1
|
Bhat AY, Bashir AU, Jain P, Bhat MA, Ingole PP. Unraveling the Active Sites on Mesoporous CuFe 2O 4@N-Carbon Catalysts with Abundant Oxygen Vacancies and M-N-C Content for Boosted Nitrogen Reduction Toward Electrosynthesis of Ammonia. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2403319. [PMID: 39082204 DOI: 10.1002/smll.202403319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/16/2024] [Indexed: 11/08/2024]
Abstract
Transition metal centers dispersed over nitrogen-doped carbon (M-NC) supports have been widely explored for electrocatalytic reactions; however, sparsely reported for electrochemical nitrogen reduction reaction (ENRR). Particularly, the single-atom catalysts (SACs) have shown reasonable ammonia yield rate and faradaic efficiency (FE), but their complex synthesis and low durability for long-term electrocatalysis runs restrict their use on a larger scale. Importantly, the catalytic active sites in metal nanostructured-based M-NC catalysts toward enhanced N2 adsorption and activation are still not clear as they are highly challenging to reveal. A few studies have predicted that the surface oxygen vacancies (Ovac) favor an enhanced ENRR performance. Herein, a strategy using tailored M-NC content and Ovac in a single catalyst for enhanced ammonia electrosynthesis is devised. A mesoporous bimetallic spinel oxide (CuFe2O4) supported over N-doped carbon (CuFe2O4@NC) derived from Prussian blue analog (PBA) via controlled pyrolysis possess is found to show boosted ENRR activity. Moreover, operando NH3 formation over the catalyst is observed using four electrode set up. This approach enables rapid evaluation ofelectrocatalytic efficacy and avoids false positive results. The rotating disc electrode results reveal that mass transport in acidic media and surface absorption in alkline media primarily regulate ENRR over CuFe2O4@NC electrocatalyst.
Collapse
Affiliation(s)
- Aamir Y Bhat
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Aejaz Ul Bashir
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Priya Jain
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Mohsin A Bhat
- Department of Chemistry, University of Kashmir, Hazratbal, Srinagar, 190006, India
| | | |
Collapse
|
2
|
Gu Z, Zhang Y, Fu Y, Hu D, Peng F, Tang Y, Yang H. Coordination Desymmetrization of Copper Single-Atom Catalyst for Efficient Nitrate Reduction. Angew Chem Int Ed Engl 2024; 63:e202409125. [PMID: 39115054 DOI: 10.1002/anie.202409125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Indexed: 09/27/2024]
Abstract
Coordination engineering strategy for optimizing the catalytic performance of single-atom catalysts (SACs) has been rapidly developed over the last decade. However, previous reports on copper SACs for nitrate reduction reactions (NO3RR) have mostly focused on symmetric coordination configurations such as Cu-N4 and Cu-N3. In addition, the mechanism in terms of the regulation of coordination environment and catalytic properties of SACs has not been well demonstrated. Herein, we disrupted the local symmetric structure of copper atoms by introducing unsaturated heteroatomic coordination of Cu-O and Cu-N to achieve the coordination desymmetrization of Cu-N1O2 SACs. The Cu-N1O2 SACs exhibit an efficient nitrate-to-ammonia conversion with a high FE of ~96.5 % and a yield rate of 3120 μg NH3 h-1 cm-2 at -0.60 V vs RHE. As indicated by in situ Raman spectra, the catalysts facilitate the accumulation of NO3 - and the selective adsorption of *NO2, which were further confirmed by the theoretical study of surface dipole moment and orbital hybridization. Our work illustrated the correlation between the coordination desymmetrization and the catalytic performance of copper SACs for NO3RR.
