1
|
Li G, Zhang Y, Xie J, Liu Y, Wu Z, Chen Q, Sun P, Hou G, Jing C. Ammonia-sensitive halide CsCu 2I 3 film for gas sensor and stimuli-responsive anti-counterfeiting. Talanta 2025; 281:126794. [PMID: 39226696 DOI: 10.1016/j.talanta.2024.126794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 08/25/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Eco-friendly lead-free halide perovskites have emerged as promising materials for multiple applications due to their unique optoelectronic properties. In this work, we investigate the ammonia (NH3)-sensitive CsCu2I3 film for its potential in NH3 sensor and stimuli-responsive fluorescence anti-counterfeiting. CsCu2I3-based NH3 sensor demonstrates a high response to NH3 (△R/R0 = 1.07, at 100 ppm NH3) with rapid response/recovery time (21/19 s), as well as favorable gas selectivity. We proposed a potential NH3 sensing mechanism with the help of a series of semi-quantitative characterizations and excitation-dependent emission experiments. The electron-donating NH3 molecules can efficiently donate electrons to the p-type CsCu2I3 film, bringing about a decrease in film conductivity. Additionally, the adsorption of NH3 can also disorder the CsCu2I3 crystals with a high density of trap states, facilitating an energy transfer from self-trapped excitons (STEs) emission to defect-related emission, along with bright orange luminescence. Inspired by this phenomenon, we proposed a novel application of NH3-induced stimuli-responsive fluorescence for anti-counterfeiting. The results highlight the potential of CsCu2I3 for effective dual-function applications in gas sensors and gas-triggered anti-counterfeiting.
Collapse
Affiliation(s)
- Guishun Li
- School of Physics and Electronic Information, Jiangsu Second Normal University, Nanjing, 211200, China.
| | - Yu Zhang
- Hubei Key Laboratory of Energy Storage and Power Battery, School of Mathematics, Physics and Optoelectronics Engineering, Hubei University of Automotive Technology, Shiyan, 442002, China
| | - Junming Xie
- Staff Development Institute of China National Tobacco Corporation, Zhengzhou, 450008, China
| | - Yan Liu
- School of Physics and Electronic Information, Jiangsu Second Normal University, Nanjing, 211200, China
| | - Zihan Wu
- School of Physics and Electronic Information, Jiangsu Second Normal University, Nanjing, 211200, China
| | - Qing Chen
- School of Physics and Electronic Information, Jiangsu Second Normal University, Nanjing, 211200, China
| | - Pingping Sun
- School of Physics and Electronic Information, Jiangsu Second Normal University, Nanjing, 211200, China
| | - Guangning Hou
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 201100, China
| | - Chengbin Jing
- Engineering Research Center for Nanophotonics and Advanced Instrument of Ministry of Education, Key Laboratory of Polar Materials and Devices (Ministry of Education), School of Physics and Electronic Science, East China Normal University, Shanghai, 201100, China.
| |
Collapse
|
2
|
Rafiq K, Sadia I, Abid MZ, Waleed MZ, Rauf A, Hussain E. Scientific Insights into the Quantum Dots (QDs)-Based Electrochemical Sensors for State-of-the-Art Applications. ACS Biomater Sci Eng 2024. [PMID: 39499739 DOI: 10.1021/acsbiomaterials.4c01256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Size-dependent optical and electronic properties are unique characteristics of quantum dots (QDs). A significant advantage is the quantum confinement effect that allows their precise tuning to achieve required characteristics and behavior for the targeted applications. Regarding the aforementioned factors, QDs-based sensors have exhibited dramatic potential for the diverse and advanced applications. For example, QDs-based devices have been potentially utilized for bioimaging, drug delivery, cancer therapy, and environmental remediation. In recent years, use of QDs-based electrochemical sensors have been further extended in other areas like gas sensing, metal ion detection, monitoring of organic pollutants, and detection of radioactive isotopes. Objective of this study is to rationalize the QDs-based electrochemical sensors for state-of-the-art applications. This review article comprehensively illustrates the importance of aforementioned devices along with sources from which QDs devices have been formulated and fabricated. Other distinct features of QDs devices are associated with their extremely high active surfaces, inherent ability of reproducibility, sensitivity, and selectivity for the targeted analyte detection. In this review, major categories of QD materials along with justification of their key roles in electrochemical devices have been demonstrated and discussed. All categories have been evaluated with special emphasis on the advantages and drawbacks/challenges associated with QD materials. However, in the interests of readers and researchers, recent improvements also have been included and discussed. On the evaluation, it has been concluded that despite significant challenges, QDs-based electrochemical sensors exhibit excellent performances for state-of-the-art and targeted applications.
Collapse
Affiliation(s)
- Khezina Rafiq
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Iqra Sadia
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zeeshan Abid
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Muhammad Zaryab Waleed
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Abdul Rauf
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| | - Ejaz Hussain
- Institute of Chemistry, Inorganic Materials Laboratory 52S, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan
| |
Collapse
|
3
|
Wei C, Guo Z, Wang H, Zhang S, Hao D, Huang J. Recent progress of gas sensors based on perovskites. MATERIALS HORIZONS 2024. [PMID: 39422375 DOI: 10.1039/d4mh01306a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Gas sensors convert gas-related information into usable data by monitoring changes in conductivity and chemical reactions resulting from the adsorption of gas molecules. Recently, perovskites have emerged as promising candidate materials for gas sensors, owing to their polar reactivity, chemical responsiveness, and sensitivity. These characteristics enable the detection of the presence and concentration of various gases. This article provides a concise review of recent advancements in perovskite-based gas sensors. First, the chemical composition, structure, and preparation methods of perovskites, as well as the effects of their structure on gas sensing performance, are examined. The key performance parameters of the sensor and the sensing mechanism of the perovskite-based gas sensor are discussed. Then the development of gas sensors based on different structural types of perovskites, including single-component perovskites, mixed-component perovskites, and metal-oxide perovskites, is discussed. Finally, the challenges and opportunities for gas sensors based on perovskites are summarized and prospected.
