based nanoplatform for FL/PA imaging-guided augmented mild-temperature photothermal/chemo combination therapy via an autophagy regulation strategy against TNBC.
Collapse
Affiliation(s)
- Xinyue Cui
- The Faculty of Environment and Life, Beijing University of Technology, No. 100 Pingleyuan, Chaoyang District, Beijing 100124, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Alagarsamy KN, Mathan S, Yan W, Rafieerad A, Sekaran S, Manego H, Dhingra S. Carbon nanomaterials for cardiovascular theranostics: Promises and challenges. Bioact Mater 2021; 6:2261-2280. [PMID: 33553814 PMCID: PMC7829079 DOI: 10.1016/j.bioactmat.2020.12.030] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/15/2020] [Accepted: 12/31/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of death worldwide. Heart attack and stroke cause irreversible tissue damage. The currently available treatment options are limited to "damage-control" rather than tissue repair. The recent advances in nanomaterials have offered novel approaches to restore tissue function after injury. In particular, carbon nanomaterials (CNMs) have shown significant promise to bridge the gap in clinical translation of biomaterial based therapies. This family of carbon allotropes (including graphenes, carbon nanotubes and fullerenes) have unique physiochemical properties, including exceptional mechanical strength, electrical conductivity, chemical behaviour, thermal stability and optical properties. These intrinsic properties make CNMs ideal materials for use in cardiovascular theranostics. This review is focused on recent efforts in the diagnosis and treatment of heart diseases using graphenes and carbon nanotubes. The first section introduces currently available derivatives of graphenes and carbon nanotubes and discusses some of the key characteristics of these materials. The second section covers their application in drug delivery, biosensors, tissue engineering and immunomodulation with a focus on cardiovascular applications. The final section discusses current shortcomings and limitations of CNMs in cardiovascular applications and reviews ongoing efforts to address these concerns and to bring CNMs from bench to bedside.
Collapse
Affiliation(s)
- Keshav Narayan Alagarsamy
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sajitha Mathan
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Weiang Yan
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
- Section of Cardiac Surgery, Department of Surgery, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Alireza Rafieerad
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Saravanan Sekaran
- Centre for Nanotechnology & Advanced Biomaterials (CeNTAB), Department of Bioengineering, School of Chemical and Biotechnology, SASTRA University, Thanjavur, 613 401, Tamil Nadu, India
| | - Hanna Manego
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| | - Sanjiv Dhingra
- Regenerative Medicine Program, Institute of Cardiovascular Sciences, St. Boniface Hospital Albrechtsen Research Centre, Department of Physiology and Pathophysiology, College of Medicine, Faculty of Health Sciences, University of Manitoba, Winnipeg, Canada
| |
Collapse
|
21
|
Gvozdev DA, Maksimov EG, Strakhovskaya MG, Pashchenko VZ, Rubin AB. Hybrid Complexes of Photosensitizers with Luminescent Nanoparticles: Design of the Structure. Acta Naturae 2021; 13:24-37. [PMID: 34707895 PMCID: PMC8526191 DOI: 10.32607/actanaturae.11379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/14/2021] [Indexed: 11/20/2022] Open
Abstract
Increasing the efficiency of the photodynamic action of the dyes used in photodynamic therapy is crucial in the field of modern biomedicine. There are two main approaches used to increase the efficiency of photosensitizers. The first one is targeted delivery to the object of photodynamic action, while the second one is increasing the absorption capacity of the molecule. Both approaches can be implemented by producing dye-nanoparticle conjugates. In this review, we focus on the features of the latter approach, when nanoparticles act as a light-harvesting agent and nonradiatively transfer the electronic excitation energy to a photosensitizer molecule. We will consider the hybrid photosensitizer-quantum dot complexes with energy transfer occurring according to the inductive-resonance mechanism as an example. The principle consisting in optimizing the design of hybrid complexes is proposed after an analysis of the published data; the parameters affecting the efficiency of energy transfer and the generation of reactive oxygen species in such systems are described.