Collapse
Affiliation(s)
- Zhengxiang Gu
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Yechuan Zhang
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Yang Fu
- Jiangmen Laboratory of Carbon Science and Technology, Jiangmen, 529020, China
| | - Dandan Hu
- Advanced Research Institute and Department of Chemistry, Taizhou University, Tai Zhou Shi, Jiaojiang, 318000, China
| | - Fang Peng
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Yawen Tang
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| | - Huajun Yang
- School of Chemistry and Materials Science, Nanjing Normal University, 210023, Nanjing, China
| |
Collapse
|
3
|
Liu H, Liu Y, Yu X, Huang X, Zhang J, Chen Z, Xu J. A Novel Bubble-based Microreactor for Enhanced Mass Transfer Dynamics toward Efficient Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309344. [PMID: 37990354 DOI: 10.1002/smll.202309344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/08/2023] [Indexed: 11/23/2023]
Abstract
Electrocatalytic nitrogen reduction reaction (eNRR) is a promising method for sustainable ammonia production. Although the majority of studies on the eNRR are devoted to developing efficient electrocatalysts, it is critical to study the influence of mass transfer because of the poor N2 transfer efficiency. Herein, a novel bubble-based microreactor (BBMR) is proposed that efficiently promotes the mass transfer behavior during the eNRR using microfluidic strategies. The BBMR possesses abundant triphasic interfaces and provides spatial confinement and accurate potential control, ensuring rapid mass transfer dynamics and improved eNRR performance, as confirmed by experimental and simulation studies. The ammonia yield of the reaction over Ag nanoparticles can be enhanced to 31.35 µg h-1 mgcat. -1, which is twice that of the H-cell. Excellent improvements are also achieved using Ru/C and Fe/g-CN catalysts, with 5.0 and 8.5 times increase in ammonia yield, respectively. This work further demonstrates the significant effect of mass transfer on the eNRR performance and provides an effective strategy for process enhancement through electrode design.
Collapse
Affiliation(s)
- Hengyuan Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Yingzhe Liu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xude Yu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Xintong Huang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jingwei Zhang
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Zhuo Chen
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| | - Jianhong Xu
- The State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
4
|
Wang Z, Gu Y, Liu F, Wu W. Facile synthesis of wide bandgap ZrS 2 colloidal quantum dots for solution processed solar-blind UV photodetectors. Chem Commun (Camb) 2023; 59:13771-13774. [PMID: 37920975 DOI: 10.1039/d3cc03594h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2023]
Abstract
We present a facile one-pot method for the successful synthesis of heavy metal-free ZrS2 colloidal quantum dots (QDs) with a wide bandgap. To achieve this, we employed 1-dodecanethiol (DT) as a sulfur precursor, enabling the controlled release of H2S in situ during the reaction at temperatures exceeding 195 °C. This approach facilitated the synthesis of small-sized ZrS2 QDs with precise control.
Collapse
Affiliation(s)
- Zan Wang
- Department of Optics and Optical Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
| | - Yunjiao Gu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Fenghua Liu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Weiping Wu
- Laboratory of Thin Film Optics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China.
- State Key Laboratory of High Field Laser Physics, Shanghai Institute of Optics and Fine Mechanics, Chinese Academy of Sciences, Shanghai, 201800, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
5
|
Gu Z, Zhang Y, Wei X, Duan Z, Gong Q, Luo K. Intermediates Regulation via Electron-Deficient Cu Sites for Selective Nitrate-to-Ammonia Electroreduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2303107. [PMID: 37730433 DOI: 10.1002/adma.202303107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 07/23/2023] [Indexed: 09/22/2023]
Abstract
Ammonia (NH3 ), known as one of the fundamental raw materials for manufacturing commodities such as chemical fertilizers, dyes, ammunitions, pharmaceuticals, and textiles, exhibits a high hydrogen storage capacity of ≈17.75%. Electrochemical nitrate reduction (NO3 RR) to valuable ammonia at ambient conditions is a promising strategy to facilitate the artificial nitrogen cycle. Herein, copper-doped cobalt selenide nanosheets with selenium vacancies are reported as a robust and highly efficient electrocatalyst for the reduction of nitrate to ammonia, exhibiting a maximum Faradaic efficiency of ≈93.5% and an ammonia yield rate of 2360 µg h-1 cm-2 at -0.60 V versus reversible hydrogen electrode. The in situ spectroscopical and theoretical study demonstrates that the incorporation of Cu dopants and Se vacancies into cobalt selenide efficiently enhances the electron transfer from Cu to Co atoms via the bridging Se atoms, forming the electron-deficient structure at Cu sites to accelerate NO3 - dissociation and stabilize the *NO2 intermediates, eventually achieving selective catalysis in the entire NO3 RR process to produce ammonia efficiently.
