1
|
He GQ, Li H, Liu J, Hu YL, Liu Y, Wang ZL, Jiang P. Recent Progress in Implantable Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312530. [PMID: 38376369 DOI: 10.1002/adma.202312530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/03/2024] [Indexed: 02/21/2024]
Abstract
In recent years, tremendous effort is devoted to developing platforms, such as implantable drug delivery systems (IDDSs), with temporally and spatially controlled drug release capabilities and improved adherence. IDDSs have multiple advantages: i) the timing and location of drug delivery can be controlled by patients using specific stimuli (light, sound, electricity, magnetism, etc.). Some intelligent "closed-loop" IDDS can even realize self-management without human participation. ii) IDDSs enable continuous and stable delivery of drugs over a long period (months to years) and iii) to administer drugs directly to the lesion, thereby helping reduce dosage and side effects. iv) IDDSs enable personalized drug delivery according to patient needs. The high demand for such systems has prompted scientists to make efforts to develop intelligent IDDS. In this review, several common stimulus-responsive mechanisms including endogenous (e.g., pH, reactive oxygen species, proteins, etc.) and exogenous stimuli (e.g., light, sound, electricity, magnetism, etc.), are given in detail. Besides, several types of IDDS reported in recent years are reviewed, including various stimulus-responsive systems based on the above mechanisms, radio frequency-controlled IDDS, "closed-loop" IDDS, self-powered IDDS, etc. Finally, the advantages and disadvantages of various IDDS, bottleneck problems, and possible solutions are analyzed to provide directions for subsequent research.
Collapse
Affiliation(s)
- Guang-Qin He
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Haimei Li
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Junyi Liu
- Albany Medical College, New York, 12208, USA
| | - Yu-Lin Hu
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
| | - Yi Liu
- State Key Laboratory of Separation Membrane and Membrane Process & Tianjin Key Laboratory of Green Chemical Technology and Process Engineering, School of Chemistry and Chemical Engineering, Tiangong University, Tianjin, 300387, China
| | - Zhong Lin Wang
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 100083, China
| | - Peng Jiang
- Department of Orthopedics Trauma and Microsurgery, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, Wuhan University, Wuhan, 430071, China
- Hubei Jiangxia Laboratory, Wuhan, 430200, China
| |
Collapse
|
2
|
Gao H, Chen N, Sun L, Sheng D, Zhong Y, Huang M, Yu C, Yang X, Hao Y, Chen S, Shao Z, Chen J. Time-programmed release of curcumin and Zn 2+ from multi-layered RSF coating modified PET graft for improvement of graft-host integration. Int J Biol Macromol 2024; 272:132830. [PMID: 38825264 DOI: 10.1016/j.ijbiomac.2024.132830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 05/09/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Artificial graft serves as the primary grafts used in the clinical management of sports-related injuries. Until now, optimizing its graft-host integration remains a great challenge due to the excessive inflammatory response during the inflammatory phase, coupled with an absence of tissue-inductive capacity during the regeneration phase. Here, a multi-layered regenerated silk fibroin (RSF) coating loaded with curcumin (Cur) and Zn2+ on the surface of the PET grafts (Cur@Zn2+@PET) was designed and fabricated for providing time-matched regulation specifically tailored to address issues arising at both inflammatory and regeneration phases, respectively. The release of Cur and Zn2+ from the Cur@Zn2+@PET followed a time-programmed pattern in vitro. Specifically, cellular assays revealed that Cur@Zn2+@PET initially released Cur during the inflammatory phase, thereby markedly inhibit the expression of inflammatory cytokines TNF-a and IL-1β. Meanwhile, a significant release of Zn2+ was major part during the regeneration phase, serving to induce the osteogenic differentiation of rBMSC. Furthermore, rat model of anterior cruciate ligament reconstruction (ACLR) showed that through time-programmed drug release, Cur@Zn2+@PET could suppress the formation of fibrous interface (FI) caused by inflammatory response, combined with significant new bone (NB) formation during regeneration phase. Consequently, the implementation of the Cur@Zn2+@PET characterized by its time-programmed release patterns hold considerable promise for improving graft-host integration for sports-related injuries.
Collapse
Affiliation(s)
- Han Gao
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Ni Chen
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China
| | - Luyi Sun
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Dandan Sheng
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Yuting Zhong
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Mingru Huang
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Chengxuan Yu
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China
| | - Xing Yang
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China
| | - Yuefeng Hao
- Department of orthopedics, Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215500, Jiangsu, China
| | - Shiyi Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| | - Zhengzhong Shao
- State Key Laboratory of Molecular Engineering of Polymers, Laboratory of Advanced Materials and Department of Macromolecular Science, Fudan University, Shanghai 200433, China.
| | - Jun Chen
- Sports Medicine Institute of Fudan University, Department of Sports Medicine, Huashan Hospital, Fudan University, 12 Middle Wulumuqi Road, Shanghai 200040, China.
| |
Collapse
|
3
|
Liu Y, Chen X, Lin X, Yan J, Yu DG, Liu P, Yang H. Electrospun multi-chamber core-shell nanofibers and their controlled release behaviors: A review. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2024; 16:e1954. [PMID: 38479982 DOI: 10.1002/wnan.1954] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 01/29/2024] [Accepted: 02/26/2024] [Indexed: 06/06/2024]
Abstract
Core-shell structure is a concentric circle structure found in nature. The rapid development of electrospinning technology provides more approaches for the production of core-shell nanofibers. The nanoscale effects and expansive specific surface area of core-shell nanofibers can facilitate the dissolution of drugs. By employing ingenious structural designs and judicious polymer selection, specialized nanofiber drug delivery systems can be prepared to achieve controlled drug release. The synergistic combination of core-shell structure and materials exhibits a strong strategy for enhancing the drug utilization efficiency and customizing the release profile of drugs. Consequently, multi-chamber core-shell nanofibers hold great promise for highly efficient disease treatment. However, little attention concentration is focused on the effect of multi-chamber core-shell nanofibers on controlled release of drugs. In this review, we introduced different fabrication techniques for multi-chamber core-shell nanostructures, including advanced electrospinning technologies and surface functionalization. Subsequently, we reviewed the different controlled drug release behaviors of multi-chamber core-shell nanofibers and their potential needs for disease treatment. The comprehensive elucidation of controlled release behaviors based on electrospun multi-chamber core-shell nanostructures could inspire the exploration of novel controlled delivery systems. Furthermore, once these fibers with customizable drug release profiles move toward industrial mass production, they will potentially promote the development of pharmacy and the treatment of various diseases. This article is categorized under: Therapeutic Approaches and Drug Discovery > Emerging Technologies.
Collapse
Affiliation(s)
- Yubo Liu
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Xiaohong Chen
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Xiangde Lin
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Jiayong Yan
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| | - Deng-Guang Yu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Ping Liu
- School of Materials and Chemistry, University of Shanghai for Science & Technology, Shanghai, China
- Shanghai Engineering Technology Research Center for High-Performance Medical Device Materials, Shanghai, China
| | - Hui Yang
- Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
4
|
Yang Y, Zhang R, Liang Z, Guo J, Chen B, Zhou S, Yu D. Application of Electrospun Drug-Loaded Nanofibers in Cancer Therapy. Polymers (Basel) 2024; 16:504. [PMID: 38399882 PMCID: PMC10892891 DOI: 10.3390/polym16040504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 02/03/2024] [Accepted: 02/08/2024] [Indexed: 02/25/2024] Open
Abstract
In the 21st century, chemotherapy stands as a primary treatment method for prevalent diseases, yet drug resistance remains a pressing challenge. Utilizing electrospinning to support chemotherapy drugs offers sustained and controlled release methods in contrast to oral and implantable drug delivery modes, which enable localized treatment of distinct tumor types. Moreover, the core-sheath structure in electrospinning bears advantages in dual-drug loading: the core and sheath layers can carry different drugs, facilitating collaborative treatment to counter chemotherapy drug resistance. This approach minimizes patient discomfort associated with multiple-drug administration. Electrospun fibers not only transport drugs but can also integrate metal particles and targeted compounds, enabling combinations of chemotherapy with magnetic and heat therapies for comprehensive cancer treatment. This review delves into electrospinning preparation techniques and drug delivery methods tailored to various cancers, foreseeing their promising roles in cancer treatment.
