1
|
Zhang J, Mei B, Chen H, Sun Z. Review on synthetic approaches and PEC activity performance of bismuth binary and mixed-anion compounds for potential applications in marine engineering. Dalton Trans 2024; 53:10376-10402. [PMID: 38809139 DOI: 10.1039/d4dt01212g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Photoelectrochemical (PEC) technology in marine engineering holds significant importance due to its potential to address various challenges in the marine environment. Currently, PEC-type applications in marine engineering offer numerous benefits, including sustainable energy generation, water desalination and treatment, photodetection, and communication. Finding novel efficient photoresponse semiconductors is of great significance for the development of PEC-type techniques in the marine space. Bismuth-based semiconductor materials possess suitable and tunable bandgap structures, high carrier mobility, low toxicity, and strong oxidation capacity, which gives them great potential for PEC-type applications in marine engineering. In this paper, the structure and properties of bismuth binary and mixed-anion semiconductors have been reviewed. Meanwhile, the recent progress and synthetic approaches were discussed from the point of view of the application prospects. Finally, the issues and challenges of bismuth binary and mixed-anion semiconductors in PEC-type photodetection and hydrogen generation are analyzed. Thus, this perspective will not only stimulate the further investigation and application of bismuth binary and mixed-anion semiconductors in marine engineering but also help related practitioners understand the recent progress and potential applications of bismuth binary and mixed-anion compounds.
Collapse
Affiliation(s)
- Jiaji Zhang
- Sanya Science and Education Innovation Park, Wuhan University of Technology, Sanya 572025, China
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
- Birmingham Centre for Energy Storage & School of Chemical Engineering, University of Birmingham, Birmingham, B152TT, UK
- Hainan Yourui Cohesion Technology Co., Ltd, Sanya, 572025, China
| | - Bingchu Mei
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
| | - Huiyu Chen
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan 430070, China
| | - Zaichun Sun
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China.
- Hainan Yourui Cohesion Technology Co., Ltd, Sanya, 572025, China
| |
Collapse
|
2
|
Feng X, Cheng R, Yin L, Wen Y, Jiang J, He J. Two-Dimensional Oxide Crystals for Device Applications: Challenges and Opportunities. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304708. [PMID: 37452605 DOI: 10.1002/adma.202304708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/06/2023] [Accepted: 07/12/2023] [Indexed: 07/18/2023]
Abstract
Atomically thin two-dimensional (2D) oxide crystals have garnered considerable attention because of their remarkable physical properties and potential for versatile applications. In recent years, significant advancements have been made in the design, preparation, and application of ultrathin 2D oxides, providing many opportunities for new-generation advanced technologies. This review focuses on the controllable preparation of 2D oxide crystals and their applications in electronic and optoelectronic devices. Based on their bonding nature, the various types of 2D oxide crystals are first summarized, including both layered and nonlayered crystals, as well as their current top-down and bottom-up synthetic approaches. Subsequently, in terms of the unique physical and electrical properties of 2D oxides, recent advances in device applications are emphasized, including photodetectors, field-effect transistors, dielectric layers, magnetic and ferroelectric devices, memories, and gas sensors. Finally, conclusions and future prospects of 2D oxide crystals are presented. It is hoped that this review will provide comprehensive and insightful guidance for the development of 2D oxide crystals and their device applications.