Collapse
Affiliation(s)
- Zhengxiang Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yechuan Zhang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xuelian Wei
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| |
Collapse
|
6
|
Zhong JH, Zhou Y, Tian XX, Sun YL, Shi BR, Zhang ZY, Zhang WH, Liu XD, Yang YM. The Addition of an Ultra-Small Amount of Black Phosphorous Quantum Dots Endow Self-Healing Polyurethane with a Biomimetic Intelligent Response. Macromol Rapid Commun 2023; 44:e2300286. [PMID: 37461093 DOI: 10.1002/marc.202300286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/26/2023] [Indexed: 07/25/2023]
Abstract
This study explores new applications of black phosphorus quantum dots (BPQDs) by adding them to self-healing material systems for the first time. Self-healing polyurethane with an ultra-small amount of BPQDs has biomimetic intelligent responsiveness and achieves balance between its mechanical and self-healing properties. By adding 0.0001 wt% BPQDs to self-healing polyurethane, the fracture strength of the material increases from 3.0 to 12.3 MPa, and the elongation at break also increases from 750% to 860%. Meanwhile, the self-healing efficiency remains at 98%. The addition of BPQDs significantly improves the deformation recovery ability of the composite materials and transforms the surface of self-healing polyurethane from hydrophilic to hydrophobic, making it suitable for applications in fields such as electronic skin and flexible wearable devices. This study provides a simple and feasible strategy for endowing self-healing materials with biomimetic intelligent responsiveness using a small amount of BPQDs.
Collapse
Affiliation(s)
- Jia-Hui Zhong
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yan Zhou
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
| | - Xin-Xin Tian
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Ying-Lu Sun
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Bi-Ru Shi
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Zhen-Yu Zhang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Hua Zhang
- Power and Environmental Control Research Department, China Special Vehicle Research Institute, Jingmen, 448000, China
| | - Xiang-Dong Liu
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Ming Yang
- CAS Key Laboratory of High-Performance Synthetic Rubber and its Composite Materials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei, 230026, China
| |
Collapse
|
7
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
8
|
Asgari S, Mohammadi Ziarani G, Badiei A, Varma RS, Iravani S, Mohajer F. Enhanced photocatalytic activity of modified black phosphorus-incorporated PANi/PAN nanofibers. RSC Adv 2023; 13:17324-17339. [PMID: 37304786 PMCID: PMC10251399 DOI: 10.1039/d3ra01744c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 05/29/2023] [Indexed: 06/13/2023] Open
Abstract
Enhancement of the photocatalytic activity of black phosphorus (BP) is a highly challenging proposition. The fabrication of electrospun composite nanofibers (NFs) through the incorporation of modified BP nanosheets (BPNs) into conductive polymeric NFs has been recently introduced as a newer strategy not only to enhance the photocatalytic activity of BPNs but also to overcome their drawbacks including ambient instability, aggregation, and hard recycling, which exist in their nanoscale powdered forms. The proposed composite NFs were prepared through the incorporation of silver (Ag)-modified BPNs, gold (Au)-modified BPNs, and graphene oxide (GO)-modified BPNs into polyaniline/polyacrylonitrile (PANi/PAN) NFs by an electrospinning process. The successful preparation of the modified BPNs and electrospun NFs was confirmed by the characterization techniques of Fourier-transform infrared spectroscopy (FT-IR), ultraviolet-visible (UV-vis), powder X-ray diffraction (PXRD), and Raman spectroscopy. The pure PANi/PAN NFs exhibited high thermal stability with a main weight loss of ∼23% for the temperature range of 390-500 °C, and the thermal stability of NFs was enhanced after their incorporation with the modified BPNs. The BPNs@GO-incorporated PANi/PAN NFs indicated improved mechanical properties compared to the pure PANi/PAN NFs with tensile strength (TS) of 1.83 MPa and elongation at break (EAB) of 24.91%. The wettability of the composite NFs was measured in the range of 35-36°, which exhibited their good hydrophilicity. The photodegradation performance was found in the sequence of BPNs@GO > BPNs@Au > BPNs@Ag > bulk BP ∼BPNs > red phosphorus (RP) for methyl orange (MO) and in the sequence of BPNs@GO > BPNs@Ag > BPNs@Au > bulk BP > BPNs > RP for methylene blue (MB), accordingly. The composite NFs degraded the MO and MB dyes more efficiently relative to the modified BPNs and pure PANi/PAN NFs.
