1
|
Cao H, Hu T, Zhang J, Zhao D, Chen Y, Wang X, Yang J, Zhang Y, Tang X, Bai W, Shen H, Wang J, Chu J. Electrically Tunable Multiple-Effects Synergistic and Boosted Photoelectric Performance in Te/WSe 2 Mixed-Dimensional Heterojunction Phototransistors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400018. [PMID: 38502873 PMCID: PMC11165519 DOI: 10.1002/advs.202400018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/19/2024] [Indexed: 03/21/2024]
Abstract
Mix-dimensional heterojunctions (MDHJs) photodetectors (PDs) built from bulk and 2D materials are the research focus to develop hetero-integrated and multifunctional optoelectronic sensor systems. However, it is still an open issue for achieving multiple effects synergistic characteristics to boost sensitivity and enrich the prospect in artificial bionic systems. Herein, electrically tunable Te/WSe2 MDHJs phototransistors are constructed, and an ultralow dark current below 0.1 pA and a large on/off rectification ratio of 106 is achieved. Photoconductive, photovoltaic, and photo-thermoelectric conversions are simultaneously demonstrated by tuning the gate and bias. By these synergistic effects, responsivity and detectivity respectively reach 13.9 A W-1 and 1.37 × 1012 Jones with 400 times increment. The Te/WSe2 MDHJs PDs can function as artificial bionic visual systems due to the comparable response time to those of the human visual system and the presence of transient positive and negative response signals. This work offers an available strategy for intelligent optoelectronic devices with hetero-integration and multifunctions.
Collapse
Affiliation(s)
- Hechun Cao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Tao Hu
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jiyue Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Dongyang Zhao
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Yan Chen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| | - Xudong Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jing Yang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Yuanyuan Zhang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Xiaodong Tang
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
- Collaborative Innovation Center of Extreme OpticsShanxi UniversityTaiyuanShanxi030006P. R. China
| | - Wei Bai
- Key Laboratory of Polar Materials and Devices (MOE) and Department of ElectronicsEast China Normal UniversityShanghai200241P. R. China
| | - Hong Shen
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
| | - Jianlu Wang
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
- Frontier Institute of Chip and SystemFudan UniversityShanghai200433P. R. China
| | - Junhao Chu
- State Key Laboratory of Infrared PhysicsShanghai Institute of Technical PhysicsChinese Academy of SciencesNo.500 Yutian RoadShanghai200083P. R. China
- Shanghai Frontier Base of Intelligent Optoelectronics and PerceptionInstitute of OptoelectronicsFudan UniversityShanghai200433P. R. China
| |
Collapse
|
2
|
Zhang N, Cui M, Zhou J, Shao Z, Gao X, Liu J, Sun R, Zhang Y, Li W, Li X, Yao J, Gao F, Feng W. High-Performance Self-Powered Photoelectrochemical Ultraviolet Photodetectors Based on an In 2O 3 Nanocube Film. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19167-19174. [PMID: 38569197 DOI: 10.1021/acsami.4c00801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Ultraviolet photodetectors (UV PDs) have attracted significant attention due to their wide range of applications, such as underwater communication, biological analysis, and early fire warning systems. Indium oxide (In2O3) is a candidate for developing high-performance photoelectrochemical (PEC)-type UV PDs owing to its high UV absorption and good stability. However, the self-powered photoresponse of the previously reported In2O3-based PEC UV PDs is unsatisfactory. In this work, high-performance self-powered PEC UV PDs were constructed by using an In2O3 nanocube film (NCF) as a photoanode. In2O3 NCF photoanodes were synthesized on FTO by using hydrothermal methods with a calcining process. The influence of the electrolyte concentration, bias potential, and irradiation light on the photoresponse properties was systematically studied. In2O3 NCF PEC UV PDs exhibit outstanding self-powered photoresponses to 365 nm UV light with a high responsivity of 44.43 mA/W and fast response speed (20/30 ms) under zero bias potential, these results are superior to those of previously reported In2O3-based PEC UV PDs. The improved self-powered photoresponse is attributed to the higher photogenerated carrier separation efficiency and faster charge transport of the in-situ grown In2O3 NCF. In addition, these PDs exhibit excellent multicycle stability, maintaining the photocurrent at 98.69% of the initial value after 700 optical switching cycles. Therefore, our results prove the great promise of In2O3 in self-powered PEC UV PDs.