Collapse
Affiliation(s)
- Xiaoqiang Feng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Ruiqing Cheng
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
| | - Lei Yin
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Yao Wen
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jian Jiang
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
| | - Jun He
- Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, School of Physics and Technology, Wuhan University, Wuhan, 430072, China
- Hubei Luojia Laboratory, Wuhan, 430072, China
- Wuhan Institute of Quantum Technology, Wuhan, 430206, China
| |
Collapse
|
3
|
Li Y, Wang S, Hong J, Zhang N, Wei X, Zhu T, Zhang Y, Xu Z, Liu K, Jiang M, Xu H. Polarization-Sensitive Photodetector Based on High Crystallinity Quasi-1D BiSeI Nanowires Synthesized via Chemical Vapor Deposition. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302623. [PMID: 37357165 DOI: 10.1002/smll.202302623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/15/2023] [Indexed: 06/27/2023]
Abstract
Bismuth chalcohalides (BiSeI and BiSI), a class of superior light absorbers, have recently garnered great attention owing to their promise in constructing next-generation optoelectronic devices. However, to date, the photodetection application of bismuth chalcohalides is still limited due to the challenge in controllable preparation. Herein, the synthesis of large-scale quasi-1D BiSeI nanowires via chemical vapor deposition growth is reported. By precisely tuning the growth temperature and the Se supply, it can effectively control the growth thermodynamics and kinetics of BiSeI crystal, and thus achieve high purity quasi-1D BiSeI nanowires with high crystal quality, uniform diameter, and tunable domain length. Theory and optical characterizations of the quasi-1D BiSeI nanowires reveal an indirect bandgap of 1.57 eV with prominent optical linear dichroism. As a result, the quasi-1D BiSeI nanowire-based photodetector demonstrates a broadband photoresponse (400-800 nm) with high responsivity of 5880 mA W-1 , fast response speed of 0.11 ms and superior air stability. More importantly, the photodetector displays strong polarization sensitivity (anisotropic ratio = 1.77) under the 532 nm light irradiation. This work will provide important guides to the synthesis of other quais-1D metal chalcohalides and shed light on their potential in constructing novel multifunctional optoelectronic devices.
Collapse
Affiliation(s)
- Yubin Li
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Shiyao Wang
- State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi'an, 710072, P. R. China
| | - Jinhua Hong
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, Hunan University, Changsha, 410082, P. R. China
| | - Nannan Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Xin Wei
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Tao Zhu
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Yao Zhang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Zhuo Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Kaiqiang Liu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| | - Man Jiang
- State Key Laboratory of Photon-Technology in Western China Energy, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon Technology, School of Physics, Northwest University, Xi'an, 710069, P. R. China
| | - Hua Xu
- Key Laboratory of Applied Surface and Colloid Chemistry of Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, 710119, P. R. China
| |
Collapse
|
4
|
Fu M, Dou H, Zhai W, Hou B, Wu C, Meng W, Wu N, Zhang Z, Weng TC, Yu Y, Wang HT. Enhancing UV-C Photoelectron Lifetimes for Avalanche-like Photocurrents in Carbon-Doped Bi 3O 4Cl Nanosheets. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37377206 DOI: 10.1021/acsami.3c03331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
Interlayer electric fields in two-dimensional (2D) materials create photoelectron protecting barriers useful to mitigate electron-hole recombination. However, tuning the interlayer electric field remains challenging. Here, carbon-doped Bi3O4Cl (C:Bi3O4Cl) nanosheets are synthesized using a gas phase protocol, and n-type carriers are acquired as confirmed by the transconductance polarity of nanosheet field effect transistors. Thin C:Bi3O4Cl nanosheets show excellent 266 nm photodetector figures of merit, and an avalanche-like photocurrent is demonstrated. Decaying behaviors of photoelectrons pumped by a 266 nm laser pulse (266 nm photoelectrons) are observed using transient absorption spectroscopy, and a significant 266 nm photoelectron lifetime quality in C:Bi3O4Cl is presented. Built C:Bi3O4Cl models suggest that the interlayer electric field can be boosted by two different carbon substitutions at the inner and outer bismuth sites. This work reports a facile approach to increase the interlayer electric field in Bi3O4Cl for future UV-C photodetector applications.