Collapse
Affiliation(s)
- Shadi Asgari
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993893973 Tehran Iran
| | - Ghodsi Mohammadi Ziarani
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993893973 Tehran Iran
| | - Alireza Badiei
- School of Chemistry, College of Science, University of Tehran Tehran Iran
| | - Rajender S Varma
- Regional Centre of Advanced Technologies and Materials, Czech Advanced Technology and Research Institute, Palacký University in Olomouc Šlechtitelů 27 783 71 Olomouc Czech Republic
| | - Siavash Iravani
- Faculty of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences Isfahan Iran
| | - Fatemeh Mohajer
- Department of Organic Chemistry, Faculty of Chemistry, Alzahra University P.O. Box 1993893973 Tehran Iran
| |
Collapse
|
9
|
Li S, Wang Y, Du Y, Zhu XD, Gao J, Zhang YC, Wu G. P-Block Metal-Based Electrocatalysts for Nitrogen Reduction to Ammonia: A Minireview. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206776. [PMID: 36610010 DOI: 10.1002/smll.202206776] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/20/2022] [Indexed: 06/17/2023]
Abstract
Electrochemical nitrogen reduction reaction (NRR) to ammonia (NH3 ) using renewable electricity provides a promising approach towards carbon neutral. What's more, it has been regarded as the most promising alternative to the traditional Haber-Bosch route in current context of developing sustainable technologies. The development of a class of highly efficient electrocatalysts with high selectivity and stability is the key to electrochemical NRR. Among them, P-block metal-based electrocatalysts have significant application potential in NRR for which possessing a strong interaction with the N 2p orbitals. Thus, it offers a good selectivity for NRR to NH3 . The density of state (DOS) near the Fermi level is concentrated for the P-block metal-based catalysts, indicating the ability of P-block metal as active sites for N2 adsorption and activation by donating p electrons. In this work, we systematically review the recent progress of P-block metal-based electrocatalysts for electrochemical NRR. The effect of P-block metal-based electrocatalysts on the NRR activity, selectivity and stability are discussed. Specifically, the catalyst design, the nature of the active sites of electrocatalysts and some strategies for boosting NRR performance, the reaction mechanism, and the impact of operating conditions are unveiled. Finally, some challenges and outlooks using P-block metal-based electrocatalysts are proposed.
Collapse
Affiliation(s)
- Shaoquan Li
- State Key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
- School of Materials Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, 525000, China
| | - Yingnan Wang
- State Key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yue Du
- State Key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Xiao-Dong Zhu
- State Key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Jian Gao
- State Key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Yong-Chao Zhang
- State Key Laboratory Based of Eco-chemical Engineering College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| |
Collapse
|
10
|
Dong G, Huang X, Bi Y. Anchoring Black Phosphorus Quantum Dots on Fe-Doped W 18 O 49 Nanowires for Efficient Photocatalytic Nitrogen Fixation. Angew Chem Int Ed Engl 2022; 61:e202204271. [PMID: 35545533 DOI: 10.1002/anie.202204271] [Citation(s) in RCA: 33] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Indexed: 12/18/2022]
Abstract
Herein, we demonstrate that the surface anchoring of black phosphorus quantum dots (BPQDs) and bulk iron-doping in W18 O49 nanowires significantly promotes the photocatalytic activity toward N2 fixation into NH3 . More specifically, a NH3 production rate of up to 187.6 μmol g-1 h-1 could be achieved, nearly one order of magnitude higher than that of pristine W18 O49 (18.9 μmol g-1 h-1 ). Comprehensive experiments and density-functional theory calculations reveal that Fe-doping could enhance the reducing ability of photo-generated electrons by decreasing the work function and elevating the defect band (d-band) centers. Additionally, the surface BPQDs anchoring could facilitate the N2 adsorption/activation owing to the increased adsorption energy and advantaged W-P dimer bonding-mode. Therefore, synergizing the surface BPQD anchoring and bulk Fe-doping remarkably enhanced the photocatalytic activity of W18 O49 nanowires for NH3 production.