Collapse
Affiliation(s)
- Nana Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Mengqi Cui
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Junxin Zhou
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Zhitao Shao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xinyu Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jiaming Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Ruyu Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Yuan Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Wenhui Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Xinghan Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| | - Jing Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Feng Gao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin 150040, China
| |
Collapse
|
3
|
Ma N, Lu C, Liu Y, Han T, Dong W, Wu D, Xu X. Direct Z-Scheme Heterostructure of Vertically Oriented SnS 2 Nanosheet on BiVO 4 Nanoflower for Self-Powered Photodetectors and Water Splitting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304839. [PMID: 37702144 DOI: 10.1002/smll.202304839] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/21/2023] [Indexed: 09/14/2023]
Abstract
The construction of nanostructured Z-scheme heterostructure is a powerful strategy for realizing high-performance photoelectrochemical (PEC) devices such as self-powered photodetectors and water splitting. Considering the band structure and internal electric field direction, BiVO4 is a promising candidate to construct SnS2 -based heterostructure. Herein, the direct Z-scheme heterostructure of vertically oriented SnS2 nanosheet on BiVO4 nanoflower is rationally fabricated for efficient self-powered PEC photodetectors. The Z-scheme heterostructure is identified by ultraviolet photoelectron spectroscopy, photoluminescence spectroscopy, PEC measurement, and water splitting. The SnS2 /BiVO4 heterostructure shows a superior photodetection performance such as excellent photoresponsivity (10.43 mA W-1 ), fast response time (6 ms), and long-term stability. Additionally, by virtue of efficient Z-scheme charge transfer and unique light-trapping nanostructure, the SnS2 /BiVO4 heterostructure also displays a remarkable photocatalytic hydrogen production rate of 54.3 µmol cm-2 h-1 in Na2 SO3 electrolyte. Furthermore, the synergistic effect between photo-activation and bias voltage further improves the PEC hydrogen production rate of 360 µmol cm-2 h-1 at 0.8 V, which is an order of magnitude above the BiVO4 . The results provide useful inspiration for designing direct Z-scheme heterostructures with special nanostructured morphology to signally promote the performance of PEC devices.
Collapse
Affiliation(s)
- Nan Ma
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Chunhui Lu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Yuqi Liu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Taotao Han
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Wen Dong
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Dan Wu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics and Photon-Technology, School of Physics, Northwest University, Xi'an, 710069, China
| |
Collapse
|
4
|
Bhattacharya D, Bhakat A, Debnath T. Breaking AgInTe 2 Quantum Dot Chain to Fabricate AgInTe 2-ZnS Janus Nanocrystals. Inorg Chem 2023. [PMID: 38010257 DOI: 10.1021/acs.inorgchem.3c03156] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Colloidal multinary chalcogenides (MnCs) have emerged as excellent optoelectronic materials, where S- and Se-based MnCs show considerable progress; however, the Te counterpart suffers from detrimental surface oxidation. Moreover, Te-based I-III-VI MnCs (e.g., AgInTe2) tend to form a one-dimensional (1-D) anisotropic structure via the self-assembly of surface-oxidized Te, thus restricting the isolation of AgInTe2 quantum dots (QDs). We report successful control of the self-assembly of Te-based MnCs to arrest the growth of AgInTe2 QDs by using a synergistic capping agent (dodecanethiol and oleic acid). The reaction proceeds with several intermediates, including hexagonal microrods (MR), tetragonal QDs in a chain arrangement, and tetragonal MRs. Importantly, we note that the incorporation of ZnS QDs triggers the breaking of the chain arrangement of the AgInTe2 QDs and the emergence of evenly distributed AgInTe2-ZnS Janus nanocrystals with significantly reduced long-term Te-oxidative properties. Arresting the AgInTe2 QD chain and the subsequent Janus nanocrystal formation could have promising opportunities for 1-D charge hopping and efficient charge transport for optoelectronic applications, respectively.
Collapse
Affiliation(s)
- Debadrita Bhattacharya
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Arin Bhakat
- Department of Chemistry, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Tushar Debnath
- Centre for Nanotechnology, Indian Institute of Technology, Guwahati, Assam 781039, India
| |
Collapse
|
5
|
Fu L, He Y, Zheng J, Hu Y, Xue J, Li S, Ge C, Yang X, Peng M, Li K, Zeng X, Wei J, Xue DJ, Song H, Chen C, Tang J. Te x Se 1-x Photodiode Shortwave Infrared Detection and Imaging. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211522. [PMID: 36972712 DOI: 10.1002/adma.202211522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 02/27/2023] [Indexed: 06/16/2023]
Abstract
Short-wave infrared detectors are increasingly important in the fields of autonomous driving, food safety, disease diagnosis, and scientific research. However, mature short-wave infrared cameras such as InGaAs have the disadvantage of complex heterogeneous integration with complementary metal-oxide-semiconductor (CMOS) readout circuits, leading to high cost and low imaging resolution. Herein, a low-cost, high-performance, and high-stability Tex Se1- x short-wave infrared photodiode detector is reported. The Tex Se1- x thin film is fabricated through CMOS-compatible low-temperature evaporation and post-annealing process, showcasing the potential of direct integration on the readout circuit. The device demonstrates a broad-spectrum response of 300-1600 nm, a room-temperature specific detectivity of 1.0 × 1010 Jones, a -3 dB bandwidth up to 116 kHz, and a linear dynamic range of over 55 dB, achieving the fastest response among Te-based photodiode devices and a dark current density 7 orders of magnitude smaller than Te-based photoconductive and field-effect transistor devices. With a simple Si3 N4 packaging, the detector shows high electric stability and thermal stability, meeting the requirements for vehicular applications. Based on the optimized Tex Se1- x photodiode detector, the applications in material identification and masking imaging is demonstrated. This work paves a new way for CMOS-compatible infrared imaging chips.