Collapse
Affiliation(s)
- Yaoyao Yang
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| | | | | | | | | | | | - Dengguang Yu
- School of Materials and Chemistry, University of Shanghai for Science and Technology, 516 Jungong Road, Shanghai 200093, China; (R.Z.); (Z.L.); (J.G.); (B.C.); (S.Z.)
| |
Collapse
|
5
|
Wildy M, Lu P. Electrospun Nanofibers: Shaping the Future of Controlled and Responsive Drug Delivery. MATERIALS (BASEL, SWITZERLAND) 2023; 16:7062. [PMID: 38004992 PMCID: PMC10672065 DOI: 10.3390/ma16227062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/02/2023] [Accepted: 11/05/2023] [Indexed: 11/26/2023]
Abstract
Electrospun nanofibers for drug delivery systems (DDS) introduce a revolutionary means of administering pharmaceuticals, holding promise for both improved drug efficacy and reduced side effects. These biopolymer nanofiber membranes, distinguished by their high surface area-to-volume ratio, biocompatibility, and biodegradability, are ideally suited for pharmaceutical and biomedical applications. One of their standout attributes is the capability to offer the controlled release of the active pharmaceutical ingredient (API), allowing custom-tailored release profiles to address specific diseases and administration routes. Moreover, stimuli-responsive electrospun DDS can adapt to conditions at the drug target, enhancing the precision and selectivity of drug delivery. Such localized API delivery paves the way for superior therapeutic efficiency while diminishing the risk of side effects and systemic toxicity. Electrospun nanofibers can foster better patient compliance and enhanced clinical outcomes by amplifying the therapeutic efficiency of routinely prescribed medications. This review delves into the design principles and techniques central to achieving controlled API release using electrospun membranes. The advanced drug release mechanisms of electrospun DDS highlighted in this review illustrate their versatility and potential to improve the efficacy of medical treatments.
Collapse
Affiliation(s)
| | - Ping Lu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA;
| |
Collapse
|
6
|
Hudecki A, Rzeszutek I, Lewińska A, Warski T, Baranowska-Korczyc A, Wojnarowska-Nowak R, Betlej G, Deręgowska A, Hudecki J, Łyko-Morawska D, Likus W, Moskal A, Krzemiński P, Cieślak M, Kęsik-Brodacka M, Kolano-Burian A, Wnuk M. Electrospun fiber-based micro- and nano-system for delivery of high concentrated quercetin to cancer cells. BIOMATERIALS ADVANCES 2023; 153:213582. [PMID: 37591178 DOI: 10.1016/j.bioadv.2023.213582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/28/2023] [Accepted: 08/06/2023] [Indexed: 08/19/2023]
Abstract
The anticancer potential of quercetin (Q), a plant-derived flavonoid, and underlining molecular mechanisms are widely documented in cellular models in vitro. However, biomedical applications of Q are limited due to its low bioavailability and hydrophilicity. In the present study, the electrospinning approach was used to obtain polylactide (PLA) and PLA and polyethylene oxide (PEO)-based micro- and nanofibers containing Q, namely PLA/Q and PLA/PEO/Q, respectively, in a form of non-woven fabrics. The structure and physico-chemical properties of Q-loaded fibers were characterized by scanning electron and atomic force microscopy (SEM and AFM), X-ray powder diffraction (XRD), differential scanning calorimetry (DSC), goniometry and FTIR and Raman spectroscopy. The anticancer action of PLA/Q and PLA/PEO/Q was revealed using two types of cancer and nine cell lines, namely osteosarcoma (MG-63, U-2 OS, SaOS-2 cells) and breast cancer (SK-BR-3, MCF-7, MDA-MB-231, MDA-MB-468, Hs 578T, and BT-20 cells). The anticancer activity of Q-loaded fibers was more pronounced than the action of free Q. PLA/Q and PLA/PEO/Q promoted cell cycle arrest, oxidative stress and apoptotic cell death that was not overcome by heat shock protein (HSP)-mediated adaptive response. PLA/Q and PLA/PEO/Q were biocompatible and safe, as judged by in vitro testing using normal fibroblasts. We postulate that PLA/Q and PLA/PEO/Q with Q releasing activity can be considered as a novel and more efficient micro- and nano-system to deliver Q and eliminate phenotypically different cancer cells.
Collapse
Affiliation(s)
- Andrzej Hudecki
- Lukasiewicz Research Network-Institute of Non-Ferrous Metals, Gliwice, Poland
| | - Iwona Rzeszutek
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Anna Lewińska
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Tymon Warski
- Lukasiewicz Research Network-Institute of Non-Ferrous Metals, Gliwice, Poland; PhD School, Faculty of Mechanical Engineering, Silesian University of Technology, Gliwice, Poland
| | | | - Renata Wojnarowska-Nowak
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, Rzeszow, Poland
| | - Gabriela Betlej
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Anna Deręgowska
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland
| | - Jacek Hudecki
- Department of Laryngology, Faculty of Medical Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | - Dorota Łyko-Morawska
- Department of General Surgery, Vascular Surgery, Angiology and Phlebology, Medical University of Silesia, Katowice, Poland
| | - Wirginia Likus
- Department of Anatomy, Faculty of Health Sciences in Katowice, Medical University of Silesia, Katowice, Poland
| | | | - Piotr Krzemiński
- Center for Microelectronics and Nanotechnology, Institute of Materials Engineering, University of Rzeszow, Rzeszow, Poland
| | - Małgorzata Cieślak
- Lukasiewicz Research Network - Lodz Institute of Technology, Lodz, Poland
| | | | | | - Maciej Wnuk
- Institute of Biotechnology, University of Rzeszow, Rzeszow, Poland.
| |
Collapse
|
7
|
Xing J, Zhang M, Liu X, Wang C, Xu N, Xing D. Multi-material electrospinning: from methods to biomedical applications. Mater Today Bio 2023; 21:100710. [PMID: 37545561 PMCID: PMC10401296 DOI: 10.1016/j.mtbio.2023.100710] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/03/2023] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
Electrospinning as a versatile, simple, and cost-effective method to engineer a variety of micro or nanofibrous materials, has contributed to significant developments in the biomedical field. However, the traditional electrospinning of single material only can produce homogeneous fibrous assemblies with limited functional properties, which oftentimes fails to meet the ever-increasing requirements of biomedical applications. Thus, multi-material electrospinning referring to engineering two or more kinds of materials, has been recently developed to enable the fabrication of diversified complex fibrous structures with advanced performance for greatly promoting biomedical development. This review firstly gives an overview of multi-material electrospinning modalities, with a highlight on their features and accessibility for constructing different complex fibrous structures. A perspective of how multi-material electrospinning opens up new opportunities for specific biomedical applications, i.e., tissue engineering and drug delivery, is also offered.
Collapse
Affiliation(s)
- Jiyao Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Miao Zhang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Xinlin Liu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Chao Wang
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
| | - Nannan Xu
- School of Computer Science and Technology, Ocean University of China, Qingdao, 266000, China
| | - Dongming Xing
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266071, China
- Qingdao Cancer Institute, Qingdao, 266071, China
- School of Life Sciences, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
8
|
Yan BY, Cao ZK, Hui C, Sun TC, Xu L, Ramakrishna S, Yang M, Long YZ, Zhang J. MXene@Hydrogel composite nanofibers with the photo-stimulus response and optical monitoring functions for on-demand drug release. J Colloid Interface Sci 2023; 648:963-971. [PMID: 37331077 DOI: 10.1016/j.jcis.2023.06.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/16/2023] [Accepted: 06/05/2023] [Indexed: 06/20/2023]
Abstract
The photo-stimulus response has the advantage of non-invasiveness, which could be used to control the "on" and "off" of drug release achieving on-demand release. Herein, we design a heating electrospray during electrospinning to prepare photo-stimulus response composite nanofibers consisting of MXene@Hydrogel. This heating electrospray enables to spray MXene@Hydrogel during the electrospinning process, and the hydrogel is uniformly distributed which cannot be achieved by the traditional soaking method. In addition, this heating electrospray can also overcome the difficulty that hydrogels are hard to be uniformly distributed in the inner fiber membrane.The "on" and "off" state of drug release could be controlled by light. Not only near infrared (NIR) light but also sunlight could trigger the drug release, which could benefit outdoor use when cannot find NIR light. Evidence by hydrogen bond has been formed between MXene and Hydrogel, the mechanical property of MXene@Hydrogel composite nanofibers is significantly enhanced, which is conducive to the application of human joints and other parts that need to move. These nanofibers also possess fluorescence property, which is further used to real-time monitor the in-vivo drug release. No matter the fast or slow release, this nanofiber can achieve sensitive detection, which is superior to the current absorbance spectrum method.