Collapse
Affiliation(s)
- Guojun Dong
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China
| | - Xiaojuan Huang
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation, National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, CAS, Lanzhou, 730000, P. R. China.,Dalian National Laboratory for Clean Energy, CAS, Dalian, 116023, China
| |
Collapse
|
11
|
Xiong W, Zhou M, Huang X, Yang W, Zhang D, Lv Y, Li H. Direct In Situ Vertical Growth of Interlaced Mesoporous NiO Nanosheets on Carbon Felt for Electrocatalytic Ammonia Synthesis. Chemistry 2022; 28:e202200779. [DOI: 10.1002/chem.202200779] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Wei Xiong
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Min Zhou
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Xiaoyan Huang
- Key Laboratory for Green Chemical Process (Ministry of Education) Engineering Research Center of Phosphorus Resources Development and Utilization of Ministry of Education Hubei Key Laboratory of Novel Reactor &Green Chemical Technology School of Chemistry and Environmental Engineering Wuhan Institute of Technology Wuhan 430205 China
| | - Weijie Yang
- Department of Power Engineering School of Energy Power and Mechanical Engineering North China Electric Power University Baoding 071003 China
| | - Da Zhang
- Changjiang River Scientific Research Institute Wuhan 430071 China
| | - Yaokang Lv
- College of Chemical Engineering Zhejiang University of Technology Hangzhou 310014 China
| | - Hao Li
- Advanced Institute for Materials Research (WPI-AIMR) Tohoku University Sendai 980-8577 Japan
| |
Collapse
|
12
|
Dong G, Huang X, Bi Y. Anchoring Black Phosphorus Quantum Dots on Fe‐Doped W
18
O
49
Nanowires for Efficient Photocatalytic Nitrogen Fixation. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Guojun Dong
- State Key Laboratory for Oxo Synthesis & Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics CAS Lanzhou 730000 P. R. China
| | - Xiaojuan Huang
- State Key Laboratory for Oxo Synthesis & Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics CAS Lanzhou 730000 P. R. China
| | - Yingpu Bi
- State Key Laboratory for Oxo Synthesis & Selective Oxidation National Engineering Research Center for Fine Petrochemical Intermediates Lanzhou Institute of Chemical Physics CAS Lanzhou 730000 P. R. China
- Dalian National Laboratory for Clean Energy CAS Dalian 116023 China
| |
Collapse
|
13
|
Fu Y, Liao Y, Li P, Li H, Jiang S, Huang H, Sun W, Li T, Yu H, Li K, Li H, Jia B, Ma T. Layer structured materials for ambient nitrogen fixation. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214468] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
14
|
Ozhukil Valappil M, Alwarappan S, Pillai VK. Phosphorene quantum dots: synthesis, properties and catalytic applications. NANOSCALE 2022; 14:1037-1053. [PMID: 34994751 DOI: 10.1039/d1nr07340k] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phosphorene quantum dots (PQDs) belong to a new class of zero-dimensional functional nanostructures with unique physicochemical and surface properties in comparison with few-layer phosphorene and other 2D analogues. Tunable band gap as a function of number of layers, ease of passivation and high carrier mobility of PQDs have attracted considerable attention in catalysis research due to which spectacular progress has been made in PQD research over the last few years. PQDs are now considered as promising catalytic materials for electrocatalytic water splitting and nitrogen reduction, lithium-sulfur batteries, solar light-driven energy devices and biocatalysis, either in pristine form or as an active component for constructing heterostructures with other 2D materials. In the light of these recent advances, it is worthwhile to review and consolidate PQD research in catalytic applications to understand the challenges ahead and suggest possible solutions. In this review, we systematically summarize various synthetic strategies including ultrasonic and electrochemical exfoliation, solvothermal treatment, blender breaking, milling, crushing and pulsed laser irradiation. Furthermore, the physiochemical properties of PQDs are discussed based on both experimental and theoretical perspectives. The potential applications of PQDs in catalysis with special emphasis on photocatalysis (solar light-driven energy devices) and electrocatalysis (oxygen evolution reactions and hydrogen evolution reactions) -are critically discussed along with the present status, challenges and future perspectives.