Collapse
Affiliation(s)
- D. A. Gvozdev
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - E. G. Maksimov
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - M. G. Strakhovskaya
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - V. Z. Pashchenko
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| | - A. B. Rubin
- M.V. Lomonosov Moscow State University, Department of Biology, Moscow, 119991 Russia
| |
Collapse
|
22
|
Claveau S, Kindermann M, Papine A, Díaz-Riascos ZV, Délen X, Georges P, López-Alemany R, Tirado ÒM, Bertrand JR, Abasolo I, Cigler P, Treussart F. Harnessing subcellular-resolved organ distribution of cationic copolymer-functionalized fluorescent nanodiamonds for optimal delivery of active siRNA to a xenografted tumor in mice. NANOSCALE 2021; 13:9280-9292. [PMID: 33982741 DOI: 10.1039/d1nr00146a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Diamond nanoparticles (nanodiamonds) can transport active drugs in cultured cells as well as in vivo. However, in the latter case, methods allowing the determination of their bioavailability accurately are still lacking. A nanodiamond can be made fluorescent with a perfectly stable emission and a lifetime ten times longer than that of tissue autofluorescence. Taking advantage of these properties, we present an automated quantification method of fluorescent nanodiamonds (FND) in histological sections of mouse organs and tumors, after systemic injection. We use a home-made time-delayed fluorescence microscope comprising a custom pulsed laser source synchronized on the master clock of a gated intensified array detector. This setup allows ultra-high-resolution images (120 Mpixels in size) of whole mouse organ sections to be obtained, with subcellular resolution and single-particle sensitivity. As a proof-of-principle experiment, we quantified the biodistribution and aggregation state of new cationic FNDs capable of transporting small interfering RNA inhibiting the oncogene responsible for Ewing sarcoma. Image analysis showed a low yield of nanodiamonds in the tumor after intravenous injection. Thus, for the in vivo efficacy assay, we injected the nanomedicine into the tumor. We achieved a 28-fold inhibition of the oncogene. This method can readily be applied to other nanoemitters with ≈100 ns lifetime.
Collapse
Affiliation(s)
- Sandra Claveau
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France. and Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis (METSY), 94805 Villejuif, France
| | - Marek Kindermann
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic and Department of Chemical Engineering, University of Chemistry and Technology, 166 28 Prague, Czech Republic
| | | | - Zamira V Díaz-Riascos
- Drug Delivery & Targeting, Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Xavier Délen
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Patrick Georges
- Université Paris-Saclay, Institut d'Optique Graduate School, CNRS, Laboratoire Charles Fabry, 91127 Palaiseau, France
| | - Roser López-Alemany
- Sarcoma Research Group, Oncobell Program, CIBERONC, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Òscar Martínez Tirado
- Sarcoma Research Group, Oncobell Program, CIBERONC, Bellvitge Biomedical Research Institute (IDIBELL), 08908 L'Hospitalet de Llobregat, Barcelona, Spain
| | - Jean-Rémi Bertrand
- Université Paris-Saclay, Institut Gustave Roussy, CNRS, Metabolic and Systemic Aspects of Oncogenesis (METSY), 94805 Villejuif, France
| | - Ibane Abasolo
- Drug Delivery & Targeting, Functional Validation & Preclinical Research (FVPR), CIBBIM-Nanomedicine, Vall d'Hebron Institut de Recerca (VHIR), Universitat Autònoma de Barcelona (UAB), 08035 Barcelona, Spain and Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), 08035 Barcelona, Spain
| | - Petr Cigler
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, 166 10 Prague, Czech Republic
| | - François Treussart
- Université Paris-Saclay, ENS Paris-Saclay, CNRS, CentraleSupélec, LuMIn, 91190 Gif-sur-Yvette, France.
| |
Collapse
|
23
|
Abstract
The family of carbon nanostructures comprises several members, such as fullerenes, nano-onions, nanodots, nanodiamonds, nanohorns, nanotubes, and graphene-based materials. Their unique electronic properties have attracted great interest for their highly innovative potential in nanomedicine. However, their hydrophobic nature often requires organic solvents for their dispersibility and processing. In this review, we describe the green approaches that have been developed to produce and functionalize carbon nanomaterials for biomedical applications, with a special focus on the very latest reports.
Collapse
|
24
|
Guo Q, Li L, Gao G, Liu R, Einaga Y, Zhi J. Nanodiamonds Inhibit Cancer Cell Migration by Strengthening Cell Adhesion: Implications for Cancer Treatment. ACS APPLIED MATERIALS & INTERFACES 2021; 13:9620-9629. [PMID: 33595291 DOI: 10.1021/acsami.0c21332] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanodiamonds (NDs) are a type of biocompatible nanomaterial with easily modified surfaces and are considered as promising candidates in biomedicine. In this work, the inhibition of tumor cell migration by carboxylated nanodiamonds (cNDs) was investigated. AFM-based single cell adhesion and F-actin staining experiments demonstrated that cNDs treatment could enhance cell adhesion and impair assembly of the cytoskeleton. The mechanism analysis of the regulatory protein expression level also proved that cNDs could inhibit the migration of Hela cells by preventing the epithelial-mesenchymal transition (EMT) process through the transforming growth factor β (TGF-β) signaling pathway. The in vivo pulmonary metastasis model also showed that cNDs effectively reduced the metastasis of murine B16 melanoma cells. In summary, cNDs have been demonstrated to inhibit cancer cell migration in vitro and decrease tumor metastasis in vivo. Therefore, cNDs might have potential utility for specific cancer treatment.