Collapse
Affiliation(s)
- Bing-Yu Yan
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Zhi-Kai Cao
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Chao Hui
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Tian-Cai Sun
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Lei Xu
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China
| | - Seeram Ramakrishna
- Center for Nanofibers & Nanotechnology, Department of Mechanical Engineering, National University of Singapore, Singapore 117574 Singapore
| | - Min Yang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China; School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520 China
| | - Yun-Ze Long
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| | - Jun Zhang
- Collaborative Innovation Center for Nanomaterials & Devices, College of Physics, Qingdao University, Qingdao 266071 PR China.
| |
Collapse
|
9
|
Li Y, Yuan R, Luo Y, Guo X, Yang G, Li X, Zhou S. A Hierarchical Structured Fiber Device Remodeling the Acidic Tumor Microenvironment for Enhanced Cancer Immunotherapy. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300216. [PMID: 36912443 DOI: 10.1002/adma.202300216] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/23/2023] [Indexed: 05/26/2023]
Abstract
The acidic microenvironment of tumors significantly reduces the anti-tumor effect of immunotherapy. Herein, a hierarchically structured fiber device is developed as a local drug delivery system for remodeling the acidic tumor microenvironment (TME) to improve the therapeutic effect of immunotherapy. Proton pump inhibitors in the fiber matrix can be sustainedly released to inhibit the efflux of intracellular H+ from tumor cells, resulting in the remodeling of the acidic TME. The targeted micelles and M1 macrophage membrane-coated nanoparticles in internal cavities of fiber can induce immunogenic cell death (ICD) of tumor cells and phenotypic transformation of tumor-associated macrophages (TAMs), respectively. The relief of the acidity in the TME further promotes ICD and the polarization of TAMs, alleviating the immunosuppressive microenvironment and synergistically enhancing the antitumor immune response. In vivo results reveal this local drug delivery system restores the pH value of TME from 6.8 to 7.2 and exhibit an excellent immunotherapeutic effect.
Collapse
Affiliation(s)
- Yan Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Ruiting Yuan
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Yang Luo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xing Guo
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Guang Yang
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Xilin Li
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| | - Shaobing Zhou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, 610031, P. R. China
- Key Laboratory of Advanced Technologies of Materials Ministry of Education, School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, P. R. China
| |
Collapse
|
10
|
Cheng C, Ma J, Zhao J, Lu H, Liu Y, He C, Lu M, Yin X, Li J, Ding M. Redox-dual-sensitive multiblock copolymer vesicles with disulfide-enabled sequential drug delivery. J Mater Chem B 2023; 11:2631-2637. [PMID: 36794489 DOI: 10.1039/d2tb02686d] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Based on disulfide-enriched multiblock copolymer vesicles, we present a straightforward sequential drug delivery system with dual-redox response that releases hydrophilic doxorubicin hydrochloride (DOX·HCl) and hydrophobic paclitaxel (PTX) under oxidative and reductive conditions, respectively. When compared to concurrent therapeutic delivery, the spatiotemporal control of drug release allows for an improved combination antitumor effect. The simple and smart nanocarrier has promising applications in the field of cancer therapy.
Collapse
Affiliation(s)
- Cheng Cheng
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jiayun Ma
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jinling Zhao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Haiying Lu
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Chuanshi He
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Man Lu
- Department of Ultrasound Medical Center, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
| | - Xiaohong Yin
- Science and Technology Innovation Center, Guangyuan Central Hospital, Guangyuan 628000, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Alrushaid N, Khan FA, Al-Suhaimi EA, Elaissari A. Nanotechnology in Cancer Diagnosis and Treatment. Pharmaceutics 2023; 15:pharmaceutics15031025. [PMID: 36986885 PMCID: PMC10052895 DOI: 10.3390/pharmaceutics15031025] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/30/2023] Open
Abstract
Traditional cancer diagnosis has been aided by the application of nanoparticles (NPs), which have made the process easier and faster. NPs possess exceptional properties such as a larger surface area, higher volume proportion, and better targeting capabilities. Additionally, their low toxic effect on healthy cells enhances their bioavailability and t-half by allowing them to functionally penetrate the fenestration of epithelium and tissues. These particles have attracted attention in multidisciplinary areas, making them the most promising materials in many biomedical applications, especially in the treatment and diagnosis of various diseases. Today, many drugs are presented or coated with nanoparticles for the direct targeting of tumors or diseased organs without harming normal tissues/cells. Many types of nanoparticles, such as metallic, magnetic, polymeric, metal oxide, quantum dots, graphene, fullerene, liposomes, carbon nanotubes, and dendrimers, have potential applications in cancer treatment and diagnosis. In many studies, nanoparticles have been reported to show intrinsic anticancer activity due to their antioxidant action and cause an inhibitory effect on the growth of tumors. Moreover, nanoparticles can facilitate the controlled release of drugs and increase drug release efficiency with fewer side effects. Nanomaterials such as microbubbles are used as molecular imaging agents for ultrasound imaging. This review discusses the various types of nanoparticles that are commonly used in cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Noor Alrushaid
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| | - Firdos Alam Khan
- Department of Stem Cell Biology, Institute for Research and Medical Consultations, Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Ebtesam Abdullah Al-Suhaimi
- Biology Department, College of Science, Institute of Research & Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, P.O. Box 1982, Dammam 31441, Saudi Arabia
| | - Abdelhamid Elaissari
- Univ. Lyon, University Claude Bernard Lyon-1, CNRS, ISA-UMR 5280, 69622 Lyon, France
| |
Collapse
|
12
|
Zhang Y, Zhou J, Zhang Y, Zhang D, Yong KT, Xiong J. Elastic Fibers/Fabrics for Wearables and Bioelectronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2203808. [PMID: 36253094 PMCID: PMC9762321 DOI: 10.1002/advs.202203808] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Wearables and bioelectronics rely on breathable interface devices with bioaffinity, biocompatibility, and smart functionality for interactions between beings and things and the surrounding environment. Elastic fibers/fabrics with mechanical adaptivity to various deformations and complex substrates, are promising to act as fillers, carriers, substrates, dressings, and scaffolds in the construction of biointerfaces for the human body, skins, organs, and plants, realizing functions such as energy exchange, sensing, perception, augmented virtuality, health monitoring, disease diagnosis, and intervention therapy. This review summarizes and highlights the latest breakthroughs of elastic fibers/fabrics for wearables and bioelectronics, aiming to offer insights into elasticity mechanisms, production methods, and electrical components integration strategies with fibers/fabrics, presenting a profile of elastic fibers/fabrics for energy management, sensors, e-skins, thermal management, personal protection, wound healing, biosensing, and drug delivery. The trans-disciplinary application of elastic fibers/fabrics from wearables to biomedicine provides important inspiration for technology transplantation and function integration to adapt different application systems. As a discussion platform, here the main challenges and possible solutions in the field are proposed, hopefully can provide guidance for promoting the development of elastic e-textiles in consideration of the trade-off between mechanical/electrical performance, industrial-scale production, diverse environmental adaptivity, and multiscenario on-spot applications.
Collapse
Affiliation(s)
- Yufan Zhang
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| | - Jiahui Zhou
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Yue Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Desuo Zhang
- College of Textile and Clothing EngineeringSoochow UniversitySuzhou215123China
| | - Ken Tye Yong
- School of Biomedical EngineeringThe University of SydneySydneyNew South Wales2006Australia
| | - Jiaqing Xiong
- Innovation Center for Textile Science and TechnologyDonghua UniversityShanghai201620China
| |
Collapse
|
13
|
Yadav P, Dua C, Bajaj A. Advances in Engineered Biomaterials Targeting Angiogenesis and Cell Proliferation for Cancer Therapy. CHEM REC 2022; 22:e202200152. [PMID: 36103616 DOI: 10.1002/tcr.202200152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/23/2022] [Indexed: 12/15/2022]
Abstract
Antiangiogenic therapy in combination with chemotherapeutic agents is an effective strategy for cancer treatment. However, this combination therapy is associated with several challenges including non-specific biodistribution leading to systemic toxicity. Biomaterial-mediated codelivery of chemotherapeutic and anti-angiogenic agents can exploit their passive and active targeting abilities, leading to improved drug accumulation at the tumor site and therapeutic outcomes. In this review, we present the progress made in the field of engineered biomaterials for codelivery of chemotherapeutic and antiangiogenic agents. We present advances in engineering of liposome/hydrogel/micelle-based biomaterials for delivery of combination of anticancer and anti-angiogenesis drugs, or combination of anticancer and siRNA targeting angiogenesis, and targeted nanoparticles. We then present our perspective on developing strategies for targeting angiogenesis and cell proliferation for cancer therapy.