Collapse
Affiliation(s)
- Minghui Fu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hongbin Dou
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wenbo Zhai
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Bingsen Hou
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Congcong Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Wei Meng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Nan Wu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Zhuo Zhang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Tsu-Chien Weng
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Yi Yu
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| | - Hung-Ta Wang
- School of Physical Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Pudong, Shanghai 201210, China
| |
Collapse
|
5
|
Zhang L, Wei Z, Wang X, Zhang L, Wang Y, Xie C, Han T, Li F, Luo W, Zhao D, Long M, Shan L. Ultrahigh-Sensitivity and Fast-Speed Solar-Blind Ultraviolet Photodetector Based on a Broken-Gap van der Waals Heterodiode. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36913956 DOI: 10.1021/acsami.2c20546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Broad-bandgap semiconductor-based solar-blind ultraviolet (SBUV) photodetectors have attracted considerable research interest because of their broad applications in missile plume tracking, flame detectors, environmental monitoring, and optical communications due to their solar-blind nature and high sensitivity with low background radiation. Owing to its high light absorption coefficient, abundance, and wide tunable bandgap of 2-2.6 eV, tin disulfide (SnS2) has emerged as one of the most promising compounds for application in UV-visible optoelectronic devices. However, SnS2 UV detectors have some undesirable properties such as slow response speed, high current noise level, and low specific detectivity. This study reports a metal mirror-enhanced Ta0.01W0.99Se2/SnS2 (TWS) van der Waals heterodiode-based SBUV photodetector with an ultrahigh photoresponsivity (R) of ∼1.85 × 104 AW-1 and a fast speed with rising time (τr) of 3.3 μs and decay time (τd) of 3.4 μs. Notably, the TWS heterodiode device exhibits a significantly low noise equivalent power of ∼1.02 × 10-18 W Hz-1/2 and a high specific detectivity of ∼3.65 × 1014 cm Hz1/2 W-1. This study provides an alternative method for designing fast-speed SBUV photodetectors with enormous potential in applications.
Collapse
Affiliation(s)
- Li Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Zhenhua Wei
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Xiuxiu Wang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Luoyu Zhang
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Yi Wang
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Chao Xie
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Tao Han
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Feng Li
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Wei Luo
- College of Science, National University of Defense Technology, Changsha 410073, China
| | - Dongxu Zhao
- State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, 3888 Dongnanhu Road, Changchun 130021, China
| | - Mingsheng Long
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| | - Lei Shan
- Information Materials and Intelligent Sensing Laboratory of Anhui Province, Institutes of Physical Science and Information Technology, Anhui University, 111 Jiu Long Road, Hefei 230601, China
| |
Collapse
|
6
|
Hu X, Liu K, Cai Y, Zang SQ, Zhai T. 2D Oxides for Electronics and Optoelectronics. SMALL SCIENCE 2022. [DOI: 10.1002/smsc.202200008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Affiliation(s)
- Xiaozong Hu
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Kailang Liu
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| | - Yongqing Cai
- Joint Key Laboratory of the Ministry of Education Institute of Applied Physics and Materials Engineering University of Macau Taipa 999078 Macau P. R. China
| | - Shuang-Quan Zang
- Henan Key Laboratory of Crystalline Molecular Functional Materials Henan International Joint Laboratory of Tumor Theranostical Cluster Materials Green Catalysis Center, and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die and Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 P. R. China
| |
Collapse
|
7
|
Yang W, Xin K, Yang J, Xu Q, Shan C, Wei Z. 2D Ultrawide Bandgap Semiconductors: Odyssey and Challenges. SMALL METHODS 2022; 6:e2101348. [PMID: 35277948 DOI: 10.1002/smtd.202101348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/11/2022] [Indexed: 06/14/2023]
Abstract
2D ultrawide bandgap (UWBG) semiconductors have aroused increasing interest in the field of high-power transparent electronic devices, deep-ultraviolet photodetectors, flexible electronic skins, and energy-efficient displays, owing to their intriguing physical properties. Compared with dominant narrow bandgap semiconductor material families, 2D UWBG semiconductors are less investigated but stand out because of their propensity for high optical transparency, tunable electrical conductivity, high mobility, and ultrahigh gate dielectrics. At the current stage of research, the most intensively investigated 2D UWBG semiconductors are metal oxides, metal chalcogenides, metal halides, and metal nitrides. This paper provides an up-to-date review of recent research progress on new 2D UWBG semiconductor materials and novel physical properties. The widespread applications, i.e., transistors, photodetector, touch screen, and inverter are summarized, which employ 2D UWBG semiconductors as either a passive or active layer. Finally, the existing challenges and opportunities of the enticing class of 2D UWBG semiconductors are highlighted.