Collapse
Affiliation(s)
- Qingyue Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Lei Li
- Key Laboratory of Cryogenics, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Guanyue Gao
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Runze Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yasuaki Einaga
- Department of Chemistry, Keio University, 3-14-1 Hiyoshi, Yokohama, 223-8522, Japan
| | - Jinfang Zhi
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100190, P. R. China
| |
Collapse
|
25
|
Uthappa U, Arvind O, Sriram G, Losic D, Ho-Young-Jung, Kigga M, Kurkuri MD. Nanodiamonds and their surface modification strategies for drug delivery applications. J Drug Deliv Sci Technol 2020. [DOI: 10.1016/j.jddst.2020.101993] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
26
|
Bondon N, Raehm L, Charnay C, Boukherroub R, Durand JO. Nanodiamonds for bioapplications, recent developments. J Mater Chem B 2020; 8:10878-10896. [PMID: 33156316 DOI: 10.1039/d0tb02221g] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The world of biomedical research is in constant evolution, requiring more and more conditions and norms through pre-clinic and clinic studies. Nanodiamonds (NDs) with exceptional optical, thermal and mechanical properties emerged on the global scientific scene and recently gained more attention in biomedicine and bioanalysis fields. Many problematics have been deliberated to better understand their in vitro and in vivo efficiency and compatibility. Light was shed on their synthesis, modification and purification steps, as well as particle size and surface properties in order to find the most suitable operating conditions. In this review, we present the latest advances of NDs use in bioapplications. A large variety of subjects including anticancer and antimicrobial systems, wound healing and tissue engineering management tools, but also bioimaging and labeling probes are tackled. The key information resulting from these recent works were evidenced to make an overview of the potential features of NDs, with a special look on emerging therapeutic and diagnosis combinations.
Collapse
Affiliation(s)
- Nicolas Bondon
- Institut Charles Gerhardt Montpellier, UMR 5253, CNRS-UM-ENSCM, Université de Montpellier, Place Eugène Bataillon 34095, Montpellier cedex 05, France.
| | | | | | | | | |
Collapse
|
27
|
Marcinkiewicz C, Lelkes PI, Sternberg M, Feuerstein GZ. Effects of Fluorescent Diamond Particles FDP-NV-800nm on Essential Biochemical Functions of Primary Human Umbilical Vein Cells and Human Hepatic Cell Line, HepG-2 in vitro (Part VI): Acute Biocompatibility Studies. Nanotechnol Sci Appl 2020; 13:103-118. [PMID: 33116443 PMCID: PMC7547810 DOI: 10.2147/nsa.s268107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/03/2020] [Indexed: 11/23/2022] Open
Abstract
Background Recently, we reported the safety and biocompatibility of fluorescent diamond particles, FDP-NV-Z-800nm (FDP-NV) injected intravenously into rats, where no morbidity and mortality were noted over a period of 3 months. The acute effects of FDP-NV-800nm particles on cultured human endothelial and hepatic cells remain unexplored. Purpose In this study, we aimed to explore select cellular and biochemical functions in cultured human umbilical endothelial cells (HUVEC) and a human hepatic cancer cell line (HepG-2) exposed to FDP-NV-800 in vitro at exposure levels within the pharmacokinetics (Cmax and the nadir) previously reported in vivo. Methods Diverse cellular and biochemical functions were monitored, which cumulatively can provide insights into some vital cellular functions. Cell proliferation and migration were assessed by quantitative microscopy. Mitochondrial metabolic functions were tested by the MTT assay, and cytosolic esterase activity was studied by the calcein AM assay. Chaperons (CHOP), BiP and apoptosis (caspase-3 activation) were monitored by using Western blot (WB). MAPK Erk1/2 signaling was assessed by the detection of the phosphorylated form of the protein (P-Erk 1/2) and its translocation into the cell nucleus. Results At all concentrations tested (0.001–0.1mg/mL), FDP-NV did not affect any of the biomarkers of cell integrity of HepG2 cells. In contrast, the proliferation of HUVEC was affected at the highest concentration tested (0.1mg/mL, Cmax). Exposure of HUVEC to (0.01 mg/mL) FDP-NV had a mild-moderate effect on cell proliferation as evident in the MTT assay and was absent when proliferation was assessed by direct cell counting or by using the calcein AM assays. In both cell types, exposure to the highest concentration (0.1 mg/mL) of FDP-NV did neither affect FBS-stimulated cell signaling (MAPK Erk1/2 phosphorylation) nor did it activate of Caspase 3. Conclusion Our data suggest that FDP-NV-800nm are largely biocompatible with HepG-2 cells proliferation within the pharmacokinetic data reported previously. In contrast, HUVEC proliferation at the highest exposure dose (0.1 mg/mL) responded adversely with respect to several biomarkers of cell integrity. However, since the Cmax levels are very short-living, the risk for endothelial injury is likely minimal for slow rate cell proliferation such as endothelial cells.