Collapse
Affiliation(s)
- Chenghong Wei
- School of Mechanical Engineering, Nantong University, Nantong, 226019, China.
| | - Ziyi Guo
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| | - Heng Wang
- School of Mechanical Engineering, Nantong University, Nantong, 226019, China.
| | - Shiqi Zhang
- School of Mechanical Engineering, Nantong University, Nantong, 226019, China.
| | - Dandan Hao
- School of Electronics and Information, Qingdao University, Qingdao, 266071, China.
| | - Jia Huang
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China.
| |
Collapse
|
4
|
Khattab TA, Ahmed HM, Gaffer H, Al-Balakocy NG, Zaher AA, Ibrahim IHM, Abdelrahman MS. Vapochromic wool fibers for hazardous ammonia detection using xanthohumol biomolecule from natural extract of common hop (Humulus lupulus L.). Int J Biol Macromol 2024; 277:134200. [PMID: 39069051 DOI: 10.1016/j.ijbiomac.2024.134200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 07/01/2024] [Accepted: 07/25/2024] [Indexed: 07/30/2024]
Abstract
Ammonia is a colorless gas, yet it can be fatal if inhaled or ingested in high enough concentrations. Herein, a solid-state colorimetric smart wool (WL) sensor for ammonia was developed. Common hop (Humulus lupulus L.) is a natural resource of spectroscopical dyestuff known as xanthohumol (XN). Wool fabrics were dyed with different concentrations of xanthohumol extract using the high-temperature high-pressure method in the presence of a mordant. The coloration parameters and absorption spectra were employed to explore the yellow-to-white colorimetric shift of the wool fabric after it was exposed to aqueous ammonia. The wool fabric showed an excellent detection limit of 5 to 125 ppm. When the ammonia concentration was increased, the absorbance spectra demonstrated a hypsochromic shift from 498 nm to 367 nm. This could be attributed to changes in the molecular structure of xanthohumol that happen owing to intramolecular charge delocalization. Using transmission electron microscopy (TEM), the mordant/xanthohumol nanoparticles were measured to have diameters of 15-40 nm. The xanthohumol-finished wool fabrics showed good colorfastness properties. The incorporation of mordant/xanthohumol nanoparticles into wool fabrics showed no negative effects on their stiffness or air-permeability.
Collapse
Affiliation(s)
- Tawfik A Khattab
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt.
| | - Hend M Ahmed
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Hatem Gaffer
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| | - Naser G Al-Balakocy
- Protenic and Manmade Fibers Department, National Research Centre, Cairo 12622, Egypt
| | - Ahmed A Zaher
- Faculty of Science, Masoura University, Masoura, Egypt; Material Science lab, Main Chemical Laboratories, Cairo, Egypt
| | - Ibrahim H M Ibrahim
- Department of Archeological Conservation, Faculty of Archeology, Luxor University, Egypt
| | - Meram S Abdelrahman
- Dyeing, Printing and Auxiliaries Department, National Research Centre, Cairo 12622, Egypt
| |
Collapse
|
5
|
Chai Z, Lin H, Bai H, Huang Y, Guan Z, Liu F, Wei J. Application of Metal Halide Perovskite in Internet of Things. MICROMACHINES 2024; 15:1152. [PMID: 39337812 PMCID: PMC11433748 DOI: 10.3390/mi15091152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024]
Abstract
The Internet of Things (IoT) technology connects the real and network worlds by integrating sensors and internet technology, which has greatly changed people's lifestyles, showing its broad application prospects. However, traditional materials for the sensors and power components used in the IoT limit its development for high-precision detection, long-term endurance, and multi-scenario applications. Metal halide perovskite, with unique advantages such as excellent photoelectric properties, an adjustable bandgap, flexibility, and a mild process, exhibits enormous potential to meet the requirements for IoT development. This paper provides a comprehensive review of metal halide perovskite's application in sensors and energy supply modules within IoT systems. Advances in perovskite-based sensors, such as for gas, humidity, photoelectric, and optical sensors, are discussed. The application of indoor photovoltaics based on perovskite in IoT systems is also discussed. Lastly, the application prospects and challenges of perovskite-based devices in the IoT are summarized.
Collapse
Affiliation(s)
- Zhihao Chai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Hui Lin
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Hang Bai
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Yixiang Huang
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Zhen Guan
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| | - Fangze Liu
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Zhuhai 519088, China;
| | - Jing Wei
- Beijing Key Laboratory of Construction-Tailorable Advanced Functional Materials and Green Applications, Experimental Center of Advanced Materials, School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China; (Z.C.); (H.L.); (H.B.); (Y.H.); (Z.G.)
| |
Collapse
|
6
|
Fan J, Zheng Z, Liu Y, Wang Y, Wu W, Ji B, Xu H, Zhong Y, Zhang L, Mao Z. Construction of "ant-like tentacle" structure for ultra-sensitive detection of low-concentration ammonia through colorimetric fluorescent dual-signal gas-sensitive cotton fabric. Int J Biol Macromol 2024; 277:134249. [PMID: 39209589 DOI: 10.1016/j.ijbiomac.2024.134249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 09/04/2024]
Abstract
Detection and monitoring of ammonia (NH3) are crucial in various industries, including plant safety management, food freshness testing, and water pollution control. Nevertheless, creating portable, low-cost, highly sensitive, and easily regenerated ppm-level NH3 sensors poses a significant challenge. In this investigation, an innovative "ant-like tentacle" fabrication strategy was proposed, and a colorimetric fluorescent dual-signal gas-sensitive cotton fabric (PAH-fabric) for NH3 detection was successfully prepared by conventional dyeing using suitable molecular-level photoacid (PAH) sensitive units. The visual recognition lower detection limit of the ultra-low is 1.09 ppm-level. PAH-fabric is not only straightforward, convenient, and cost-effective to prepare, but it can also be efficiently regenerated and recycled multiple times (maintaining excellent gas-sensitive performance even after 100 cycles) by strategically leveraging volatile acid fumigation. Detailed molecular reaction mechanisms involved in the NH3 response and PAH-fabric regeneration are elucidated. PAH-fabric, available either as a portable kit or an alarm system, offers a promising approach for ultra-low NH3 detection. The demonstrated "ant-like tentacle" fabrication strategy introduces numerous possibilities for designing and developing sensors with adjustable response thresholds, particularly those requiring high sensitivity.