Collapse
Affiliation(s)
| | - Subbiah Alwarappan
- CSIR-Central Electrochemical Research Institute, Karaikudi 630003, Tamil Nadu, India.
| | - Vijayamohanan K Pillai
- Indian Institute of Science Education and Research, Mangalam (P.O.), Tirupati 517507, Andhra Pradesh, India.
| |
Collapse
|
15
|
Li C, Gu M, Gao M, Liu K, Zhao X, Cao N, Feng J, Ren Y, Wei T, Zhang M. N-doping TiO 2 hollow microspheres with abundant oxygen vacancies for highly photocatalytic nitrogen fixation. J Colloid Interface Sci 2021; 609:341-352. [PMID: 34896834 DOI: 10.1016/j.jcis.2021.11.180] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 11/24/2021] [Accepted: 11/28/2021] [Indexed: 12/16/2022]
Abstract
Photocatalytic fixation of nitrogen to ammonia (NH3) is a green but low-efficiency technology due to the high recombination of photo-generated carriers and poor light absorption of photocatalysts. Generally, the adsorption capacity for N2 and the band position of TiO2 are responsible for bandgap, light-adsorption, and the separation of photocarriers. Therefore, they play crucial roles to improve catalytic activity. Herein, N-doping TiO2 hollow microspheres (NTO-0.5) with oxygen vacancies were synthesized via a hydrothermal method using phenolic resin microsphere as a template. The obtained NTO-0.5 achieves an impressive ammonia yield of 80.09 μmol gcat-1h-1. Oxygen vacancies of NTO-0.5 were confirmed by ESR, Raman, XPS, Zeta potential, and H2O2 treatment for reducing oxygen vacancies. The ammonia yield of NTO-0.5 decreases to 34.78 μmol gcat-1h-1 after reducing oxygen vacancies by H2O2 treatment, which demonstrates the importance of oxygen vacancies. The oxygen vacancies narrow the bandgap from 3.18 eV to 2.83 eV and impede the recombination of photo-generated carriers. The hollow microspheres structure is conducive to light absorption and utilization. Therefore, the synergistic effect between the oxygen vacancies and the hollow microspheres structure boosts the efficiency of photocatalytic nitrogen fixation. After four cycles, the ammonia production yield still maintains at 76.52 μmol gcat-1h-1, meaning high stability. This work provides a new insight into the construction of catalysts with oxygen vacancies to enhance photocatalytic nitrogen fixation performance.
Collapse
Affiliation(s)
- Chang Li
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - MengZhen Gu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - MingMing Gao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - KeNing Liu
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - XinYu Zhao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - NaiWen Cao
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Jing Feng
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China.
| | - YueMing Ren
- Key Laboratory of Superlight Materials & Surface Technology of Ministry of Education, Harbin Engineering University, Harbin 150001, PR China
| | - Tong Wei
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao 266580, PR China.
| | - MingYi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin 150025, PR China
| |
Collapse
|
16
|
Pang Y, Su C, Jia G, Xu L, Shao Z. Emerging two-dimensional nanomaterials for electrochemical nitrogen reduction. Chem Soc Rev 2021; 50:12744-12787. [PMID: 34647937 DOI: 10.1039/d1cs00120e] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ammonia (NH3) is essential to serve as the biological building blocks for maintaining organism function, and as the indispensable nitrogenous fertilizers for increasing the yield of nutritious crops. The current Haber-Bosch process for industrial NH3 production is highly energy- and capital-intensive. In light of this, the electroreduction of nitrogen (N2) into valuable NH3, as an alternative, offers a sustainable pathway for the Haber-Bosch transition, because it utilizes renewable electricity and operates under ambient conditions. Identifying highly efficient electrocatalysts remains the priority in the electrochemical nitrogen reduction reaction (NRR), marking superior selectivity, activity, and stability. Two-dimensional (2D) nanomaterials with sufficient exposed active sites, high specific surface area, good conductivity, rich surface defects, and easily tunable electronic properties hold great promise for the adsorption and activation of nitrogen towards sustainable NRR. Therefore, this Review focuses on the fundamental principles and the key metrics being pursued in NRR. Based on the fundamental understanding, the recent efforts devoted to engineering protocols for constructing 2D electrocatalysts towards NRR are presented. Then, the state-of-the-art 2D electrocatalysts for N2 reduction to NH3 are summarized, aiming at providing a comprehensive overview of the structure-performance relationships of 2D electrocatalysts towards NRR. Finally, we propose the challenges and future outlook in this prospective area.