Collapse
Affiliation(s)
- Liuchong Fu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuming He
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiajia Zheng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Yuxuan Hu
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiayou Xue
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Sen Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Ciyu Ge
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xuke Yang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Meng Peng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Kanghua Li
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Xiangbin Zeng
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jinchao Wei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Ding-Jiang Xue
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Molecular Nanotechnology, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Haisheng Song
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Chao Chen
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| | - Jiang Tang
- Wuhan National Laboratory for Optoelectronics (WNLO), School of Optical and Electronic Information (SOEI), Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
- China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan, Hubei, 430074, P. R. China
| |
Collapse
|
6
|
Wang Z, Li G, Hou W, Guo H, Wang L, Wu M. Insights into the Use of Te-O Pairs as Active Centers of Carbon Nanosheets for Efficient Electrochemical Oxygen Reduction. ACS NANO 2023; 17:8671-8679. [PMID: 37067477 DOI: 10.1021/acsnano.3c01662] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Previous theoretical calculations have predicted that the incorporation of tellurium (Te) into carbon materials can significantly enhance their catalytic activity. Nevertheless, the experimental realization of efficient Te-doped carbon materials remains challenging. Here, we employed theoretical calculations to deduce the possible structure of Te-doped carbon materials. Our findings unveil that the formation of Te-O pairs in carbon materials with a relatively low oxygen coordination microenvironment can impart strong electron-donating capabilities, thereby boosting the electrocatalytic activity of oxygen reduction reaction (ORR). To verify our theoretical predictions, we synthesized Te-O pair-doped carbon materials using a tandem hydrothermal dehydration-pyrolysis strategy. This approach enabled efficient infiltration of Te into carbon materials. Our unconventional Te-O pair-doped carbon materials exhibit expanded interlayer distances and graphene-like nanosheet architectures, which provide enlarged active areas. These structural features contribute to the enhanced ORR catalytic performance of the as-prepared carbon catalyst. Our findings provide molecular-level insights into the design of various carbon-based electrocatalysts with binary-heteroatom-doped active sites.
Collapse
Affiliation(s)
- Zeming Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Gao Li
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Weidong Hou
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Huazhang Guo
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Liang Wang
- Institute of Nanochemistry and Nanobiology, School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Minghong Wu
- Shanghai Institute of Applied Radiation, Shanghai University, Shanghai 200444, P. R. China
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), Shanghai University, Shanghai 200444, P. R. China
| |
Collapse
|
7
|
Zi Y, Hu Y, Pu J, Wang M, Huang W. Recent Progress in Interface Engineering of Nanostructures for Photoelectrochemical Energy Harvesting Applications. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2208274. [PMID: 36776020 DOI: 10.1002/smll.202208274] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 01/19/2023] [Indexed: 05/11/2023]
Abstract
With rapid and continuous consumption of nonrenewable energy, solar energy can be utilized to meet the energy requirement and mitigate environmental issues in the future. To attain a sustainable society with an energy mix predominately dependent on solar energy, photoelectrochemical (PEC) device, in which semiconductor nanostructure-based photocatalysts play important roles, is considered to be one of the most promising candidates to realize the sufficient utilization of solar energy in a low-cost, green, and environmentally friendly manner. Interface engineering of semiconductor nanostructures has been qualified in the efficient improvement of PEC performances including three basic steps, i.e., light absorption, charge transfer/separation, and surface catalytic reaction. In this review, recently developed interface engineering of semiconductor nanostructures for direct and high-efficiency conversion of sunlight into available forms (e.g., chemical fuels and electric power) are summarized in terms of their atomic constitution and morphology, electronic structure and promising potential for PEC applications. Extensive efforts toward the development of high-performance PEC applications (e.g., PEC water splitting, PEC photodetection, PEC catalysis, PEC degradation and PEC biosensors) are also presented and appraised. Last but not least, a brief summary and personal insights on the challenges and future directions in the community of next-generation PEC devices are also provided.
Collapse
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Yi Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Junmei Pu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, P. R. China
| |
Collapse
|
8
|
Liu X, Liu C, Fu Y, Xu Y, Khan K, Tareen AK, Zhang Y. van der Waals integration of mixed-dimensional CeO 2@Bi heterostructure for high-performance self-powered photodetector with fast response speed. NANOSCALE 2022; 14:16120-16129. [PMID: 36301088 DOI: 10.1039/d2nr04428e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Heterostructures have been extensively investigated for optoelectronic devices owing to their fantastic physicochemical properties. Herein, a mixed-dimensional van der Waals heterostructure (vdWH) CeO2@Bi, 1D ceria (CeO2) loaded with 0D bismuth quantum dots (Bi QDs), is synthesized through a facile hydrothermal bottom-up method. It is found that the fabricated CeO2@Bi-based photoelectrochemical (PEC)-type photodetector (PD) shows self-powered photodetection capability with a fast photoresponse speed of 0.02 s. Besides, a photocurrent of 2.00 μA cm-2 and a photoresponsivity of 888.89 μA W-1 under 365 nm illumination are obtained. Furthermore, good long-term cycle stability is also observed after 1 month in a harsh environment, indicating the great potential for practical applications. These results are further supported by density functional theory (DFT) calculations. We believe that the presented work is expected to provide a new pathway for the future utilization of vdWHs for high-performance optoelectronics.