Collapse
Affiliation(s)
- Poonam Yadav
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Chhavi Dua
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| | - Avinash Bajaj
- Laboratory of Nanotechnology and Chemical Biology, Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone Faridabad - Gurgaon Expressway, Faridabad, 121001, India
| |
Collapse
|
14
|
Qian J, Su L, He J, Ruan R, Wang J, Wang Z, Xiao P, Liu C, Cao Y, Li W, Zhang J, Song J, Yang H. Dual-Modal Imaging and Synergistic Spinal Tumor Therapy Enabled by Hierarchical-Structured Nanofibers with Cascade Release and Postoperative Anti-adhesion. ACS NANO 2022; 16:16880-16897. [PMID: 36136320 DOI: 10.1021/acsnano.2c06848] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Most treatments for spinal cancer are accompanied by serious side effects including subsequent tumor recurrence, spinal cord compression, and tissue adhesion, thus a highly effective treatment is crucial for preserving spinal and neurological functionalities. Herein, trilayered electrospun doxorubicin@bovine serum albumin/poly(ε-caprolactone)/manganese dioxide (DOX@BSA/PCL/MnO2) nanofibers with excellent antiadhesion ability, dual glutathione/hydrogen peroxide (GSH/H2O2) responsiveness, and cascade release of Mn2+/DOX was fabricated for realizing an efficient spinal tumor therapy. In detail, Fenton-like reactions between MnO2 in the fibers outermost layer and intra-/extracellular glutathione within tumors promoted the first-order release of Mn2+. Then, sustained release of DOX from the fibers' core layer occurred along with the infiltration of degradation fluid. Such release behavior avoided toxic side effects of drugs, regulated inflammatory tumor microenvironment, amplified tumor elimination efficiency through synergistic chemo-/chemodynamic therapies, and inhibited recurrence of spinal tumors. More interestingly, magnetic resonance and photoacoustic dual-modal imaging enabled visualizations of tumor therapy and material degradation in vivo, achieving rapid pathological analysis and diagnosis. On the whole, such versatile hierarchical-structured nanofibers provided a reference for rapid and potent theranostic of spinal cancer in future clinical translations.
Collapse
Affiliation(s)
- Jiaqi Qian
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Lichao Su
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jingjing He
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Renjie Ruan
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jun Wang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Ziyi Wang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Peijie Xiao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Changhua Liu
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Yang Cao
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Weidong Li
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jin Zhang
- College of Chemical Engineering, Fuzhou University, 2 Xueyuan Road, Fuzhou 350108, P. R. China
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
| | - Jibin Song
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| | - Huanghao Yang
- Qingyuan Innovation Laboratory, 1 Xueyuan Road, Quanzhou 362801, P. R. China
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China
| |
Collapse
|
15
|
Du T, Yang T, Xu L, Li X, Yang G, Zhou S. An Implantable Polydopamine Nanoparticle‐in‐Nanofiber Device for Synergistic Cancer Photothermal/Chemotherapy. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Affiliation(s)
- Tianyi Du
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ting Yang
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Ling Xu
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Xilin Li
- School of Life Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 China
| |
Collapse
|
16
|
Enzyme-Enhanced Codelivery of Doxorubicin and Bcl-2 Inhibitor by Electrospun Nanofibers for Synergistic Inhibition of Prostate Cancer Recurrence. Pharmaceuticals (Basel) 2022; 15:ph15101244. [PMID: 36297356 PMCID: PMC9610395 DOI: 10.3390/ph15101244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/01/2022] [Accepted: 10/05/2022] [Indexed: 11/17/2022] Open
Abstract
One of the great challenges of postoperative prostate cancer management is tumor recurrence. Although postoperative chemotherapy presents benefits to inhibit unexpected recurrence, it is still limited due to the drug resistance or intolerable complications of some patients. Electrospun nanofiber, as a promising drug carrier, demonstrating sustained drug release behavior, can be implanted into the tumor resection site during surgery and is conductive to tumor inhibition. Herein, we fabricated electrospun nanofibers loaded with doxorubicin (DOX) and ABT199 to synergistically prevent postoperative tumor recurrence. Enzymatic degradation of the biodegradable electrospun nanofibers facilitated the release of the two drugs. The primarily released DOX from the electrospun nanofibers effectively inhibited tumor recurrence. However, the sustained release of DOX led to drug resistance of the tumor cells, yielding unsatisfactory eradication of the residual tumor. Remarkably, the combined administration of DOX and ABT199, simultaneously released from the nanofibers, not only prolonged the chemotherapy by DOX but also overcame the drug resistance via inhibiting the Bcl-2 activation and thereby enhancing the apoptosis of tumor cells by ABT199. This dual-drug-loaded implant system, combining efficient chemotherapy and anti-drug resistance, offers a prospective strategy for the potent inhibition of postoperative tumor recurrence.
Collapse
|
17
|
Shi Y, Ye J, Shen H, Xu Y, Wan R, Ye X, Jin J, Xie W. Apatinib enhances chemosensitivity of ABT‐199 in diffuse large B‐cell lymphoma. Mol Oncol 2022; 16:3735-3753. [PMID: 36053810 PMCID: PMC9580892 DOI: 10.1002/1878-0261.13309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 07/18/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022] Open
Abstract
To investigate the effect of Apatinib (an inhibitor targeting VEGFR‐2) enhances chemosensitivity of ABT‐199 on diffuse large B‐cell lymphoma (DLBCL). Viability assay and flow cytometric assay for determining apoptosis, cell cycle, mitochondrial membrane potential, reactive oxygen species and immunoblotting were used to explore the combination effect in DLBCL cell lines, DLBCL patient samples, and DLBCL mouse models. RNA sequencing assay helped identify mechanisms of ABT‐199 plus Apatinib. The results show that ABT‐199 combined with Apatinib inhibited cell proliferation, reduced colony‐forming capacity, and induced apoptosis and cell cycle arrest in DLBCL cells. Mechanistically, the combination therapy inhibited tumour cell growth and promoted tumour cell death by regulating EDN1 and MAPK‐related pathways and activating the intrinsic apoptotic pathway. The effect of the combination therapy was also validated in primary DLBCL blasts and xenograft mouse models. Our findings indicate that Apatinib enhances the chemosensitivity of ABT‐199 and might serve as a promising therapeutic strategy for DLBCL.
Collapse
Affiliation(s)
- Yuanfei Shi
- Department of Hematology the First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang China
| | - Jing Ye
- Sports Medicine Department Beijing Key Laboratory of Sports Injuries,Peking University Third Hospital Beijing China
- Institute of Sports Medicine of Peking University Beijing China
| | - Huafei Shen
- Department of Hematology the First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang China
| | - Yi Xu
- Department of Hematology the First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang China
| | - Rui Wan
- Department of Intensive Care Unit Taihe Hospital, Hubei University of Medicine Shiyan 442000 Hubei Province China
| | - Xiujin Ye
- Department of Hematology the First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang China
| | - Jie Jin
- Department of Hematology the First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang China
| | - Wanzhuo Xie
- Department of Hematology the First Affiliated Hospital, College of Medicine, Zhejiang University Hangzhou Zhejiang China
| |
Collapse
|
18
|
Zhou L, Wu J, Sun Z, Wang W. Oxidation and Reduction Dual-Responsive Polymeric Prodrug Micelles Co-delivery Precisely Prescribed Paclitaxel and Honokiol for Laryngeal Carcinoma Combination Therapy. Front Pharmacol 2022; 13:934632. [PMID: 35935846 PMCID: PMC9354237 DOI: 10.3389/fphar.2022.934632] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/17/2022] [Indexed: 12/05/2022] Open
Abstract
Laryngeal carcinoma is the most common head and neck malignancy globally, and chemotherapy is still the most common treatment for this type of carcinoma. Monotherapy has become powerless because of the lack of drugs in the anticancer agent library, the difficult process of new drug discovery, and the widespread drug resistance. Combination therapy with two agents, in particular Chinese herbal medicines with chemotherapy drugs, is a potential alternative to chemotherapy alone. However, combination therapy faces difficulties in delivering multiple drugs to tumor tissue in a precise ratio. Here, a cocktail polymeric prodrug micelle (PHPPM) was developed using an oxidation and reduction dual-responsive polymeric paclitaxel (PTX) and polymeric honokiol (HK) prodrugs. Both of them were obtained by covalently conjugating the drug to dextran via diselenium bonds. Following optimization and characterization, the PHPPM with the precise mass ratio of PTX and HK was obtained, enabling ratiometric drug loading, synchronized drug release in response to tumor high-level reactive oxygen species and glutathione environment, long blood circulation, and high tumor accumulation. This co-delivery system can effectively inhibit laryngeal carcinoma growth in vitro and in vivo. Codelivery of chemotherapy agents and Chinese herbal medicine with a precise ratio and controlled release of the two drugs at the tumor site provides an effective approach to clinical therapy for other laryngeal carcinomas.