Collapse
Affiliation(s)
- Wen Yang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Kaiyao Xin
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| | - Qun Xu
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, 450052, China
| | - Chongxin Shan
- Henan Key Laboratory of Diamond Optoelectronic Materials and Devices, Key laboratory of Materials Physics, Ministry of Education, and School of Physics and Microelectronics, Zhengzhou University, Zhengzhou, 450052, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
8
|
Dong Y, Sun Y, Liu J, Shi X, Li H, Zhang J, Li C, Yi Y, Mo S, Fan L, Jiang L. Thermally Stable Organic Field-Effect Transistors Based on Asymmetric BTBT Derivatives for High Performance Solar-Blind Photodetectors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106085. [PMID: 35182036 PMCID: PMC9036011 DOI: 10.1002/advs.202106085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 02/03/2022] [Indexed: 06/14/2023]
Abstract
High-performance solar-blind photodetectors are widely studied due to their unique significance in military and industrial applications. Yet the rational molecular design for materials to possess strong absorption in solar-blind region is rarely addressed. Here, an organic solar-blind photodetector is reported by designing a novel asymmetric molecule integrated strong solar-blind absorption with high charge transport property. Such alkyl substituted [1]benzothieno[3,2-b][1]-benzothiophene (BTBT) derivatives Cn-BTBTN (n = 6, 8, and 10) can be easily assembled into 2D molecular crystals and perform high mobility up to 3.28 cm2 V-1 s-1 , which is two orders of magnitude higher than the non-substituted core BTBTN. Cn-BTBTNs also exhibit dramatically higher thermal stability than the symmetric alkyl substituted C8-BTBT. Moreover, C10-BTBTN films with the highest mobility and strongest solar-blind absorption among the Cn-BTBTNs are applied for solar-blind photodetectors, which reveal record-high photosensitivity and detectivity up to 1.60 × 107 and 7.70 × 1014 Jones. Photodetector arrays and flexible devices are also successfully fabricated. The design strategy can provide guidelines for developing materials featuring high thermal stability and stimulating such materials in solar-blind photodetector application.
Collapse
Affiliation(s)
- Yicai Dong
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yanan Sun
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Jie Liu
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Xiaosong Shi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Haiyang Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Jing Zhang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Chunlei Li
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
- University of the Chinese Academy of SciencesBeijing100049China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Song Mo
- Key Laboratory of Science and Technology on High‐tech Polymer MaterialsChinese Academy of SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Lin Fan
- Key Laboratory of Science and Technology on High‐tech Polymer MaterialsChinese Academy of SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| | - Lang Jiang
- Beijing National Laboratory for Molecular SciencesKey Laboratory of Organic SolidsInstitute of ChemistryChinese Academy of SciencesBeijing100190China
| |
Collapse
|
9
|
Li F, Chen M, Wang Y, Zhu X, Zhang X, Zou Z, Zhang D, Yi J, Li Z, Li D, Pan A. Strain-controlled synthesis of ultrathin hexagonal GaTe/MoS 2 heterostructure for sensitive photodetection. iScience 2021; 24:103031. [PMID: 34541467 PMCID: PMC8437799 DOI: 10.1016/j.isci.2021.103031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Revised: 06/15/2021] [Accepted: 08/20/2021] [Indexed: 11/18/2022] Open
Abstract
Ultrathin hexagonal GaTe, with relatively high charge density, holds great potential in the field of optoelectronic devices. However, the thermodynamical stability limits it fabrications as well as applications. Here, by introducing two-dimensional MoS2 as the substrate, we successfully realized the phase-controlled synthesis of ultrathin h-GaTe, leading to high-quality h-GaTe/MoS2 heterostructures. Theoretical calculation studies reveal that GaTe with hexagonal phase is more thermodynamically stable on MoS2 templates, which can be attributed to the strain stretching and the formation energy reduction. Based on the achieved p-n heterostructures, optoelectronic devices are designed and probed, where remarkable photoresponsivity (32.5 A/W) and fast photoresponse speed (<50 μs) are obtained, indicating well-behaved photo-sensing behaviors. The study here could offer a good reference for the controlled growth of the relevant materials, and the achieved heterostructure will find promising applications in future integrated electronic and optoelectronic devices and systems.