Collapse
Affiliation(s)
- Ji Fan
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Zhaofeng Zheng
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yitong Liu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yu Wang
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Wei Wu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Bolin Ji
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Hong Xu
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Yi Zhong
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Linping Zhang
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China
| | - Zhiping Mao
- Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, College of Chemistry and Chemical Engineering, Donghua University, No. 2999 North Renmin Road, Shanghai 201620, China; Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Innovation Center for Textile Science and Technology of Donghua University, Shanghai 201620, China; National Innovation Center of Advanced Dyeing & Finishing Technology, Shandong Zhongkang Guochuang Research Institute of Advanced Dyeing & Finishing Technology Co., Ltd., Taian City, Shandong Province 271000, China.
| |
Collapse
|
7
|
Ahmed S, Dolui SK. A dual emitting CsPbBr 3/Eu-BDC composite as a ratiometric photoluminescent turn-on probe for aliphatic amine sensing. Dalton Trans 2024; 53:8584-8592. [PMID: 38687325 DOI: 10.1039/d4dt00222a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
The impressive photoluminescence properties of all inorganic cesium lead halide perovskite quantum dots (PeQDs) make them highly intriguing for fluorescence chemosensor applications. Herein, a ratiometric dual emitting perovskite-based sensor was designed by synthesizing fluorescent CsPbBr3 PeQDs in situ within a matrix of Eu-BDC (Eu(III) benzene-1,4-dicarboxylate). The results presented here establish the suggested sensor's quick and selective turn-on PL response to volatile primary aliphatic amine derivatives. In the presence of amines, the designed CsPbBr3/Eu-BDC sensor exhibits an enhancement of the PL signal of CsPbBr3 at 518 nm and the Eu-BDC signal at 615 nm served as a standard for constructing the ratiometric sensing system. Thereby, a visual color change from red to green was observed with the incremental addition of methylamine to the probe. A low detection limit of 0.083 ppm was determined for methylamine. In both the solution and vapor phases, this ratiometric sensor responds to a variety of primary aliphatic amines with very quick and strong fluorescence. Moreover, the sensor was effectively used for monitoring meat spoilage owing to the emission of biogenic amine vapor from meat products.
Collapse
Affiliation(s)
- Shahnaz Ahmed
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| | - Swapan Kumar Dolui
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam, 784028, India.
| |
Collapse
|
8
|
Shellaiah M, Sun KW, Thirumalaivasan N, Bhushan M, Murugan A. Sensing Utilities of Cesium Lead Halide Perovskites and Composites: A Comprehensive Review. SENSORS (BASEL, SWITZERLAND) 2024; 24:2504. [PMID: 38676122 PMCID: PMC11054776 DOI: 10.3390/s24082504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/10/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024]
Abstract
Recently, the utilization of metal halide perovskites in sensing and their application in environmental studies have reached a new height. Among the different metal halide perovskites, cesium lead halide perovskites (CsPbX3; X = Cl, Br, and I) and composites have attracted great interest in sensing applications owing to their exceptional optoelectronic properties. Most CsPbX3 nanostructures and composites possess great structural stability, luminescence, and electrical properties for developing distinct optical and photonic devices. When exposed to light, heat, and water, CsPbX3 and composites can display stable sensing utilities. Many CsPbX3 and composites have been reported as probes in the detection of diverse analytes, such as metal ions, anions, important chemical species, humidity, temperature, radiation photodetection, and so forth. So far, the sensing studies of metal halide perovskites covering all metallic and organic-inorganic perovskites have already been reviewed in many studies. Nevertheless, a detailed review of the sensing utilities of CsPbX3 and composites could be helpful for researchers who are looking for innovative designs using these nanomaterials. Herein, we deliver a thorough review of the sensing utilities of CsPbX3 and composites, in the quantitation of metal ions, anions, chemicals, explosives, bioanalytes, pesticides, fungicides, cellular imaging, volatile organic compounds (VOCs), toxic gases, humidity, temperature, radiation, and photodetection. Furthermore, this review also covers the synthetic pathways, design requirements, advantages, limitations, and future directions for this material.
Collapse
Affiliation(s)
- Muthaiah Shellaiah
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Kien Wen Sun
- Department of Applied Chemistry, National Yang-Ming Chiao Tung University, Hsinchu 300, Taiwan
| | - Natesan Thirumalaivasan
- Department of Periodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, Tamil Nadu, India;
| | - Mayank Bhushan
- Department of Research and Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai 600077, India; (M.S.); (M.B.)
| | - Arumugam Murugan
- Department of Chemistry, North Eastern Regional Institute of Science & Technology, Nirjuli, Itanagar 791109, India;
| |
Collapse
|
9
|
Putro DT, Chu CS. A novel optical dual sensor based on a coaxial electrospinning method for simultaneous sensing of oxygen and ammonia. Heliyon 2024; 10:e25983. [PMID: 38390081 PMCID: PMC10881840 DOI: 10.1016/j.heliyon.2024.e25983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/04/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
The coaxial electrospinning method is widely used in a wide range of applications, including medical devices and sensing technology. This study proposes a novel optical dual sensor for simultaneous detection of oxygen (O2) and ammonia (NH3) based on coaxial electrospinning method to produce core-shell fiber membrane doped fluorescent dyes. The O2 (core) and NH3 (shell) sensitive dye membranes were successfully fabricated using coaxial electrospinning method by dissolving a polymer matrix, cellulose acetate (CA), with platinum (II) meso-tetrakis (pentafluorophenyl) porphyrin (PtTFPP) and Eosin-Y, respectively. The optical dual sensor was illuminated by an UV LED to monitor the intensity change and wavelength shift in the presence of selected analyte gases. The experimental data show that the sensitivities of optical dual sensor were found to be 6.4 and 3.2 for O2 and NH3, respectively. The response and recovery times of O2 and NH3 sensing probes were measured to be 12 s/29 s and 65 s/66 s, respectively. Also, when exposed to NH3 gas gradually from 0 to 500 ppm, the wavelength shift data of Eosin-Y was started at 569.5 nm, 573.9 nm, 578.4 nm, 579.4 nm, 580.8 nm, and 582.2 nm, respectively. In applications, the proposed optical dual sensor based on coaxial electrospinning method can detect O2 and NH3 gases simultaneously.