Collapse
Affiliation(s)
- Xinlin Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Cailing Liu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yushuang Fu
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| | - Yiguo Xu
- Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Karim Khan
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ayesha Khan Tareen
- School of Mechanical Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Ye Zhang
- School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China.
| |
Collapse
|
9
|
Liu Y, Lu C, Luo M, Han T, Ge Y, Dong W, Xue X, Zhou Y, Xu X. Vertically oriented SnS 2 on MoS 2 nanosheets for high-photoresponsivity and fast-response self-powered photoelectrochemical photodetectors. NANOSCALE HORIZONS 2022; 7:1217-1227. [PMID: 35959697 DOI: 10.1039/d2nh00237j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Van der Waals heterostructures have great potential for the emerging self-powered photoelectrochemical photodetectors due to their outstanding photoelectric conversion capability and efficient interfacial carrier transportation. By considering the band alignment, structural design, and growth optimization, the heterostructures of vertically oriented SnS2 with different densities on MoS2 nanosheets are designed and fabricated using a two-step epitaxial growth method. Compared with SnS2, MoS2, and low density-vertical SnS2/MoS2 heterostructure, the high density-vertical SnS2/MoS2 heterostructure exhibits largely enhanced self-powered photodetection performances, such as a giant photocurrent density (∼932.8 μA cm-2), an excellent photoresponsivity (4.66 mA W-1), and an ultrafast response/recovery time (3.6/6.4 ms) in the ultraviolet-visible range. This impressive enhancement of high density-vertical SnS2/MoS2 photodetectors is mainly ascribed to the essentially improved charge transfer and carrier transport of type-II band alignment heterostructures and the efficient light absorption from the unique light-trapping structure. In addition, the photoelectrocatalytic water splitting performance of the high density-vertical SnS2/MoS2 heterostructure also benefits from the type-II band alignment and the light-trapping structure. This work provides valuable inspiration for the design of two-dimensional optoelectronic and photoelectrochemical devices with improved performance by the morphology and heterostructure design.
Collapse
Affiliation(s)
- Yuqi Liu
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Chunhui Lu
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Mingwei Luo
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Taotao Han
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Yanqing Ge
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Wen Dong
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Xinyi Xue
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Yixuan Zhou
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| | - Xinlong Xu
- Shaanxi Joint Lab of Graphene, Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, School of Physics, Northwest University, Xi'an 710069, China.
| |
Collapse
|
10
|
Chava RK, Son N, Kang M. Bismuth quantum dots anchored one-dimensional CdS as plasmonic photocatalyst for pharmaceutical tetracycline hydrochloride pollutant degradation. CHEMOSPHERE 2022; 300:134570. [PMID: 35421441 DOI: 10.1016/j.chemosphere.2022.134570] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 03/24/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Earth abundant metal based plasmonic photocatalysis is one of the most proficient approaches to degrade the emergent organic pollutants in contaminated water. Here, we report that using one-dimensional CdS/zero-dimensional Bi quantum dot (QD) heterostructures (1D/0D CdS/Bi HSs) were obtained via a simple solvothermal reaction. The results specified that the Bi QDs were grown onto CdS NRs through the reduction of Bi3+ ions. The Bi modified CdS HSs were employed as a photocatalyst for pharmaceutical pollutant tetracycline degradation and the optimized sample showed the maximum photocatalytic degradation activity of 90% under visible light radiation within 60 min, which is greater than the pure CdS (52%) under identical conditions. Based on the structural characterizations and degradation efficiency, the obtained CdS/Bi is a promising photocatalyst for the treatment of wastewater which contains emerging pollutants such as organic dyes and pharmaceutical antibiotics during the industrial processes. The boosted photocatalytic degradation efficiency is credited to the doped Bi3+ species; surface plasmon resonance effect that raised from metallic Bi QDs and proficient photoinduced charge carriers separation.
Collapse
Affiliation(s)
- Rama Krishna Chava
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| | - Namgyu Son
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea
| | - Misook Kang
- Department of Chemistry, College of Natural Sciences, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk, 38541, Republic of Korea.
| |
Collapse
|
11
|
Liu C, Wang R, Zhang Y. Tellurium Nanotubes and Chemical Analogues from Preparation to Applications: A Minor Review. NANOMATERIALS 2022; 12:nano12132151. [PMID: 35807987 PMCID: PMC9268052 DOI: 10.3390/nano12132151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/04/2022] [Accepted: 06/10/2022] [Indexed: 02/01/2023]
Abstract
Tellurium (Te), the most metallic semiconductor, has been widely explored in recent decades owing to its fantastic properties such as a tunable bandgap, high carrier mobility, high thermal conductivity, and in-plane anisotropy. Many references have witnessed the rapid development of synthesizing diverse Te geometries with controllable shapes, sizes, and structures in different strategies. In all types of Te nanostructures, Te with one-dimensional (1D) hollow internal structures, especially nanotubes (NTs), have attracted extensive attention and been utilized in various fields of applications. Motivated by the structure-determined nature of Te NTs, we prepared a minor review about the emerging synthesis and nanostructure control of Te NTs, and the recent progress of research into Te NTs was summarized. Finally, we highlighted the challenges and further development for future applications of Te NTs.