Collapse
|
19
|
Fang Y, Liu Z, Wang H, Luo X, Xu Y, Chan HF, Lv S, Tao Y, Li M. Implantable Sandwich-like Scaffold/Fiber Composite Spatiotemporally Releasing Combretastatin A4 and Doxorubicin for Efficient Inhibition of Postoperative Tumor Recurrence. ACS APPLIED MATERIALS & INTERFACES 2022; 14:27525-27537. [PMID: 35687834 DOI: 10.1021/acsami.2c02103] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Tumor recurrence is a critical conundrum in the postoperative therapy, on account of severe bleeding with disseminated tumor cells, residual tumor cells, and the rich nutrient and oxygen supply transported to tumors by the abundant blood vessels. Biodegradable drug-loaded implants, inserted in the resection cavity right away upon the surgery, possess bleeding prevention and efficient chemotherapeutic capabilities, considered to be a promising strategy to efficiently inhibit the recurrence of the solid tumor. Here, we developed a sandwich-like composite consisting of the combretastatin A4 (CA4)-loaded 3D-printed scaffold and doxorubicin (DOX)-loaded electrospun fiber (Scaffold-CA4@Fiber-DOX), presenting hemostatic, chemotherapeutic, and antibacterial potencies. The lyophilized 3D-printed scaffold with a porous structure rapidly absorbed and clotted the blood cells and disseminated tumor cells to prevent bleeding and tumor metastasis. Subsequently, the preferentially released CA4 from the scaffold disrupted the microtubules of the vascular endothelial cell, resulting in vascular deformation and consequent insufficient nutrient supply to the solid tumor. The sustained release of DOX from the sandwiched electrospun fiber dramatically inhibited the peripheral tumor cell proliferation. This all-in-one multifunctional implant system, combining efficient vascular disruption and chemotherapy, provides a promising strategy for postoperative tumor therapy.
Collapse
Affiliation(s)
- Youqiang Fang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Zheng Liu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Xing Luo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Yanteng Xu
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, School of Biomedical Science, The Chinese University of Hong Kong, Hong Kong 999077, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
- Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
20
|
Zhang Y, Yue X, Yang S, Li X, Cui L, Cui X, Shi Y, Liu Z, Guo X, Li Y. Long circulation and tumor-targeting biomimetic nanoparticles for efficient chemo/photothermal synergistic therapy. J Mater Chem B 2022; 10:5035-5044. [PMID: 35726686 DOI: 10.1039/d2tb00748g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Photothermal therapy combined with chemotherapy based on nanomedicine has been considered a promising strategy for improving therapeutic efficacy in a tumor. However, nanomedicine can be easily cleared by the immune system without specific surface engineering modifications, thus affecting the ultimate efficacy. Herein, multifunctional biomimetic nanoparticles (Bio-RBCm@PDA@MSN-DOX) with enhanced long circulation and targeting ability are constructed by coating large pore-sized mesoporous silica (MSN) with polydopamine (PDA) layers in a biotin modified red blood cell membrane (Bio-RBCm) for efficient chemo/photothermal synergistic therapy. It is demonstrated that Bio-RBCm@PDA@MSN-DOX presents high photothermal conversion efficiency (40.17%) and enhanced capability to accelerate the release of the anticancer drug (doxorubicin, DOX), thus showing a good synergistic therapeutic effect in cell experiments. More importantly, with the assistance of the biotin and RBC membrane, Bio-RBCm@PDA@MSN-DOX can successfully evade immune clearance and effectively target transport to HeLa tumor sites, finally accomplishing up to 98.95% tumor inhibition with negligible side effects to normal tissues. This multilayer structure presents a valuable model for future therapeutic applications with safe and effective tumor chemotherapy and photothermal therapy.
Collapse
Affiliation(s)
- Yifan Zhang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuanyu Yue
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Shengchao Yang
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xianglong Li
- Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Lin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xiaobin Cui
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Yue Shi
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong 518055, China
| | - Zhiyong Liu
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China.
| | - Xuhong Guo
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,State Key Laboratory of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| | - Yongsheng Li
- School of Chemistry and Chemical Engineering, Shihezi University/Key Laboratory of Green Process for Chemical Engineering/Key Laboratory for Chemical Materials of Xinjiang Uygur Autonomous Region/Engineering Center for Chemical Materials of Xinjiang Bingtuan, Shihezi University, Xinjiang, Shihezi 832003, China. .,Lab of Low-Dimensional Materials Chemistry, Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
| |
Collapse
|
21
|
Abu Owida H, Al-Nabulsi JI, Alnaimat F, Al Sharah A, Al-Ayyad M, Turab NM, Abdullah M. Advancement of Nanofibrous Mats and Common Useful Drug Delivery Applications. Adv Pharmacol Pharm Sci 2022; 2022:9073837. [PMID: 35492808 PMCID: PMC9042622 DOI: 10.1155/2022/9073837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 02/15/2022] [Accepted: 04/07/2022] [Indexed: 11/18/2022] Open
Abstract
Electrospinning enables simple and cost-effective production of polymer nanofibers from different polymer materials. Drug delivery systems are capable of achieving maximum drug treatment benefits by significantly reducing adverse complications. Electrospun nanofibers have recently attracted considerable attention owing to their distinctive properties, including flexibility and biocompatibility. The implementation of functional constituents within nanostructure fibers blends is an effective technique for the administration of a variety of drugs in animal research, broadening the nanofiber capability and reliability. The nanofibrous mesh and its various application purposes are discussed in terms of a summary of recent research, emphasizing the ease of streaming and a large number of combinations of this approach, which could lead to a breakthrough in targeted therapy.