Collapse
Affiliation(s)
- Dimas Trio Putro
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
| | - Cheng-Shane Chu
- International Ph.D. Program in Innovative Technology of Biomedical Engineering and Medical Devices, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
- Department of Mechanical Engineering, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
- Research Center for Intelligent Medical Devices, Ming Chi University of Technology, Taishan Dist., New Taipei City, 24301, Taiwan
| |
Collapse
|
10
|
Kim J, John AT, Li H, Huang CY, Chi Y, Anandan PR, Murugappan K, Tang J, Lin CH, Hu L, Kalantar-Zadeh K, Tricoli A, Chu D, Wu T. High-Performance Optoelectronic Gas Sensing Based on All-Inorganic Mixed-Halide Perovskite Nanocrystals with Halide Engineering. SMALL METHODS 2024; 8:e2300417. [PMID: 37330645 DOI: 10.1002/smtd.202300417] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/30/2023] [Indexed: 06/19/2023]
Abstract
Gas sensors are of great interest to portable and miniaturized sensing technologies with applications ranging from air quality monitoring to explosive detection and medical diagnostics, but the existing chemiresistive NO2 sensors still suffer from issues such as poor sensitivity, high operating temperature, and slow recovery. Herein, a high-performance NO2 sensors based on all-inorganic perovskite nanocrystals (PNCs) is reported, achieving room temperature operation with ultra-fast response and recovery time. After tailoring the halide composition, superior sensitivity of ≈67 at 8 ppm NO2 is obtained in CsPbI2 Br PNC sensors with a detection level down to 2 ppb, which outperforms other nanomaterial-based NO2 sensors. Furthermore, the remarkable optoelectronic properties of such PNCs enable dual-mode operation, i.e., chemiresistive and chemioptical sensing, presenting a new and versatile platform for advancing high-performance, point-of-care NO2 detection technologies.
Collapse
Affiliation(s)
- Jiyun Kim
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Alishba T John
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering Chemistry, College of Engineering and Computer Science, Australian National University (ANU), Canberra, ACT, 0200, Australia
| | - Hanchen Li
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Chien-Yu Huang
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Yuan Chi
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Pradeep Raja Anandan
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Krishnan Murugappan
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Mineral Resources, Clayton South, Victoria, 3169, Australia
| | - Jianbo Tang
- School of Chemical Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- School of Engineering, Macquarie University, Sydney, NSW, 2019, Australia
| | - Kourosh Kalantar-Zadeh
- School of Chemical and Biomolecular Engineering, University of Sydney, Sydney, NSW, 2006, Australia
| | - Antonio Tricoli
- Nanotechnology Research Laboratory, Research School of Electrical, Energy and Materials Engineering Chemistry, College of Engineering and Computer Science, Australian National University (ANU), Canberra, ACT, 0200, Australia
- Nanotechnology Research Laboratory, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
| | - Tom Wu
- School of Materials Science and Engineering, University of New South Wales (UNSW), Sydney, NSW, 2052, Australia
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
11
|
Chen L, Luo X, Wang X, Ning L, Li N, Zhao S, Zhang Q, Liu X, Jiang H. Paper-based fluorescent materials containing on-demand nanostructured brain-cells-inspired AIE self-assembles for real-time visual monitoring of seafood spoilage. Food Chem 2024; 431:137083. [PMID: 37567078 DOI: 10.1016/j.foodchem.2023.137083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/21/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023]
Abstract
Biogenic amines containing NH3 are important indicators for conducting full-scale appraisal of food spoilage and disease diagnosis. However, the currently-used detection methods of NH3 have several limitations such as time-consuming high cost, and inability to provide visual real-time monitoring. Therefore, researchers have attempted to explore strategies for quantitative real-time monitoring of NH3 for food spoilage has attracted widespread attentions. Herein, we developed sustainable, fast response, hypersensitized, user-friendly and molecular-level light-emitting biomass-based materials (AFP-FP) containing on-demand nanostructured brain-cells-inspired aggregation-induced-emission (AIE) self-assembles for real-time visual monitoring of seafood spoilage. The 2-hydroxy-5-methyl-isophthalaldehyde-based AIE probe (AFP) was synthesized using a simple "one-step" route. AFP-FP exhibited high selectivity, sensitivity, repeatable and quantitative recognition (y = 7.292×103x + 7.621×104, R = 0.990) of NH3 with a low detection limit (246 ppb) and fast response (<1 s). Furthermore, we integrated AFP-FP into a user-friendly smartphone color recognition app, enabling its practical application in visual, real-time daylight monitoring of food spoilage.
Collapse
Affiliation(s)
- Lijuan Chen
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China; College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xiaomin Luo
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Xuechuan Wang
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Lulu Ning
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Nihao Li
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Suqiu Zhao
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Qian Zhang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China
| | - Xinhua Liu
- Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Huie Jiang
- College of Bioresources Chemistry and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, PR China; Key Laboratory of Auxiliary Chemistry and Technology for Chemical Industry, Ministry of Education, Shaanxi University of Science & Technology, Xi'an 710021, China.
| |
Collapse
|
12
|
Ahmad I, Abohashrh M, Rahim A, Ahmad S, Muhmood T, Wen H. Surface crafting and entrapment of CsPbBr 3 perovskite QDs in ZIF-8 for ammonia recognition. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 302:123091. [PMID: 37453386 DOI: 10.1016/j.saa.2023.123091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/04/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
The substantial optical features of perovskite quantum dots (PQD) lead to rapid growth in the investigation of their surface and lattice doping for optoelectronic and biochemical sensor advancements. Herein, we have used the surface ligand crafting model of PQD by ammonia and its optimum response to recognise ammonia in the sensing cellulose paper. The PQD with acetyl amine and octanoic acid capped were synthesized and entrapped in zeolites imidazole framework to delay the instant quenching and envisaged response to ammonia with high sensitivity. The hybrid perovskite quantum dots and Zeolite imidazolate framework-8 (PQD@ZIF-8) materials were further immersed in cellulose paper for solid-state sensor fabrication for the detection of ammonia by naked-eye and a Xiaomi Note-5 mobile camera. The ammonia was measured with high sensitivity at ambient conditions, with a detection limit of 16 ppm and a linear detection range of 1 to 500 ppm. This research provides a new platform for designing sensor selectivity and sensitivity, which could be used to further develop fluorescent nanomaterials-based sensors for small molecule detection.
Collapse
Affiliation(s)
- Imtiaz Ahmad
- Membrane Science and Technology Research Group, Chemistry Department, Faculty of Science and Technology, Universitas Airlangga, Surabaya, Indonesia; Department of Chemistry, Fatima Jinnah Woman University, The Mall, Rawalpindi, Pakistan.