Collapse
|
12
|
Yang P, Zha J, Gao G, Zheng L, Huang H, Xia Y, Xu S, Xiong T, Zhang Z, Yang Z, Chen Y, Ki DK, Liou JJ, Liao W, Tan C. Growth of Tellurium Nanobelts on h-BN for p-type Transistors with Ultrahigh Hole Mobility. NANO-MICRO LETTERS 2022; 14:109. [PMID: 35441245 PMCID: PMC9018950 DOI: 10.1007/s40820-022-00852-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 03/24/2022] [Indexed: 05/15/2023]
Abstract
The lack of stable p-type van der Waals (vdW) semiconductors with high hole mobility severely impedes the step of low-dimensional materials entering the industrial circle. Although p-type black phosphorus (bP) and tellurium (Te) have shown promising hole mobilities, the instability under ambient conditions of bP and relatively low hole mobility of Te remain as daunting issues. Here we report the growth of high-quality Te nanobelts on atomically flat hexagonal boron nitride (h-BN) for high-performance p-type field-effect transistors (FETs). Importantly, the Te-based FET exhibits an ultrahigh hole mobility up to 1370 cm2 V-1 s-1 at room temperature, that may lay the foundation for the future high-performance p-type 2D FET and metal-oxide-semiconductor (p-MOS) inverter. The vdW h-BN dielectric substrate not only provides an ultra-flat surface without dangling bonds for growth of high-quality Te nanobelts, but also reduces the scattering centers at the interface between the channel material and the dielectric layer, thus resulting in the ultrahigh hole mobility .
Collapse
Affiliation(s)
- Peng Yang
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Jiajia Zha
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| | - Guoyun Gao
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Long Zheng
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Haoxin Huang
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Yunpeng Xia
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Songcen Xu
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Tengfei Xiong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhuomin Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Zhengbao Yang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Dong-Keun Ki
- Department of Physics, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, People's Republic of China
| | - Juin J Liou
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China
| | - Wugang Liao
- College of Electronics and Information Engineering, Shenzhen University, Shenzhen, 518060, People's Republic of China.
| | - Chaoliang Tan
- Department of Electrical Engineering, City University of Hong Kong, Hong Kong SAR, People's Republic of China.
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, Hong Kong SAR, People's Republic of China.
| |
Collapse
|
13
|
Song Z, Liu T, Lai H, Meng X, Yang L, Su J, Chen T. A Universally EDTA-Assisted Synthesis of Polytypic Bismuth Telluride Nanoplates with a Size-Dependent Enhancement of Tumor Radiosensitivity and Metabolism In Vivo. ACS NANO 2022; 16:4379-4396. [PMID: 35175721 DOI: 10.1021/acsnano.1c10663] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bismuth telluride (Bi2Te3) is an available thermoelectric material with the lowest band gap among bismuth chalcogenides, revealing a broad application in photocatalysis. Unfortunately, its size and morphology related to a radio-catalysis property have rarely been explored. Herein, an ethylenediaminetetraacetic acid (EDTA)-assisted hydrothermal strategy was introduced to synthesize polytypic Bi2Te3 nanoplates (BT NPs) that exhibit size-dependent radio-sensitization and metabolism characteristics in vivo. By simply varying the molar ratio of EDTA/Bi3+ during the reaction, BT NPs with different sizes and morphologies were obtained. EDTA acting as chelating agent and "capping" agent contributed to the homogeneous growth of BT NPs by eliminating dangling bonds and reducing the surface energy of different facets. Further analyzing the size-dependent radio-sensitization mechanism, larger-sized BT NPs generated holes that preferentially catalyzed the conversion of OH- to ·OH when irradiated with X-rays, while the smaller-sized BT NPs exhibited faster decay kinetics producing higher 1O2 levels to enhance radiotherapy effects. A metabolomic analysis revealed that larger-sized BT NPs were oxidized into Bi(Ox) in the liver via a citrate cycle pathway, whereas smaller-sized BT NPs accumulated in the kidney and were excreted in urine in the form of ions by regulating the metabolism of glutamate. In a cervical cancer model, BT NPs combined with X-ray irradiation significantly antagonized tumor suppression through the promotion of apoptosis in tumor cells. Consequently, in addition to providing a prospect of BT NPs as an efficient radio-sensitizer to boost the tumor radiosensitivity, we put forth a strategy that can be universally applied in synthesizing metal chalcogenides for catalysis-promoted radiotherapy.