Collapse
Affiliation(s)
- Fang Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
- Key Laboratory of Inferior Crude Oil Processing of Guangdong Provincial Higher Education Institutes, School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Mingxing Chen
- Key Laboratory for Matter Microstructure and Function of Hunan Province, Key Laboratory of Low-Dimensional Quantum Structures and Quantum Control of Ministry of Education, School of Physics and Electronics, Hunan Normal University, Changsha 410081, China
| | - Yajuan Wang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Xiaoli Zhu
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Xuehong Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Zixing Zou
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Danliang Zhang
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Jiali Yi
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Ziwei Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Dong Li
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| | - Anlian Pan
- Key Laboratory for Micro-Nano Physics and Technology of Hunan Province, College of Materials Science and Engineering, School of Physics and Electronics, Hunan University, Changsha, Hunan 410082, China
| |
Collapse
|
10
|
Yan Y, Yang J, Du J, Zhang X, Liu YY, Xia C, Wei Z. Cross-Substitution Promoted Ultrawide Bandgap up to 4.5 eV in a 2D Semiconductor: Gallium Thiophosphate. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2008761. [PMID: 33876467 DOI: 10.1002/adma.202008761] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/26/2021] [Indexed: 06/12/2023]
Abstract
Exploring 2D ultrawide bandgap semiconductors (UWBSs) will be conductive to the development of next-generation nanodevices, such as deep-ultraviolet photodetectors, single-photon emitters, and high-power flexible electronic devices. However, a gap still remains between the theoretical prediction of novel 2D UWBSs and the experimental realization of the corresponding materials. The cross-substitution process is an effective way to construct novel semiconductors with the favorable parent characteristics (e.g., structure) and the better physicochemical properties (e.g., bandgap). Herein, a simple case is offered for rational design and syntheses of 2D UWBS GaPS4 by employing state-of-the-art GeS2 as a similar structural model. Benefiting from the cosubstitution of Ge with lighter Ga and P, the GaPS4 crystals exhibit sharply enlarged optical bandgaps (few-layer: 3.94 eV and monolayer: 4.50 eV) and superior detection performances with high responsivity (4.89 A W-1 ), high detectivity (1.98 × 1012 Jones), and high quantum efficiency (2.39 × 103 %) in the solar-blind ultraviolet region. Moreover, the GaPS4 -based photodetector exhibits polarization-sensitive photoresponse with a linear dichroic ratio of 1.85 at 254 nm, benefitting from its in-plane structural anisotropy. These results provide a pathway for the discovery and fabrication of 2D UWBS anisotropic materials, which become promising candidates for future solar-blind ultraviolet and polarization-sensitive sensors.