Collapse
Affiliation(s)
- Hamza Abu Owida
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Jamal I. Al-Nabulsi
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Feras Alnaimat
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ashraf Al Sharah
- Computer Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Muhammad Al-Ayyad
- Medical Engineering Department, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Nidal M. Turab
- Department of Networks and Information Security, Faculty of Information Technology, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Mustafa Abdullah
- Civil Engineering, Faculty of Engineering, Al-Ahliyya Amman University, Amman 19328, Jordan
| |
Collapse
|
22
|
Ran R, Peng Y, Xiao L, Wang Y, Zhang T, Liu Z, Li Z. Fabrication of antimicrobial poly(lactic‐
co
‐glycolic acid)/silk fibroin/aloe anthraquinone fibrous membranes for potential application of wound healing. J Appl Polym Sci 2022. [DOI: 10.1002/app.52394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ruilong Ran
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| | - Yan Peng
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| | - Lang Xiao
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| | - Yanlai Wang
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| | - Tonghua Zhang
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| | - Zhongwen Liu
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| | - Zhi Li
- College of Sericulture, Textile and Biomass Sciences Southwest University, Chongqing Engineering Chongqing China
| |
Collapse
|
23
|
Elsadek NE, Nagah A, Ibrahim TM, Chopra H, Ghonaim GA, Emam SE, Cavalu S, Attia MS. Electrospun Nanofibers Revisited: An Update on the Emerging Applications in Nanomedicine. MATERIALS 2022; 15:ma15051934. [PMID: 35269165 PMCID: PMC8911671 DOI: 10.3390/ma15051934] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 01/31/2022] [Accepted: 02/08/2022] [Indexed: 02/06/2023]
Abstract
Electrospinning (ES) has become a straightforward and customizable drug delivery technique for fabricating drug-loaded nanofibers (NFs) using various biodegradable and non-biodegradable polymers. One of NF's pros is to provide a controlled drug release through managing the NF structure by changing the spinneret type and nature of the used polymer. Electrospun NFs are employed as implants in several applications including, cancer therapy, microbial infections, and regenerative medicine. These implants facilitate a unique local delivery of chemotherapy because of their high loading capability, wide surface area, and cost-effectiveness. Multi-drug combination, magnetic, thermal, and gene therapies are promising strategies for improving chemotherapeutic efficiency. In addition, implants are recognized as an effective antimicrobial drug delivery system overriding drawbacks of traditional antibiotic administration routes such as their bioavailability and dosage levels. Recently, a sophisticated strategy has emerged for wound healing by producing biomimetic nanofibrous materials with clinically relevant properties and desirable loading capability with regenerative agents. Electrospun NFs have proposed unique solutions, including pelvic organ prolapse treatment, viable alternatives to surgical operations, and dental tissue regeneration. Conventional ES setups include difficult-assembled mega-sized equipment producing bulky matrices with inadequate stability and storage. Lately, there has become an increasing need for portable ES devices using completely available off-shelf materials to yield highly-efficient NFs for dressing wounds and rapid hemostasis. This review covers recent updates on electrospun NFs in nanomedicine applications. ES of biopolymers and drugs is discussed regarding their current scope and future outlook.
Collapse
Affiliation(s)
- Nehal E. Elsadek
- Department of Pharmacokinetics and Biopharmaceutics, Institute of Biomedical Sciences, Tokushima University, 1-78-1 Sho-machi, Tokushima 770-8505, Japan;
| | - Abdalrazeq Nagah
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (A.N.); (G.A.G.)
| | - Tarek M. Ibrahim
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India;
| | - Ghada A. Ghonaim
- Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (A.N.); (G.A.G.)
| | - Sherif E. Emam
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
- Correspondence: (S.C.); (M.S.A.)
| | - Mohamed S. Attia
- Department of Pharmaceutics, Faculty of Pharmacy, Zagazig University, Zagazig 44519, Egypt; (T.M.I.); (S.E.E.)
- Correspondence: (S.C.); (M.S.A.)
| |
Collapse
|
24
|
Pang L, Zhang L, Zhou H, Cao L, Shao Y, Li T. Reactive Oxygen Species-Responsive Nanococktail With Self-Amplificated Drug Release for Efficient Co-Delivery of Paclitaxel/Cucurbitacin B and Synergistic Treatment of Gastric Cancer. Front Chem 2022; 10:844426. [PMID: 35308794 PMCID: PMC8931329 DOI: 10.3389/fchem.2022.844426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 02/03/2022] [Indexed: 12/21/2022] Open
Abstract
Application of drug combinations is a powerful strategy for the therapy of advanced gastric cancer. However, the clinical use of such combinations is greatly limited by the occurrence of severe systemic toxicity. Although polymeric-prodrug-based nanococktails can significantly reduce toxicity of drugs, they have been shown to have low intracellular drug release. To balance between efficacy and safety during application of polymeric-prodrug-based nanococktails, a reactive oxygen species (ROS)-responsive nanococktail (PCM) with self-amplification drug release was developed in this study. In summary, PCM micelles were co-assembled from ROS-sensitive cucurbitacin B (CuB) and paclitaxel (PTX) polymeric prodrug, which were fabricated by covalently grafting PTX and CuB to dextran via an ROS-sensitive linkage. To minimize the side effects of the PCM micelles, a polymeric-prodrug strategy was employed to prevent premature leakage. Once it entered cancer cells, PCM released CuB and PTX in response to ROS. Moreover, the released CuB further promoted ROS generation, which in turn enhanced drug release for better therapeutic effects. In vivo antitumor experiments showed that the PCM-treated group had lower tumor burden (tumor weight was reduced by 92%), but bodyweight loss was not significant. These results indicate that the developed polymeric prodrug, with a self-amplification drug release nanococktail strategy, can be an effective and safe strategy for cancer management.
Collapse
Affiliation(s)
- Lijun Pang
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Lei Zhang
- Department of Pharmacy, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Hong Zhou
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Ling Cao
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Yueqin Shao
- Department of Oncology, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
| | - Tengyun Li
- Department of Pharmacy, The Affiliated Jiangsu Shengze Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Tengyun Li,
| |
Collapse
|
25
|
Pial MMH, Tomitaka A, Pala N, Roy U. Implantable Devices for the Treatment of Breast Cancer. JOURNAL OF NANOTHERANOSTICS 2022; 3:19-38. [PMID: 37600442 PMCID: PMC10438892 DOI: 10.3390/jnt3010003] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2023] Open
Abstract
Breast cancer is one of the leading causes of death in the female population worldwide. Standard treatments such as chemotherapy show noticeable results. However, along with killing cancer cells, it causes systemic toxicity and apoptosis of the nearby healthy cells, therefore patients must endure side effects during the treatment process. Implantable drug delivery devices that enhance therapeutic efficacy by allowing localized therapy with programmed or controlled drug release can overcome the shortcomings of conventional treatments. An implantable device can be composed of biopolymer materials, nanocomposite materials, or a combination of both. This review summarizes the recent research and current state-of-the art in these types of implantable devices and gives perspective for future directions.
Collapse
Affiliation(s)
| | - Asahi Tomitaka
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
- Department of Immunology and Nano-Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL 33199, USA
- Department of Computer Science, University of Houston-Victoria, Victoria, TX 77901, USA
| | - Nezih Pala
- Department of Electrical and Computer Engineering, Florida International University, Miami, FL 33174, USA
| | - Upal Roy
- Department of Health and Biomedical Sciences, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
26
|
He Y, Tian M, Li X, Hou J, Chen S, Yang G, Liu X, Zhou S. A Hierarchical-Structured Mineralized Nanofiber Scaffold with Osteoimmunomodulatory and Osteoinductive Functions for Enhanced Alveolar Bone Regeneration. Adv Healthc Mater 2022; 11:e2102236. [PMID: 34779582 DOI: 10.1002/adhm.202102236] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Revised: 11/07/2021] [Indexed: 02/05/2023]
Abstract
Alveolar bone resorption is a major cause of teeth loss and jeopardizes the osseointegration of dental implants, greatly affecting patient's quality of life and health. It is still a great challenge to completely regenerate the alveolar bone defect through traditional guided bone regeneration (GBR) membranes due to their limited bioactivity and regeneration potential. Herein, a new hierarchical-structured mineralized nanofiber (HMF) scaffold, which is combined with both anisotropic and isotropic nanofibrous surface topography and the mineralized particles, is fabricated via a simple template-assisted electrospinning technology and in situ mineralization method. This HMF scaffold can not only directly induce osteogenic differentiation of bone mesenchymal stem cells (osteoinduction), but also stimulate macrophage toward pro-healing (M2) phenotype-polarization with an elevated secretion of the pro-healing cytokines, eventually enhancing the osteogenesis (osteoimmunomodulation). The results of in vivo rat alveolar bone defect repair experiments demonstrate that as compared with the combination of commercial Bio-Gide and Bio-Oss, the single HMF scaffold shows comparable or even superior bone repair effect, with better tissue-integration and more suitable degradation time and accompanied by a simplified operation.