Collapse
Affiliation(s)
- Zhenhuan Song
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Ting Liu
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Haoqiang Lai
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xiaofeng Meng
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Liu Yang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Jianyu Su
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, P. R. China
- China-Singapore International Joint Research Institute, Guangzhou 510700, P. R. China
| | - Tianfeng Chen
- Zhuhai Precision Medical Center, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital, Zhuhai Hospital Affiliated with Jinan University, Jinan University, Zhuhai 519000, Guangdong, P. R. China
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
14
|
Zi Y, Zhu J, Wang M, Hu L, Hu Y, Wageh S, Al-Hartomy OA, Al-Ghamdi A, Huang W, Zhang H. CdS@CdSe Core/Shell Quantum Dots for Highly Improved Self-Powered Photodetection Performance. Inorg Chem 2021; 60:18608-18613. [PMID: 34860009 DOI: 10.1021/acs.inorgchem.1c03023] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Uniform, well-defined cadmium sulfide@cadmium selenide core/shell quantum dots (CdS@CdSe QDs) were, for the first time, successfully synthesized by a solvothermal method and chemical bath growth for photoelectrochemical activities. The as-synthesized CdS@CdSe QDs not only exhibit superior self-powered photoresponse behavior and excellent stability under ambient conditions but also display significantly improved current densities and photoresponsivity compared to those of individual CdS QDs or CdSe QDs, mainly due to the built-in electric field, and thus have great potential in the fields of renewable energy and renewable energy consumption for carbon neutrality target achievement.
Collapse
Affiliation(s)
- You Zi
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Jun Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengke Wang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Lanping Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yulin Hu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Swelm Wageh
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Omar A Al-Hartomy
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Ahmed Al-Ghamdi
- Department of Physics, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Weichun Huang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Han Zhang
- International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
15
|
Gao L, Wang L, Kuklin AV, Gao J, Yin S, Ågren H, Zhang H. A Facile Approach for Elemental-Doped Carbon Quantum Dots and Their Application for Efficient Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2105683. [PMID: 34850565 DOI: 10.1002/smll.202105683] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/25/2021] [Indexed: 06/13/2023]
Abstract
The present work demonstrates a facile hydrothermal approach to synthesize lanthanide-doped carbon quantum dots (CQDs) with europium and/or gadolinium elements. Taking the advantage of broadband adsorption in the ultraviolet-visible region, the doped QDs are directly used as building blocks for photo-electrochemical (PEC)-type photodetectors (PDs) and their performance is systematically investigated under various conditions. The europium (Eu) and gadolinium (Gd) co-doped (C:EuGd) QDs exhibit better photo-response than the single-elemental doped ones and also show outstanding long-term stability. According to the apparent response to light from 350 to 400 nm, the C:EuGd QDs are demonstrated to hold great potential for narrow-band PDs. This work highlights the practical applications of lanthanide-doped CQDs for PDs, and the results are beneficial for the development of elemental-doped CQDs in general.
Collapse
Affiliation(s)
- Lingfeng Gao
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121, China
| | - Lude Wang
- School of Artificial Intelligence and Information Technology, Nanjing University of Traditional Chinese Medicine, No. 138 Xianling Rd., Nanjing, 210023, China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
| | - Jie Gao
- Institute of Optoelectronics & Nanomaterials, MIIT Key Laboratory of Advanced Display Materials and Devices, School of Materials Science and Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Shouchun Yin
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, No. 2318 Yuhangtang Rd. Cangqian, Yuhang District, Hangzhou, 311121, China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Box 516, Uppsala, SE-751 20, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, Henan, 475004, China
| | - Han Zhang
- College of Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
16
|
Flexible Tellurium-Based Electrode for High-Performance Lithium-Tellurium Battery. NANOMATERIALS 2021; 11:nano11112903. [PMID: 34835667 PMCID: PMC8626021 DOI: 10.3390/nano11112903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 10/22/2021] [Accepted: 10/28/2021] [Indexed: 11/17/2022]
Abstract
Low-dimensional nanomaterials have attracted considerable attention for next-generation flexible energy devices owing to their excellent electrochemical properties and superior flexibility. Herein, uniform Tellurium nanotubes (Te NTs) were prepared through a facile hydrothermal method, and then a flexible and freestanding electrode was fabricated with Te NTs as active materials and a small amount of nanofibrillated celluloses (NFCs) as a flexible matrix through a vacuum filtration method without adding extra conductive carbon or a binder. The resulting Te-based electrode exhibits a high volumetric capacity of 1512 mAh cm−3 at 200 mA g−1, and delivers admirable cyclic stability (capacity retention of 104% over 300 cycles) and excellent rate performance (833 mAh cm−3 at 1000 mA g−1), which benefits from the unique structure and intrinsically superior conductivity of Te NTs. After bending 50 times, the Te-based electrode delivers a desirable volumetric capacity of 1117 mAh cm−3, and remains 93% of initial capacity after 100 cycles. The results imply that the Te-based electrode exhibits excellent electrochemical properties and superior flexibility simultaneously, which can serve as a potential candidate for the flexible lithium batteries.