Collapse
Affiliation(s)
- Yingping Pang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Chao Su
- School of Energy and Power, Jiangsu University of Science and Technology, Zhenjiang 212100, China. .,WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia.
| | - Guohua Jia
- Curtin Institute of Functional Molecules and Interfaces, School of Molecular and Life Sciences, Curtin University, Perth, WA 6102, Australia
| | - Liqiang Xu
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Material, Shandong University, Jinan 250100, China.
| | - Zongping Shao
- WA School of Mines: Minerals, Energy and Chemical Engineering, Curtin University, Perth, WA 6102, Australia. .,State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
17
|
Zhao Q, Cai W, Yang B, Yin ZZ, Wu D, Kong Y. Electrochemiluminescent chiral discrimination with chiral Ag 2S quantum dots/few-layer carbon nitride nanosheets. Analyst 2021; 146:6245-6251. [PMID: 34528650 DOI: 10.1039/d1an01437d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Well-dispersed chiral Ag2S quantum dots (Ag2S QDs) were facilely synthesized by using N-acetyl-L-cysteine (NALC) as the chiral ligand and loaded onto nanosheets of two-dimensional (2D) few-layer carbon nitride (C3N4). The resultant nanocomposite (Ag2S QDs/few-layer C3N4) shows enhanced electrochemiluminescence (ECL) while maintaining the chirality of Ag2S QDs, which can be used for the chiral discrimination of the enantiomers of tyrosine (Tyr). Due to the higher affinity of chiral Ag2S QDs toward L-Tyr than toward its enantiomer, the ECL intensity of Ag2S QDs/few-layer C3N4 is significantly decreased after its incubation with L-Tyr, and thus the Tyr enantiomers can be discriminated. The developed ECL chiral sensor exhibits high stability and reproducibility. The universality of the ECL chiral sensor for the discrimination of other chiral amino acids is also studied, and the results indicate that it can work only in the case of chiral aromatic amino acids.
Collapse
Affiliation(s)
- Qianqian Zhao
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Wenrong Cai
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China. .,Shandong Key Laboratory of Biochemical Analysis, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Baozhu Yang
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Zheng-Zhi Yin
- College of Biological, Chemical Sciences and Engineering, Jiaxing University, Jiaxing 314001, P. R. China.
| | - Datong Wu
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| | - Yong Kong
- Jiangsu Key Laboratory of Advanced Materials and Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, P. R. China.
| |
Collapse
|
18
|
Wen J, Zuo L, Sun H, Wu X, Huang T, Liu Z, Wang J, Liu L, Wu Y, Liu X, van Ree T. Nanomaterials for the electrochemical nitrogen reduction reaction under ambient conditions. NANOSCALE ADVANCES 2021; 3:5525-5541. [PMID: 36133266 PMCID: PMC9419633 DOI: 10.1039/d1na00426c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/26/2021] [Indexed: 05/23/2023]
Abstract
As an important chemical product and carbon-free energy carrier, ammonia has a wide range of daily applications in several related fields. Although the industrial synthesis method using the Haber-Bosch process could meet production demands, its huge energy consumption and gas emission limit its long-time development. Therefore, the clean and sustainable electrocatalytic N2 reduction reaction (NRR) operating under conditions have attracted great attention in recent years. However, the chemical inertness of N2 molecules makes it difficult for this reaction to proceed. Therefore, rationally designed catalysts need to be introduced to activate N2 molecules. Here, we summarize the recent progress in low-dimensional nanocatalyst development, including the relationship between the structure and NRR performance from both the theoretical and experimental perspectives. Some insights into the development of NRR electrocatalysts from electronic control aspects are provided. In addition, the theoretical mechanisms, reaction pathways and credibility studies of the NRR are discussed. Some challenges and future prospects of the NRR are also pointed out.