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Pakistan
| | - Sadia Ahmad
- Department of Chemistry, Fatima Jinnah Woman University, The Mall, Rawalpindi, Pakistan
| | - Tahir Muhmood
- College of Science, Nanjing Forestry University, Nanjing 210037 PR China.
| | - Hongli Wen
- Key Laboratory of Clean Chemistry Technology of Guangdong Regular Higher Education Institutions, School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
13
|
Zhao W, Zhang J, Kong F, Ye T. Application of Perovskite Nanocrystals as Fluorescent Probes in the Detection of Agriculture- and Food-Related Hazardous Substances. Polymers (Basel) 2023; 15:2873. [PMID: 37447518 DOI: 10.3390/polym15132873] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Halide perovskite nanocrystals (PNCs) are a new kind of luminescent material for fluorescent probes. Compared with traditional nanosized luminescent materials, PNCs have better optical properties, such as high fluorescence quantum yield, tunable band gap, low size dependence, narrow emission bandwidth, and so on. Therefore, they have broad application prospects as fluorescent probes in the detection of agriculture- and food-related hazardous substances. In this paper, the structure and basic properties of PNCs are briefly described. The water stabilization methods, such as polymer surface coating, ion doping, surface passivation, etc.; are summarized. The recent advances of PNCs such as fluorescent probes for detecting hazardous substances in the field of agricultural and food are reviewed, and the detection effect and mechanism are discussed and analyzed. Finally, the problems and solutions faced by PNCs as fluorescent probes in agriculture and food were summarized and prospected. It is expected to provide a reference for further application of PNCs as fluorescent probes in agriculture and food.
Collapse
Affiliation(s)
- Wei Zhao
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Jianguo Zhang
- Maize Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin 150086, China
| | - Fanjun Kong
- Harbin Technician College, Harbin 150500, China
| | - Tengling Ye
- State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| |
Collapse
|
14
|
Wu W, Zhao C, Hu M, Pan A, Xiong W, Chen Y. CsPbBr 3 perovskite quantum dots grown within Fe-doped zeolite X with improved stability for sensitive NH 3 detection. NANOSCALE 2023; 15:5705-5711. [PMID: 36853801 DOI: 10.1039/d2nr06923g] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
All-inorganic cesium lead halide (CsPbX3, X = Cl, Br and I) perovskite quantum dots (QDs) have received enormous research interest because of their exceptional optoelectronic properties, but their low chemical stability under ambient conditions from inevitable defects restricts their practical applications. In an effort to enhance the stability of QDs, in this study, novel functional nanocomposites were fabricated by encapsulating perovskite QDs with zeolite X doped with iron ions. Focusing on the as-obtained nanocomposites labeled with QDs@Fe/X-n, doping a reasonable amount of Fe3+ ions can tremendously improve the order of perovskite lattices and reduce the halide vacancies. The results of stability improvement in nanocomposites with an optimal Fe3+ load (QDs@Fe/X-3) are presented. After storage in air for 100 days, the emission-peak position of the composites can remain almost unchanged, and the photoluminescence (PL) intensity can reach ∼98% of the original intensity. Additionally, the PL intensity of QDs@Fe/X-3 can decrease immediately when exposing it to a NH3 atmosphere at room temperature. The PL intensity can be linearly varied with a change in the NH3 concentration. The original value of the PL can be rapidly recovered by separating the sample from the NH3 environment. This work enables the QDs@Fe/X composite to be an ideal active material for ammonia sensing.
Collapse
Affiliation(s)
- Wan Wu
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an 710049, China.
| | - Chunyu Zhao
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an 710049, China.
| | - Mingyou Hu
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an 710049, China.
| | - Aizhao Pan
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an 710049, China.
| | - Wei Xiong
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an 710049, China.
| | - Yinghao Chen
- Department of Chemistry, School of Chemistry, Xi'an Jiaotong University, Xianning West Road, 28, Xi'an 710049, China.
| |
Collapse
|
15
|
Salari R, Amjadi M, Hallaj T. Perovskite quantum dots as a chemiluminescence platform for highly sensitive assay of cefazolin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2023; 285:121845. [PMID: 36152503 DOI: 10.1016/j.saa.2022.121845] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/16/2023]
Abstract
This paper reports on a chemiluminescence (CL) probe consist of CsPbBr3 quantum dots (QDs) in organic phase together with Fe(II) and K2S2O8 in aqueous medium for the highly selective and sensitive determination of the antibiotic, cefazolin (CFZ). The CsPbBr3perovskite QDs prepared by the ligand assisted reprecipitation method, exhibit a narrow fluorescence at 533 nm under 460 nm excitation with a high quantum yield (42 %). The Fe(II) - S2O82- as an ultra-weak CL system is converted to a rather strong CL sensing platform in the presence of organic-phase CsPbBr3 QDs. It was observed that CFZ exerts an enhancement effect on the CL signal of the designed probe in the linear range of 25 - 300 nM, with a low limit of detection (9.6 nM). The introduced sensor has broad application prospects in biosensing, food detection, and other fields with recovery ranging from 94 to 106 %.
Collapse
Affiliation(s)
- Rana Salari
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran
| | - Mohammad Amjadi
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 5166616471, Iran.
| | - Tooba Hallaj
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia 5714783734, Iran
| |
Collapse
|
16
|
A stable and humidity resistant NH3 sensor based on luminous CsPbBr3 perovskite nanocrystals. Talanta 2022. [DOI: 10.1016/j.talanta.2022.124070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
17
|
Park B, Kang H, Han S, Kim HU, Cho Y, Huh YS, Kang SM. The Fabrication of Cesium Lead Bromide-Coated Cellulose Nanocomposites and Their Effect on the Detection of Nitrogen Gas. SENSORS (BASEL, SWITZERLAND) 2022; 22:7737. [PMID: 36298086 PMCID: PMC9611072 DOI: 10.3390/s22207737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/04/2022] [Accepted: 10/09/2022] [Indexed: 06/16/2023]
Abstract
In this work, we fabricate cesium lead bromide nanofibers (CsPbBr3 NFs) via the attachment of cesium lead bromide nanocrystals (CsPbBr3 NCs) on the surface of electrospun cellulose nanofibers (CNFs) and employ them in a sensor to effectively detect gaseous nitrogen. The CsPbBr3 NFs are produced initially by producing CsPbBr3 NCs through hot injection and dispersing on hexane, followed by dipping CNFs and ultrasonicate for 1 h. Morphological characterization through visual, SEM and TEM image, and crystalline structure analysis by XRD and FT-IR analysis of CsPbBr3 NFs and NCs show similar spectra except for PL due to unavoidable damage during the ultrasonication. Gaseous nitrogen is subsequently detected using the photoluminescence (PL) property of CsPbBr3 NFs, in which the PL intensity dramatically decreases under various flow rate. Therefore, we believe that the proposed CsPbBr3 NFs show significant promise for use in detection sensors in various industrial field and decrease the potential of fatal damage to workers due to suffocation.