Collapse
|
17
|
Gao L, Chen H, Wang R, Wei S, Kuklin AV, Mei S, Zhang F, Zhang Y, Jiang X, Luo Z, Xu S, Zhang H, Ågren H. Ultra-Small 2D PbS Nanoplatelets: Liquid-Phase Exfoliation and Emerging Applications for Photo-Electrochemical Photodetectors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005913. [PMID: 33448145 DOI: 10.1002/smll.202005913] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/07/2020] [Indexed: 06/12/2023]
Abstract
2D PbS nanoplatelets (NPLs) form an emerging class of photoactive materials and have been proposed as robust materials for high-performance optoelectronic devices. However, the main drawback of PbS NPLs is the large lateral size, which inhibits their further investigations and practical applications. In this work, ultra-small 2D PbS NPLs with uniform lateral size (11.2 ± 1.7 nm) and thickness (3.7 ± 0.9 nm, ≈6 layers) have been successfully fabricated by a facile liquid-phase exfoliation approach. Their transient optical response and photo-response behavior are evaluated by femtosecond-resolved transient absorption and photo-electrochemical (PEC) measurements. It is shown that the NPLs-based photodetectors (PDs) exhibit excellent photo-response performance from UV to the visible range, showing extremely high photo-responsivity (27.81 mA W-1 ) and remarkable detectivity (3.96 × 1010 Jones), which are figures of merit outperforming currently reported PEC-type PDs. The outstanding properties are further analyzed based on the results of first-principle calculations, including electronic band structure and free energies for the oxygen evolution reaction process. This work highlights promising applications of ultra-small 2D PbS NPLs with the potential for breakthrough developments also in other fields of optoelectronic devices.
Collapse
Affiliation(s)
- Lingfeng Gao
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hualong Chen
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Rui Wang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
- Department of Electronic Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Songrui Wei
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Artem V Kuklin
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 20, Sweden
| | - Shan Mei
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Feng Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ye Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiantao Jiang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhengqian Luo
- Department of Electronic Engineering, Xiamen University, Xiamen, 361005, P. R. China
| | - Shixiang Xu
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Han Zhang
- Institute of Microscale Optoelectronics, Collaborative Innovation Centre for Optoelectronic Science & Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, P. R. China
| | - Hans Ågren
- Department of Physics and Astronomy, Uppsala University, Uppsala, SE-751 20, Sweden
- College of Chemistry and Chemical Engineering, Henan University, Kaifeng, 475004, P. R. China
| |
Collapse
|
18
|
Wang X, Liang J, You Q, Zhu J, Fang F, Xiang Y, Song J. Bandgap Engineering of Hydroxy-Functionalized Borophene for Superior Photo-Electrochemical Performance. Angew Chem Int Ed Engl 2020; 59:23559-23563. [PMID: 32940389 DOI: 10.1002/anie.202010723] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Indexed: 11/12/2022]
Abstract
Two-dimensional (2D) semiconducting boron nanosheets (few-layer borophene) have been theoretically predicted, but their band gap tunability has not been experimentally confirmed. In this study, hydroxy-functionalized borophene (borophene-OH) with tunable band gap was fabricated by liquid-phase exfoliation using 2-butanol solvent. Surface-energy matching between boron and 2-butanol produced smooth borophene, and the exposed unsaturated B sites generated by B-B bond breaking during exfoliation coordinated with OH groups to form semiconducting borophene-OH, enabling a tunable band gap of 0.65-2.10 eV by varying its thickness. Photoelectrochemical (PEC) measurements demonstrated that the use of borophene-OH to fabricate working electrodes for PEC-type photodetectors significantly enhanced the photocurrent density (5.0 μA cm-2 ) and photoresponsivity (58.5 μA W-1 ) compared with other 2D monoelemental materials. Thus, borophene-OH is a promising semiconductor with great optoelectronic potential.