Collapse
Affiliation(s)
- Juan Wen
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Linqing Zuo
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Haodong Sun
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Xiongwei Wu
- College of Chemistry and Materials, Hunan Agriculture University Changsha Hunan 410128 China
| | - Ting Huang
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Zaichun Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Jing Wang
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Lili Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Yuping Wu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Xiang Liu
- State Key Laboratory of Materials-oriented Chemical Engineering, School of Energy Science and Engineering, Institute for Advanced Materials, Nanjing Tech University Nanjing 211816 China
| | - Teunis van Ree
- Department of Chemistry, University of Venda Thohoyandou 0950 South Africa
| |
Collapse
|
19
|
He L, Wu J, Zhu Y, Wang Y, Mei Y. Covalent Immobilization of Black Phosphorus Quantum Dots on MXene for Enhanced Electrocatalytic Nitrogen Reduction. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00138] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Ludong He
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Ji Wu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yuanzhi Zhu
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yaming Wang
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| | - Yi Mei
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- Yunnan Provincial Key Laboratory of Energy Saving in Phosphorus Chemical Engineering and New Phosphorus Materials, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
- The Higher Educational Key Laboratory for Phosphorus Chemical Engineering of Yunnan Province, Kunming University of Science and Technology, Kunming 650500, Yunnan, China
| |
Collapse
|
20
|
Zhu XD, Fan XH, Gao J, Qiu SY, Zhang LS, Gu LL, Wang C, Wang KX, Mao YC. Controllable construction of Ag/MoSe2 hybrid architectures for efficient hydrogen evolution and advanced lithium anode. Chem Eng Sci 2021. [DOI: 10.1016/j.ces.2020.116404] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
21
|
Patil SB, Wang DY. Exploration and Investigation of Periodic Elements for Electrocatalytic Nitrogen Reduction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2002885. [PMID: 32945097 DOI: 10.1002/smll.202002885] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 07/09/2020] [Indexed: 06/11/2023]
Abstract
High demand for green ecosystems has urged the human community to reconsider and revamp the traditional way of synthesis of several compounds. Ammonia (NH3 ) is one such compound whose applications have been extended from fertilizers to explosives and is still being synthesized using the high energy inhaling Haber-Bosch process. Carbon free electrocatalytic nitrogen reduction reaction (NRR) is considered as a potential replacement for the Haber-Bosch method. However, it has few limitations such as low N2 adsorption, selectivity (competitive HER reactions), low yield rate etc. Since it is at the early stage, tremendous efforts have been devoted in understanding the reaction mechanism and screening of the electrocatalysts and electrolytes. In this review, the electrocatalysts are classified based on the periodic table with heat maps of Faraday efficiency and yield rate of NH3 in NRR and their electrocatalytic properties toward NRR are discussed. Also, the activity of each element is discussed and short tables and concise graphs are provided to enable the researchers to understand recent progress on each element. At the end, a perspective is provided on countering the current challenges in NRR. This review may act as handbook for basic NRR understandings, recent progress in NRR, and the design and development of advanced electrocatalysts and systems.
Collapse
Affiliation(s)
- Shivaraj B Patil
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| | - Di-Yan Wang
- Department of Chemistry, Tunghai University, Taichung, 40704, Taiwan
| |
Collapse
|
22
|
Qiu SY, Wang C, Jiang ZX, Zhang LS, Gu LL, Wang KX, Gao J, Zhu XD, Wu G. Rational design of MXene@TiO 2 nanoarray enabling dual lithium polysulfide chemisorption towards high-performance lithium-sulfur batteries. NANOSCALE 2020; 12:16678-16684. [PMID: 32761041 DOI: 10.1039/d0nr03528a] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Lithium-sulfur (Li-S) batteries face a few vital issues, including poor conductivity, severe volume expansion/contraction, and especially the detrimental shuttle effect during the long-term electrochemical process. Herein, we designed a hierarchical MXene@TiO2 nanoarray via in situ solvothermal strategies followed by heat treatment. The MXene@TiO2 heterostructure achieves superior charge transfer and sulfur encapsulation. Based on the polar-polar and Lewis acid-base mechanism, the robust dual chemisorption capability to trap polysulfides can be synergistically realized through the intense polarity of TiO2 and the abundant acid metal sites of MXene. Hence, the MXene@TiO2 nanoarray as a sulfur host retains a substantially stable discharge capacity of 612.7 mA h g-1 after 500 cycles at a rate of 2 C, which represents a low fading rate of 0.058% per cycle.
Collapse
Affiliation(s)
- Sheng-You Qiu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Chuang Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Zai-Xing Jiang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Li-Su Zhang
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Liang-Liang Gu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Ke-Xin Wang
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China.
| | - Jian Gao
- State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Xiao-Dong Zhu
- School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China. and State Key Laboratory Base of Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science & Technology, Qingdao, 266042, China.
| | - Gang Wu
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, New York 14260, USA.
| |
Collapse
|