Collapse
Affiliation(s)
- Cezary Marcinkiewicz
- Debina Diagnostics Inc., Newtown Square, PA, USA.,College of Engineering, Temple University, Philadelphia, PA, USA
| | - Peter I Lelkes
- College of Engineering, Temple University, Philadelphia, PA, USA
| | | | | |
Collapse
|
28
|
Choi S, Noh SH, Lim CO, Kim HJ, Jo HS, Min JS, Park K, Kim SE. Icariin-Functionalized Nanodiamonds to Enhance Osteogenic Capacity In Vitro. NANOMATERIALS 2020; 10:nano10102071. [PMID: 33092141 PMCID: PMC7589593 DOI: 10.3390/nano10102071] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 01/20/2023]
Abstract
Nanodiamonds (NDs) have been used as drug delivery vehicles due to their low toxicity and biocompatibility. Recently, it has been reported that NDs have also osteogenic differentiation capacity. However, their capacity using NDs alone is not enough. To significantly improve their osteogenic activity, we developed icariin (ICA)-functionalized NDs (ICA-NDs) and evaluated whether ICA-NDs enhance their in vitro osteogenic capacity. Unmodified NDs and ICA-NDs showed nanosized particles that were spherical in shape. The ICA-NDs achieved a prolonged ICA release for up to 4 weeks. The osteogenic capacities of NDs, ICA (10 μg)-NDs, and ICA (50 μg)-NDs were demonstrated by alkaline phosphatase (ALP) activity; calcium content; and mRNA gene levels of osteogenic-related markers, including ALP, runt-related transcript factor 2 (RUNX2), collagen type I alpha 1 (COL1A1), and osteopontin (OPN). In vitro cell studies revealed that ICA (50 μg)-ND-treated MC3T3-E1 cells greatly increased osteogenic markers, including ALP, calcium content, and mRNA gene levels of osteogenic-related markers, including ALP, RUNX2, COL1A1, and OPN compared to ICA (10 μg)-NDs or ND-treated cells. These our data suggest that ICA-NDs can promote osteogenic capacity.
Collapse
Affiliation(s)
- Somang Choi
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.), (H.-J.K.)
| | - Sung Hyun Noh
- Department of Neurosurgery, National Health Insurance Service Ilsan Hospital, #100, Ilsan-ro, Ilsan-donggu, Goyang-si, Gyeonggi-do 10444, Korea;
| | - Chae Ouk Lim
- Department of Orthopedic Surgery, College of Medicine, Korea University, Anam-dong, Seongbuk-gu, Seoul 02841, Korea;
| | - Hak-Jun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.), (H.-J.K.)
| | - Han-Saem Jo
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Korea; (H.-S.J.); (J.S.M.)
| | - Ji Seon Min
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Korea; (H.-S.J.); (J.S.M.)
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Korea; (H.-S.J.); (J.S.M.)
- Correspondence: (K.P.); (S.E.K.); Tel.: +82-31-670-3357 (K.P.); +82-2-2626-1999 (S.E.K.)
| | - Sung Eun Kim
- Department of Orthopedic Surgery and Rare Diseases Institute, Korea University Guro Hospital, #148, Gurodong-ro, Guro-gu, Seoul 08308, Korea; (S.C.), (H.-J.K.)
- Correspondence: (K.P.); (S.E.K.); Tel.: +82-31-670-3357 (K.P.); +82-2-2626-1999 (S.E.K.)
| |
Collapse
|
29
|
Yang N, Zhang H. Nanocarbon Chemistry. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1905367. [PMID: 31773902 DOI: 10.1002/smll.201905367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Hong Kong, China
| |
Collapse
|