Collapse
Affiliation(s)
- Xin Wang
- Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen, 518060, China
| | - Junwu Liang
- School of Physics and Telecommunication Engineering, Yulin Normal University, Yulin, 537000, China
| | - Qi You
- Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen, 518060, China
| | - Jiaqi Zhu
- Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen, 518060, China
| | - Feier Fang
- Institute of Microscale Optoelectronics (IMO), Shenzhen University, Shenzhen, 518060, China
| | - Yuanjiang Xiang
- School of Physics and Electronics, Hunan University, Changsha, 410082, China
| | - Jun Song
- College of Physics and Optoelectronic Engineering, Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
19
|
Wang X, Liang J, You Q, Zhu J, Fang F, Xiang Y, Song J. Bandgap Engineering of Hydroxy‐Functionalized Borophene for Superior Photo‐Electrochemical Performance. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010723] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xin Wang
- Institute of Microscale Optoelectronics (IMO) Shenzhen University Shenzhen 518060 China
| | - Junwu Liang
- School of Physics and Telecommunication Engineering Yulin Normal University Yulin 537000 China
| | - Qi You
- Institute of Microscale Optoelectronics (IMO) Shenzhen University Shenzhen 518060 China
| | - Jiaqi Zhu
- Institute of Microscale Optoelectronics (IMO) Shenzhen University Shenzhen 518060 China
| | - Feier Fang
- Institute of Microscale Optoelectronics (IMO) Shenzhen University Shenzhen 518060 China
| | - Yuanjiang Xiang
- School of Physics and Electronics Hunan University Changsha 410082 China
| | - Jun Song
- College of Physics and Optoelectronic Engineering Key Lab of Optoelectronic Devices and Systems of Ministry of Education/Guangdong Province Shenzhen University Shenzhen 518060 China
| |
Collapse
|
20
|
Zhang Y, Huang P, Guo J, Shi R, Huang W, Shi Z, Wu L, Zhang F, Gao L, Li C, Zhang X, Xu J, Zhang H. Graphdiyne-Based Flexible Photodetectors with High Responsivity and Detectivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2020; 32:e2001082. [PMID: 32338405 DOI: 10.1002/adma.202001082] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/25/2020] [Accepted: 04/02/2020] [Indexed: 06/11/2023]
Abstract
Graphdiyne (GDY), a newly emerging 2D carbon allotrope, has been widely explored in various fields owing to its outstanding electronic properties such as the intrinsic bandgap and high carrier mobility. Herein, GDY-based photoelectrochemical-type photodetection is realized by spin-coating ultrathin GDY nanosheets onto flexible poly(ethylene terephthalate) (PET) substrates. The GDY-based photodetectors (PDs) demonstrate excellent photo-responsive behaviors with high photocurrent (Pph , 5.98 µA cm- 2 ), photoresponsivity (Rph , 1086.96 µA W- 1 ), detectivity (7.31 × 1010 Jones), and excellent long-term stability (more than 1 month). More importantly, the PDs maintain an excellent Pph after 1000 cycles of bending (4.45 µA cm- 2 ) and twisting (3.85 µA cm- 2 ), thanks to the great flexibility of the GDY structure that is compatible with the flexible PET substrate. Density functional theory (DFT) calculations are adopted to explore the electronic characteristics of GDY, which provides evidence for the performance enhancement of GDY in alkaline electrolyte. In this way, the GDY-based flexible PDs can enrich the fundamental study of GDY and pave the way for the exploration of GDY heterojunction-based photodetection.
Collapse
Affiliation(s)
- Ye Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Pu Huang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jia Guo
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Rongchao Shi
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Haihe Educational Park, Tianjin, 300350, China
| | - Weichun Huang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
- Nantong Key Lab of Intelligent and New Energy Materials, College of Chemistry and Chemical Engineering, Nantong University, Nantong, Jiangsu, 226019, China
| | - Zhe Shi
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Leiming Wu
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Feng Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Lingfeng Gao
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Chao Li
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| | - Xiuwen Zhang
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jialiang Xu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tongyan Road 38, Haihe Educational Park, Tianjin, 300350, China
| | - Han Zhang
- Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
21
|
Shi Z, Cao R, Khan K, Tareen AK, Liu X, Liang W, Zhang Y, Ma C, Guo Z, Luo X, Zhang H. Two-Dimensional Tellurium: Progress, Challenges, and Prospects. NANO-MICRO LETTERS 2020; 12:99. [PMID: 34138088 PMCID: PMC7770852 DOI: 10.1007/s40820-020-00427-z] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Accepted: 03/11/2020] [Indexed: 05/23/2023]
Abstract
Since the successful fabrication of two-dimensional (2D) tellurium (Te) in 2017, its fascinating properties including a thickness dependence bandgap, environmental stability, piezoelectric effect, high carrier mobility, and photoresponse among others show great potential for various applications. These include photodetectors, field-effect transistors, piezoelectric devices, modulators, and energy harvesting devices. However, as a new member of the 2D material family, much less known is about 2D Te compared to other 2D materials. Motivated by this lack of knowledge, we review the recent progress of research into 2D Te nanoflakes. Firstly, we introduce the background and motivation of this review. Then, the crystal structures and synthesis methods are presented, followed by an introduction to their physical properties and applications. Finally, the challenges and further development directions are summarized. We believe that milestone investigations of 2D Te nanoflakes will emerge soon, which will bring about great industrial revelations in 2D materials-based nanodevice commercialization.
Collapse
Affiliation(s)
- Zhe Shi
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Rui Cao
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Karim Khan
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
- School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, 523808, Guangdong, People's Republic of China
| | - Ayesha Khan Tareen
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Xiaosong Liu
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Weiyuan Liang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Ye Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Chunyang Ma
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China
| | - Zhinan Guo
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| | - Xiaoling Luo
- Department of Ophthalmology, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Affiliated Hospital of Southern University of Science and Technology, Shenzhen, 518020, Guangdong, People's Republic of China.
| | - Han Zhang
- Institute of Microscale Optoelectronics, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology, Key Laboratory of Optoelectronic Devices and Systems of Ministry of Education and Guangdong Province, College of Physics and Optoelectronic Engineering, Shenzhen Key Laboratory of Micro-Nano Photonic Information Technology, Guangdong Laboratory of Artificial Intelligence and Digital Economy (SZ), Shenzhen University, Shenzhen, 518060, Guangdong, People's Republic of China.
| |
Collapse
|