Collapse
Affiliation(s)
- Bumjun Park
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Haneul Kang
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Soobin Han
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Hyeong-U Kim
- Department of Plasma Engineering, Korea Institute of Machinery & Materials, Daejeon 34103, Korea
| | - Youngjin Cho
- Food Safety and Distribution Research Group, Korea Food Research Institute, 245 Nongsaengmyeong-ro, Iseo-myeon, Wanju-gun 55365, Jeollabuk-do, Korea
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Michuhol-gu, Incheon 22212, Korea
| | - Sung-Min Kang
- Department of Green Chemical Engineering, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Korea
- Future Environment and Energy Research Institute, Sangmyung University, 31 Sangmyungdae-gil, Cheonan 31066, Chungcheongnam-do, Korea
| |
Collapse
|
18
|
Jia D, Xu M, Mu S, Ren W, Liu C. Recent Progress of Perovskite Nanocrystals in Chem/Bio Sensing. BIOSENSORS 2022; 12:754. [PMID: 36140139 PMCID: PMC9496257 DOI: 10.3390/bios12090754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/10/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022]
Abstract
Perovskite nanocrystals (PNCs) are endowed with extraordinary photophysical properties such as wide absorption spectra, high quantum yield, and narrow emission bands. However, the inherent shortcomings, especially the instability in polar solvents and water incompatibility, have hindered their application as probes in chem/bio sensing. In this review, we give a fundamental understanding of the challenges when using PNCs for chem/bio sensing and summarize recent progress in this area, including the application of PNCs in various sensors and the corresponding strategies to maintain their structural integrity. Finally, we provide perspectives to promote the future development of PNCs for chem/bio sensing applications.
Collapse
Affiliation(s)
- Dailu Jia
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Meng Xu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shuang Mu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Ren
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Chenghui Liu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Xi’an 710119, China
- Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, Xi’an 710119, China
- School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
19
|
Xu X, Wang S, Chen Y, Liu W, Wang X, Jiang H, Ma S, Yun P. CsPbBr 3-Based Nanostructures for Room-Temperature Sensing of Volatile Organic Compounds. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39524-39534. [PMID: 35976102 DOI: 10.1021/acsami.2c09586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
All-inorganic halide perovskites, as a dominant member of the perovskite family, have been proven to be excellent semiconductors due to the great successes for solar cells, light-emitting diodes, photodetectors, and nanocrystal photocatalysts. Despite the remarkable advances in those fields, there are few research studies focusing on gas and humidity-sensing performances, especially for pure CsPbBr3 and heterogeneous CsPbBr3@MoS2 composites. Here, we first report a valuable CsPbBr3 sensor prepared by electrospinning, and the excellent gas sensing performances are investigated. The CsPbBr3 sensor can quickly and effectively detect ethanolamine at room temperature. The response time is only 16 s, and the response to 100 ppm ethanolamine is as high as 29.87, besides the excellent repeatability and good stability. The theoretical detection limit is estimated to be 21 ppb. Furthermore, considering the irreplaceable role of heterostructures in regulating the electronic structure and supporting rich reaction boundaries, we also actively explored the EA sensitivity of inorganic CsPbBr3-based heterogeneous composites CsPbBr3@MoS2. At the same time, the roles of the critical capping agents OA and OAm are systematically investigated. This work demonstrates the great potential of all-inorganic halide perovskites in promising volatile organic compound detection.
Collapse
Affiliation(s)
- Xiaoli Xu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shengyi Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Yan Chen
- Northwest University for Nationalities, Lanzhou, Gansu 730030, China
| | - Wangwang Liu
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Xiaoping Wang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Hongtao Jiang
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Shuyi Ma
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| | - Pengdou Yun
- Key Laboratory of Atomic and Molecular Physics & Functional Materials of Gansu Province, College of Physics and Electronic Engineering, Northwest Normal University, Lanzhou 730070, China
| |
Collapse
|
20
|
Shu Y, Wang Y, Guan J, Ji Z, Xu Q, Hu X. Amphiphilic Polymer Ligand-Assisted Synthesis of Highly Luminescent and Stable Perovskite Nanocrystals for Sweat Fluorescent Sensing. Anal Chem 2022; 94:5415-5424. [PMID: 35325531 DOI: 10.1021/acs.analchem.2c00235] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The weak interfacial binding affinities of the inorganic perovskite core with ligands and high density of surface defect states induce the facile detachment of surface ligands from nanocrystals (NCs), resulting in their poor colloidal stability and fluorescence in aqueous. In this work, a powerful ligand engineering strategy was proposed for eliminating the surface defects and aggregation of the NCs. Using an amphiphilic polymer octylamine-modified polyacrylic acid (OPA) as a capping ligand, the as-synthesized CsPbBr3 NCs retain high photoluminescence intensity and stability by the modified ligand-assisted reprecipitation method. The increase in the fluorescence lifetime and NC size could also be observed, and how the NC particle size influences fluorescence lifetime was further studied. In addition, the water stability, photostability, and thermal stability were significantly improved, and the fluorescence of NCs can maintain 80.13% of the original value in water for 15 d. We further validated that the strong binding affinity of OPA and oleylamine ligands with CsPbBr3 NCs leads to a reduction in surface trap states, and a large amount of carboxyl groups of the OPA made the NCs preserve good water solubility. In addition, the OPA has the ability of adjusting the particle size of NCs. Furthermore, a wavelength-shifted colorimetric sensor based on these NCs was constructed for detection of Cl- in sweat, which enables the rapid and visual detection of Cl- with high accuracy and stability. Overall, these CsPbBr3 NCs synthesized by the ligand engineering strategy validated their wide applications in biomedical sensing fields.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Jie Guan
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Zhengping Ji
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R.China
| |
Collapse
|
21
|
Chen X, Yu Y, Yang C, Yin J, Song X, Li J, Fei H. Fabrication of Robust and Porous Lead Chloride-Based Metal-Organic Frameworks toward a Selective and Sensitive Smart NH 3 Sensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52765-52774. [PMID: 34702027 DOI: 10.1021/acsami.1c15276] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organolead halide materials have shown promising optoelectronic properties that are suitable for light-emitting diodes (e.g., strong photoluminescence, narrow emission width, and high charge carrier mobility). However, the vast majority of them have no open porosity or open metal sites for host-guest interactions and are therefore not widely applicable in intrinsic fluorescent sensing of small molecules. Herein, we report a lead chloride-based metal-organic framework (MOF) with high porosity and stability and promising photoluminescent characteristics, performing as a sensitive, selective, and long-term stable fluorescence probe for NH3. For the first time, a homemade dynamic real-time photoluminescence monitoring system was developed, which showed that our haloplumbate-based MOF has an immediate response and an extremely low limit of detection (12 ppm) toward NH3. A variety of experimental characterization and theoretical calculations evidenced that the photoluminescence quenching was ascribed to the coordination between NH3 guests and exposed Pb2+ centers in MOFs. Moreover, a portable on-site smart NH3 detector was designed based on this haloplumbate-MOF using a 3D printer, and the quantitative recovery experiment demonstrated the effective detection of NH3 in the range of 15-150 ppm. This study opens a new pathway to design organolead halide-based MOFs to perform on-site chemical sensing of small molecules and shows their high potential to monitor safety concentrations of NH3 in different industrial sites.