Collapse
Affiliation(s)
- Yang He
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Mi Tian
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Xilin Li
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Jianwen Hou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| | - Song Chen
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Guang Yang
- College of Medicine Southwest Jiaotong University Chengdu 610031 China
| | - Xian Liu
- State Key Laboratory of Oral Diseases National Clinical Research Center for Oral Diseases Department of Orthodontics West China Hospital of Stomatology Sichuan University Chengdu Sichuan 610041 P. R. China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of Materials Ministry of Education School of Materials Science and Engineering Southwest Jiaotong University Chengdu 610031 P. R. China
| |
Collapse
|
27
|
Liping Y, Jian H, Zhenchao T, Yan Z, Jing Y, Yangyang Z, Jing G, Liting Q. GSH-responsive poly-resveratrol based nanoparticles for effective drug delivery and reversing multidrug resistance. Drug Deliv 2022; 29:229-237. [PMID: 35001781 PMCID: PMC8745365 DOI: 10.1080/10717544.2021.2023700] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Cancer poses a serious threat to human health and is the most common cause of human death. Polymer-based nanomedicines are presently used to enhance the treatment effectiveness and decrease the systemic toxicity of chemotherapeutic agents. However, the disadvantage of currently polymeric carriers is without therapy procedure. Herein, for the first time, glutathione (GSH)-responsive polymer (PRES) with anti-cancer effect was synthesized following the condensation–polymerization method using resveratrol (RES) and 3,3′-dithiodipropionic acid. PRES can not only suppress the tumor cells growth but can also self-assemble into nanoparticles (∼93 nm) for delivering antitumor drugs, such as paclitaxel (PTX@PRES NPs). The system could achieve high drug loading (∼7%) and overcome multidrug resistance (MDR). The results from the in vitro studies revealed that the NPs formed of PRES were stable in the systemic circulation, while could be efficiently degraded in tumor cells high GSH environment. Results from cytotoxicity tests confirmed that PTX@PRES NPs could effectively suppress the growth of cancer cells (A549) and drug-resistant cells (A549/PTX). The NPs could also be used to significantly increase the therapeutic efficacy of the drugs in A549/PTX tumor-bearing mice. In vivo investigations also demonstrated that the PRES-based NPs exhibited tumor inhibition effects. In summary, we report that the GSH-responsive polymer synthesized by us exhibited multiple interesting functions and could be used for effective drug delivery. The polymer exhibited good therapeutic effects and could be used to overcome MDR. Thus, the synthesized system can be used to develop a new strategy for treating cancer.
Collapse
Affiliation(s)
- Yang Liping
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - He Jian
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Tao Zhenchao
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhou Yan
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Yang Jing
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Zhang Yangyang
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Gao Jing
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| | - Qian Liting
- Division of Life Sciences and Medicine, Department of Radiotherapy Oncology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei, Anhui, China
| |
Collapse
|
28
|
Shafiei M, Ansari MNM, Razak SIA, Khan MUA. A Comprehensive Review on the Applications of Exosomes and Liposomes in Regenerative Medicine and Tissue Engineering. Polymers (Basel) 2021; 13:2529. [PMID: 34372132 PMCID: PMC8347192 DOI: 10.3390/polym13152529] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022] Open
Abstract
Tissue engineering and regenerative medicine are generally concerned with reconstructing cells, tissues, or organs to restore typical biological characteristics. Liposomes are round vesicles with a hydrophilic center and bilayers of amphiphiles which are the most influential family of nanomedicine. Liposomes have extensive research, engineering, and medicine uses, particularly in a drug delivery system, genes, and vaccines for treatments. Exosomes are extracellular vesicles (EVs) that carry various biomolecular cargos such as miRNA, mRNA, DNA, and proteins. As exosomal cargo changes with adjustments in parent cells and position, research of exosomal cargo constituents provides a rare chance for sicknesses prognosis and care. Exosomes have a more substantial degree of bioactivity and immunogenicity than liposomes as they are distinctly chiefly formed by cells, which improves their steadiness in the bloodstream, and enhances their absorption potential and medicinal effectiveness in vitro and in vivo. In this review, the crucial challenges of exosome and liposome science and their functions in disease improvement and therapeutic applications in tissue engineering and regenerative medicine strategies are prominently highlighted.
Collapse
Affiliation(s)
- Mojtaba Shafiei
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | | | - Saiful Izwan Abd Razak
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| | - Muhammad Umar Aslam Khan
- Bioinspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai 81300, Johor, Malaysia; (M.S.); (M.U.A.K.)
| |
Collapse
|
29
|
Wang H, Jin Y, Chen Y, Luo Y, Lv S, Li M, Tao Y. Multifunctional hybrid sponge for in situ postoperative management to inhibit tumor recurrence. Biomater Sci 2021; 9:4066-4075. [PMID: 33908452 DOI: 10.1039/d1bm00085c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Disseminated tumor cells in bleeding and residual tumor cells in the resection tumor site are the primary factors that result in tumor recurrence after surgery. Safe and efficient local implantation of the drug depot system into the resection cavity to inhibit tumor recurrence would be of great benefit to reduce the mortality of postoperative patients. Here, a sandwich-like doxorubicin-triptolide-loaded fiber/(chitosan/gelatin) sponge, DTF/CGS, is fabricated, combining hemostatic, antibacterial, and chemotherapeutic capability. The CGS obtained via freeze-drying can efficiently prevent bleeding; meanwhile, the metastatic residual tumor cells are stuck with the clotted absorbed blood. Subsequently, dual drugs released from the electrospun fiber can further kill the stuck tumor cells in CGS and the disseminated tumor cells to significantly inhibit the tumor recurrence. This antitumor recurrence strategy by immediately implanting a multifunctional hybrid sponge for in situ postoperative management may possess great potential for preventing tumor recurrence.
Collapse
Affiliation(s)
- Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yanyan Chen
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yun Luo
- Department of Urology, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China
| | - Shixian Lv
- Department of Bioengineering, University of Washington, Seattle, WA 98195, USA
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China.
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510630, China. and Guangdong Provincial Key Laboratory of Liver Disease, Guangzhou 510630, China
| |
Collapse
|
30
|
Zhang M, Wang S, Zhu Y, Zhu Z, Si T, Xu RX. Programmable dynamic interfacial spinning of bioinspired microfibers with volumetric encoding. MATERIALS HORIZONS 2021; 8:1756-1768. [PMID: 34846505 DOI: 10.1039/d1mh00125f] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
While artificially encoded microfibers inspired by biosynthetic fibrous microstructures are drawing considerable research attention, their practical applications are hindered by multiple limitations. Here, a programmable dynamic interfacial spinning (DIS) process is proposed for producing volume-encoded microfibers with superior encoding capacity and reliability. The produced microfibers comprise a sheath of deformed hydrogel encapsulating sequentially aligned droplets, with their morphologies controllable by adjusting the flow rates of the corresponding fluids and the vibration parameters of the spinning nozzle. In particular, microfibers with volumetric encoding of inner droplet sequence are constructed for information storage and encryption. With appropriate functionalization of volume-encoded microfibers, we have also demonstrated magnetic guidance and selective activation to simulate intravascular drug delivery. Our study implies the potential applications of the volume-encoded microfibers in information communication, drug delivery and biomedical engineering.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Precision Machinery and Precision Instrumentation, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | | | | | | | | | | |
Collapse
|
31
|
Zhang X, Ren X, Tang J, Wang J, Zhang X, He P, Yao C, Bian W, Sun L. Hyaluronic acid reduction-sensitive polymeric micelles achieving co-delivery of tumor-targeting paclitaxel/apatinib effectively reverse cancer multidrug resistance. Drug Deliv 2021; 27:825-835. [PMID: 32489129 PMCID: PMC8216478 DOI: 10.1080/10717544.2020.1770373] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Multidrug resistance (MDR) of cancer cells is a significant challenge in chemotherapy, highlighting the urgent medical need for simple and reproducible strategies to reverse this process. Here, we report the development of an active tumor-targeting and redox-responsive nanoplatform (PA-ss-NP) using hyaluronic acid-g-cystamine dihydrochloride-poly-ε-(benzyloxycarbonyl)-L-lysine (HA-ss-PLLZ) to co-deliver paclitaxel (PTX) and apatinib (APA) for effective reversal of MDR. This smart nanoplatform specifically bound to CD44 receptors, leading to selective accumulation at the tumor site and uptake by MCF-7/ADR cells. Under high concentrations of cellular glutathione (GSH), the nanocarrier was degraded rapidly with complete release of its encapsulated drugs. Released APA effectively inhibited the function of the P-glycoprotein (P-gp) drug pump and improved the sensitivity of MDR cells to chemotherapeutic agents, leading to the recovery of PTX chemosensitivity in MDR cells. As expected, this newly developed intelligent drug delivery system could effectively control MDR, both in vitro and in vivo.