Collapse
Affiliation(s)
- Xinfeng Chen
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Yuan Yu
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Chenxiao Yang
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Jinlin Yin
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Xueling Song
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Junjie Li
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| | - Honghan Fei
- Shanghai Key Laboratory of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, P. R. China
| |
Collapse
|
22
|
Shu Y, Sun L, Wang Y, Jin D, Xu Q, Hu X. Polymer surface ligand and silica coating induced highly stable perovskite nanocrystals with enhanced aqueous fluorescence for efficient Hg 2+ and glutathione detection. Analyst 2021; 146:6798-6807. [PMID: 34668893 DOI: 10.1039/d1an01485d] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The poor stability and aqueous-quenching of fluorescence of perovskite nanocrystals (NCs) hinder their application in bio-detection and bio-imaging. Herein, through the synergistic effects of polymer surface ligand and silica encapsulation, highly stable and enhanced aqueous fluorescent CsPbBr3-mPEG@SiO2 NCs were synthesized and used as a novel "on-off-on" fluorescent probe for highly sensitive and selective detection of mercury ions (Hg2+) and glutathione (GSH) in aqueous solutions. The effects of the methoxypolyethylene glycol amine (mPEG-NH2) ligand and silica encapsulation on the stability and aqueous fluorescence of the CsPbBr3 NCs were studied. It indicated that the aqueous fluorescence of perovskite NCs was increased by 2.59 times. The water stability was also greatly improved, with the NCs maintaining 73% of their original fluorescence after storage for 30 days in water. X-ray diffraction (XRD), transmission electron microscopy (TEM) and Fourier transform infrared spectroscopy (FT-IR) analyses further demonstrated that the NCs were successfully passivated by mPEG-NH2 and silica. The fluorescence of the CsPbBr3-mPEG@SiO2 nanocrystals was effectively quenched by Hg2+ which is attributed to the electron transfer process between NCs and Hg2+. Then, through the interaction between Hg2+ and GSH, the restoration of fluorescence for CsPbBr3-mPEG@SiO2 was realized. The "on-off-on" fluorescent probe can be used for the detection of Hg2+ and GSH with a low detection limit of 0.08 nM and 0.19 μM, respectively. It also shows a fast response time and high accuracy for practical sample detection. The simple and sensitive fluorescent probe of CsPbBr3-mPEG@SiO2 shows great potential in environmental and biological sensing.
Collapse
Affiliation(s)
- Yun Shu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Linyan Sun
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Yan Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Dangqin Jin
- Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, P.R. China
| | - Qin Xu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| | - Xiaoya Hu
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P.R. China.
| |
Collapse
|
23
|
Recent progress on the modifications of ultra-small perovskite nanomaterials for sensing applications. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116432] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Chen S, Huang M, Huang M, Feng L. Fluorometric determination of ziram using CsPbBr 3 quantum dots. Mikrochim Acta 2021; 188:390. [PMID: 34677687 DOI: 10.1007/s00604-021-05045-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 10/02/2021] [Indexed: 11/24/2022]
Abstract
A strategy based on CsPbBr3 quantum dots (QDs) is described for the determination of ziram pesticide. A facile and inert gas-free method was used for the synthesis of CsPbBr3 QDs. The obtained CsPbBr3 QDs displayed turn-off fluorescence behavior for ziram. The fluorescence intensity of the CsPbBr3 QDs (Ex/Em = 365/516 nm) was inversely proportional to the concentration of ziram (0.10 to 50.0 ppm) with a detection limit of 0.086 ppm. Notably, satisfactory recoveries (100 ± 0.25 to 107 ± 5.72%) were obtained in spiked fruit samples, which demonstrated that this method is capable of detecting ziram in real samples. In addition, the mechanism for the detection of ziram was investigated in detail. According to the results, this mechanism can be tentatively explained by fluorescence quenching originating from the increased surface defects and the structural changes of the CsPbBr3 QDs. The detection ability of this strategy shows promising applicability in food safety.
Collapse
Affiliation(s)
- Shuqin Chen
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, People's Republic of China.
| | - Mengna Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, People's Republic of China
| | - Mianli Huang
- College of Chemical Engineering and Materials Science, Quanzhou Normal University, Quanzhou, 362000, People's Republic of China
| | - Liang Feng
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, People's Republic of China.
| |
Collapse
|
25
|
Shukla P, Yadav S, Patel MS, Kumar P, Kumar N, Kumar L. The effects of cesium lead bromide quantum dots on the performance of copper phthalocyanine-based organic field-effect transistors. NANOTECHNOLOGY 2021; 32:195208. [PMID: 33503597 DOI: 10.1088/1361-6528/abe070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Highly luminescent all-inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) have been extensively used as a photosensitizer in optoelectronic devices, while p-type small-organic-molecule copper phthalocyanine (CuPc) is also widely used as a photoactive material in solar cells, organic field-effect transistors (OFETs), etc. In this paper, we report the preparation of a CsPbBr3-QDs/CuPc heterostructure to study the effect of CsPbBr3-QDs on CuPc. The optical properties of both CuPc and the QDs/CuPc heterostructure were compared and contrasted using UV-vis absorbance and photoluminescence (PL) measurements. Furthermore, to study their electronic and charge transfer features, we fabricated field-effect transistors (FETs) on both pristine CuPc and QDs/CuPc heterostructure thin films and studied their photoresponsive electrical characteristics. Both pristine and QDs/CuPc-based FETs showed an enhancement in current and carrier mobility under illumination. The enhancement in the current and carrier mobility of the QDs/CuPc-based FETs is due to a large number of photoexcited charge carriers. We also observed that the current and carrier mobility in the QDs/CuPc heterostructure-based FET were lower than those of the pristine CuPc-based FET. This can be explained by the n-type doping effect of CsPbBr3 QDs on CuPc, which reduces the accumulation of holes in the active p-channel near the insulating layer and causes charge to be transferred from the QDs to the CuPc. Thus, we have observed a charge transfer effect in the CsPbBr3 QDs/CuPc heterostructure, which can be used in optoelectronic devices.
Collapse
Affiliation(s)
- Preeti Shukla
- Molecular Electronics Research Laboratory, Physics Department, Faculty of Science, University of Allahabad, Prayagraj-211 002, India
| | - Sarita Yadav
- Molecular Electronics Research Laboratory, Physics Department, Faculty of Science, University of Allahabad, Prayagraj-211 002, India
| | - M S Patel
- Molecular Electronics Research Laboratory, Physics Department, Faculty of Science, University of Allahabad, Prayagraj-211 002, India
| | - Pramendra Kumar
- Department of Applied Chemistry, IET, M. J. P. Rohilkhand University, Bareilly-243 006, India
| | - Naresh Kumar
- Department of Physics, MNNIT-Allahabad, Prayagraj-211 002, India
| | - Lokendra Kumar
- Molecular Electronics Research Laboratory, Physics Department, Faculty of Science, University of Allahabad, Prayagraj-211 002, India
| |
Collapse
|
26
|
Shao S, Xie C, Zhang L, Wei S, Kim HW, Kim SS. CsPbI 3NC-Sensitized SnO 2/Multiple-Walled Carbon Nanotube Self-Assembled Nanomaterials with Highly Selective and Sensitive NH 3 Sensing Performance at Room Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:14447-14457. [PMID: 33739099 DOI: 10.1021/acsami.0c20566] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
It is an effective strategy to enhance the sensitivity of semiconductor metal oxides (SMOs) being sensitized with CsPbI3 nanocrystals (NCs) by adjusting the heterostructure between CsPbI3NC and SMO nanomaterials. In this work, for the first time, a porous 3D multiple-walled carbon nanotube (MWCNT) network uniformly coated with SnO2 quantum nanoparticles (QNPs) and CsPbI3 nanocrystals were prepared via a simple solvent vapor-induced self-assembly method. The fabricated CsPbI3NC-SnO2QNP/MWCNT nanocomposite with vapor-induced self-assembly exhibits superior stability against the moisture as well as an excellent sensing response. The results imply that the rational design of the metal halide perovskite NC/SMO heterostructure can not only improve the stability but also meet the requirements of sensing application. The self-assembled SnO2QNP/MWCNT can facilitate the dispersion of small-sized nanoparticles and efficaciously prevent the detachment of CsPbI3NC. Compared with pristine SnO2QNP and SnO2/MWCNT sensors, the CsPbI3NC-modified SnO2QNP/MWCNT nanostructure exhibited a remarkable sensitivity of 39.2 for 0.2 ppm NH3, rapid response/recovery time of 17/18 s, and excellent selectivity towards NH3. In particular, we applied machine learning methods, including principal component analysis (PCA) and support vector machines (SVMs), to analyze the sensing performance of the CsPbI3NC-SnO2QNP/MWCNT sensor and found that the combined effects of CsPbI3NC-SnO2QNP/MWCNT heterointerfaces contributed to the improvement of selectivity of sensors. The excellent NH3 for sub-ppm level concentration is ascribed to the high sensing activity of the CsPbI3 NC-based heterojunction. This work may not only enrich the family of high-performance breath detection materials but also provide a good example for designing reasonable composite materials with specific properties in the field of metal halide perovskite/SMO heterojunctions.
Collapse
Affiliation(s)
- Shaofeng Shao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Chunyu Xie
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Lei Zhang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Song Wei
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, 210044 Nanjing, China
| | - Hyoun Woo Kim
- Division of Materials Science and Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Sang Sub Kim
- Department of Materials Science and Engineering, Inha University, Incheon 402-751, Republic of Korea
| |
Collapse
|
27
|
De Giorgi ML, Milanese S, Klini A, Anni M. Environment-Induced Reversible Modulation of Optical and Electronic Properties of Lead Halide Perovskites and Possible Applications to Sensor Development: A Review. Molecules 2021; 26:705. [PMID: 33572957 PMCID: PMC7866427 DOI: 10.3390/molecules26030705] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 01/22/2021] [Accepted: 01/23/2021] [Indexed: 11/30/2022] Open
Abstract
Lead halide perovskites are currently widely investigated as active materials in photonic and optoelectronic devices. While the lack of long term stability actually limits their application to commercial devices, several experiments demonstrated that beyond the irreversible variation of the material properties due to degradation, several possibilities exist to reversibly modulate the perovskite characteristics by acting on the environmental conditions. These results clear the way to possible applications of lead halide perovskites to resistive and optical sensors. In this review we will describe the current state of the art of the comprehension of the environmental effects on the optical and electronic properties of lead halide perovskites, and of the exploitation of these results for the development of perovskite-based sensors.
Collapse
Affiliation(s)
- Maria Luisa De Giorgi
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; (S.M.); (M.A.)
| | - Stefania Milanese
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; (S.M.); (M.A.)
| | - Argyro Klini
- Institute of Electronic Structure and Laser, Foundation for Research and Technology-Hellas, P.O. Box 1385, Heraklion, 71110 Crete, Greece;
| | - Marco Anni
- Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, Via per Arnesano, 73100 Lecce, Italy; (S.M.); (M.A.)
| |
Collapse
|
28
|
Huang Y, Feng Y, Li F, Lin F, Wang Y, Chen X, Xie R. Sensing studies and applications based on metal halide perovskite materials: Current advances and future perspectives. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2020.116127] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
29
|
Abstract
Recently, perovskite-based nanomaterials are utilized in diverse sustainable applications. Their unique structural characteristics allow researchers to explore functionalities towards diverse directions, such as solar cells, light emitting devices, transistors, sensors, etc. Many perovskite nanomaterial-based devices have been demonstrated with extraordinary sensing performance to various chemical and biological species in both solid and solution states. In particular, perovskite nanomaterials are capable of detecting small molecules such as O2, NO2, CO2, etc. This review elaborates the sensing applications of those perovskite materials with diverse cations, dopants and composites. Moreover, the underlying mechanisms and electron transport properties, which are important for understanding those sensor performances, will be discussed. Their synthetic tactics, structural information, modifications and real time sensing applications are provided to promote such perovskite nanomaterials-based molecular designs. Lastly, we summarize the perspectives and provide feasible guidelines for future developing of novel perovskite nanostructure-based chemo- and biosensors with real time demonstration.
Collapse
|