Collapse
Affiliation(s)
- Xiaoqing Zhang
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Xiaomei Ren
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Jiayin Tang
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Jiangtao Wang
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Xiang Zhang
- The Department of Oncology, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, China
| | - Peng He
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Chang Yao
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Weihe Bian
- Department of Mastopathy, The Affiliated Hospital of Nanjing University of Chinese Medicine (Jiangsu Province Hospital of TCM), Nanjing, China
| | - Lizhu Sun
- The Department of Oncology, The Affiliated Shuyang Hospital of Xuzhou Medical University, Suqian, China
| |
Collapse
|
32
|
Liu Y, Li Z, Wu Y, Jing X, Li L, Fang X. Intestinal Bacteria Encapsulated by Biomaterials Enhance Immunotherapy. Front Immunol 2021; 11:620170. [PMID: 33643302 PMCID: PMC7902919 DOI: 10.3389/fimmu.2020.620170] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 12/31/2020] [Indexed: 12/12/2022] Open
Abstract
The human intestine contains thousands of bacterial species essential for optimal health. Aside from their pathogenic effects, these bacteria have been associated with the efficacy of various treatments of diseases. Due to their impact on many human diseases, intestinal bacteria are receiving increasing research attention, and recent studies on intestinal bacteria and their effects on treatments has yielded valuable results. Particularly, intestinal bacteria can affect responses to numerous forms of immunotherapy, especially cancer therapy. With the development of precision medicine, understanding the factors that influence intestinal bacteria and how they can be regulated to enhance immunotherapy effects will improve the application prospects of intestinal bacteria therapy. Further, biomaterials employed for the convenient and efficient delivery of intestinal bacteria to the body have also become a research hotspot. In this review, we discuss the recent findings on the regulatory role of intestinal bacteria in immunotherapy, focusing on immune cells they regulate. We also summarize biomaterials used for their delivery.
Collapse
Affiliation(s)
- Yilun Liu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhongmin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yuanyu Wu
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xiabin Jing
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China
| | - Lin Li
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Xuedong Fang
- Department of Gastrointestinal Colorectal and Anal Surgery, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Zhao C, Zhu Y, Kong B, Huang Y, Yan D, Tan H, Shang L. Dual-Core Prebiotic Microcapsule Encapsulating Probiotics for Metabolic Syndrome. ACS APPLIED MATERIALS & INTERFACES 2020; 12:42586-42594. [PMID: 32869634 DOI: 10.1021/acsami.0c13518] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Designing strategies to utilize the synergistic effect of probiotics and prebiotics is a promising way in treating metabolic-related diseases. Here, inspired by the mutually promotable but mutually incompatible characteristics of Yin and Yang, dual-core microcapsules that encapsulate Lactobacillus and Bacillus subtilis into separate compartments were presented through electrostatically driven microfluidics. The microcapsules showed acid resistance and preserved probiotic activity. They also fostered the proliferation of probiotics while creating an anaerobic environment and promoted lactic acid fermentation without affecting each other. It has been demonstrated that the microcapsules could reduce inflammation, improve fat metabolism, and restore intestinal barrier functions, thus contributing to the treatment of metabolic syndrome in vivo. These features make the dual-core microcapsules an ideal candidate for treating metabolic syndrome and related diseases.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210096, China
| | - Yujuan Zhu
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
| | - Bin Kong
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
| | - Yutong Huang
- Macau University of Science and Technology, Macau 999078, China
| | - Dewen Yan
- Department of Endocrinology, Health Science Center, The First Affiliated Hospital, Shenzhen University, Shenzhen 518035, China
| | - Hui Tan
- Department of Neurosurgery, The First Affiliated Hospital of Shenzhen University, Health Science Center of Shenzhen University, Shenzhen 518035, China
| | - Luoran Shang
- Zhongshan-Xuhui Hospital, the Shanghai Key Laboratory of Medical Epigenetics, the International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, and Institutes of Biomedical Sciences, Fudan University, Shanghai 200032, China
| |
Collapse
|
34
|
Wang Z, Cui W. Two Sides of Electrospun Fiber in Promoting and Inhibiting Biomedical Processes. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000096] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Zhen Wang
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wenguo Cui
- Shanghai Institute of Traumatology and Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| |
Collapse
|
35
|
Yin H, Du B, Chen Y, Song N, Li Z, Li J, Luo F, Tan H. Dual-encapsulated biodegradable 3D scaffold from liposome and waterborne polyurethane for local drug control release in breast cancer therapy. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2020; 31:2220-2237. [PMID: 32663417 DOI: 10.1080/09205063.2020.1796230] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Compared with the traditional chemotherapy by injection, local release of drugs in the lesion area is a more efficient and less harmful treatment for solid tumors. However, the selection of appropriate drug carrier and controlled release of chemotherapy drugs are still great challenges. Herein, a kind of dual-encapsulated three-dimensional (3D) scaffold is designed for local drug release via blending the paclitaxel (PTX) loaded phospholipid liposomes with waterborne polyurethane (PU) by freeze-drying. The controlled release of paclitaxel is carried out through two simultaneous procedures. First, liposomes encapsulated in polyurethane scaffold can slowly release by water absorption and degradation of polyurethane. Then paclitaxel encapsulated in liposomes can also be released into water. Compared with the polyurethane scaffold which directly encapsulated paclitaxel, dual-encapsulated scaffold has slower initial release amount and maintain higher concentration of paclitaxel in later stage. Moreover, the protection of the phospholipid layer can prevent paclitaxel from being quickly decomposed and cleared, which could greatly improve the bioavailability and therapeutic effect of paclitaxel. Cell experiment results can be seen that dual-encapsulated scaffold not only has higher inhibition rate to the breast cancer MCF7 cells, but also has less damage to normal tissue cells. It provides a more effective platform for the local drug therapy in the treatment of tumors.[Formula: see text].
Collapse
Affiliation(s)
- Hang Yin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Bohong Du
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Yue Chen
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Nijia Song
- College of Chemistry and Material Science, Sichuan Normal University, Chengdu, Sichuan, China
| | - Zhen Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Jiehua Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Feng Luo
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, China
| |
Collapse
|
36
|
Schneible JD, Young AT, Daniele MA, Menegatti S. Chitosan Hydrogels for Synergistic Delivery of Chemotherapeutics to Triple Negative Breast Cancer Cells and Spheroids. Pharm Res 2020; 37:142. [PMID: 32661774 PMCID: PMC7983306 DOI: 10.1007/s11095-020-02864-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 06/23/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE This study aimed to develop a hydrogel system for treating aggressive triple negative breast cancer (TNBC) via kinetically-controlled delivery of the synergistic drug pair doxorubicin (DOX) and gemcitabine (GEM). A 2D assay was adopted to evaluate therapeutic efficacy by determining combination index (CI), and a 3D assay using cancer spheroids was implemented to assess the potential for translation in vivo. METHODS The release of DOX and GEM from an acetylated-chitosan (ACS, degree of acetylation χAc = 40 ± 5%) was characterized to identify a combined drug loading that affords release kinetics and dose that are therapeutically synergistic. The selected DOX/GEM-ACS formulation was evaluated in vitro with 2-D and 3-D models of TNBC to determine the combination index (CI) and the tumor volume reduction, respectively. RESULTS Therapeutically desired release dosages and kinetics of GEM and DOX were achieved. When evaluated with a 2-D model of TNBC, the hydrogel afforded a CI of 0.14, indicating a stronger synergism than concurrent administration of DOX and GEM (CI = 0.23). Finally, the therapeutic hydrogel accomplished a notable volume reduction of the cancer spheroids (up to 30%), whereas the corresponding dosages of free drugs only reduced growth rate. CONCLUSIONS The ACS hydrogel delivery system accomplishes drug release kinetics and molar ratio that affords strong therapeutically synergism. These results, in combination with the choice of ACS as affordable and highly abundant source material, provide a strong pre-clinical demonstration of the potential of the proposed system for complementing surgical resection of aggressive solid tumors.
Collapse
Affiliation(s)
- John D Schneible
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA
| | - Ashlyn T Young
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA
| | - M A Daniele
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina, Chapel Hill, North Carolina, USA.
- Department of Electrical and Computer Engineering, North Carolina State University, 890 Oval Drive, Raleigh, North Carolina, USA.
| | - S Menegatti
- Department of Chemical and Biomolecular Engineering, North Carolina State University, 911 Partners Way, Raleigh, North Carolina, USA.
- Biomanufacturing Training and Education Center, North Carolina State University, 850 Oval Dr, Raleigh, North Carolina, USA.
| |
Collapse
|