Collapse
Affiliation(s)
- Yong Yan
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Juehan Yang
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| | - Juan Du
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, 100871, China
| | - Xiaomei Zhang
- Henan Key Laboratory of Infrared Materials & Spectrum Measures and Applications, Henan Normal University, Xinxiang, 453007, China
| | - Yue-Yang Liu
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| | - Congxin Xia
- Henan Key Laboratory of Photovoltaic Materials, School of Physics, Henan Normal University, Xinxiang, 453007, China
| | - Zhongming Wei
- State Key Laboratory of Superlattices and Microstructures, Institute of Semiconductors, Chinese Academy of Sciences & Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100083, China
| |
Collapse
|
11
|
She Y, Wu Z, You S, Du Q, Chu X, Niu L, Ding C, Zhang K, Zhang L, Huang S. Multiple-Dimensionally Controllable Nucleation Sites of Two-Dimensional WS 2/Bi 2Se 3 Heterojunctions Based on Vapor Growth. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15518-15524. [PMID: 33769777 DOI: 10.1021/acsami.1c00377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Two-dimensional (2D) heterojunctions have attracted great attention due to their excellent optoelectronic properties. Until now, precisely controlling the nucleation density and stacking area of 2D heterojunctions has been of critical importance but still a huge challenge. It hampers the progress of controlled growth of 2D heterojunctions for optoelectronic devices because the potential relation between numerous growth parameters and nucleation density is always poorly understood. Herein, by cooperatively controlling three parameters (substrate temperature, gas flow rate, and precursor concentration) in modified vapor deposition growth, the nucleation density and stacking area of WS2/Bi2Se3 vertical heterojunctions were successfully modulated. High-quality WS2/Bi2Se3 vertical heterojunctions with various stacking areas were effectively grown from single and multiple nucleation sites. Moreover, the potential nucleation mechanism and efficient charge transfer of WS2/Bi2Se3 vertical heterojunctions were systematically studied by utilizing the density functional theory and photoluminescence spectra. This modified vapor deposition strategy and the proposed mechanism are helpful in controlling the nucleation density and stacking area of other heterojunctions, which plays a key role in the preparation of electronic and optoelectronic nanodevices.
Collapse
Affiliation(s)
- Yihong She
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Zhen Wu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Shengdong You
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Quan Du
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Xiaohong Chu
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Lijuan Niu
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Changchun Ding
- School of Science, Key Laboratory of High Performance Scientific Computation, Xihua University, Chengdu 610039, China
| | - Kenan Zhang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
- State Key Laboratory of Infrared Physics, Chinese Academy of Sciences, Shanghai 200083, China
| | - Lijie Zhang
- Key Laboratory of Carbon Materials of Zhejiang Province, Institute of New Materials and Industrial Technologies, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, China
| | - Shaoming Huang
- School of Materials and Energy, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
12
|
Su J, Liu G, Liu L, Chen J, Hu X, Li Y, Li H, Zhai T. Recent Advances in 2D Group VB Transition Metal Chalcogenides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005411. [PMID: 33694286 DOI: 10.1002/smll.202005411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 10/25/2020] [Indexed: 06/12/2023]
Abstract
2D materials have received considerable research interest owing to their abundant material systems and remarkable properties. Among them, 2D group VB transition metal chalcogenides (GVTMCs) stand out as emerging 2D metallic materials and significantly broaden the research scope of 2D materials. 2D GVTMCs have great advantages in electrical transport, 2D magnetism, charge density wave, sensing, catalysis, and charge storage, making them attractive in the fields of functional devices and energy chemistry. In this review, the recent progress of 2D GVTMCs is summarized systematically from fundamental properties, growth methodologies to potential applications. The challenges and prospects are also discussed for future research in this field.
Collapse
Affiliation(s)
- Jianwei Su
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Guiheng Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Lixin Liu
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Jiazhen Chen
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Xiaozong Hu
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| | - Yuan Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Huiqiao Li
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| | - Tianyou Zhai
- State Key Laboratory of Materials Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, 430074, P. R. China
| |
Collapse
|
13
|
Yu H, Liao Q, Kang Z, Wang Z, Liu B, Zhang X, Du J, Ou Y, Hong M, Xiao J, Zhang Z, Zhang Y. Atomic-Thin ZnO Sheet for Visible-Blind Ultraviolet Photodetection. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005520. [PMID: 33136343 DOI: 10.1002/smll.202005520] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Indexed: 06/11/2023]
Abstract
The atomic-thin 2D semiconductors have emerged as plausible candidates for future optoelectronics with higher performance in terms of the scaling process. However, currently reported 2D photodetectors still have huge shortcomings in ultraviolet and especially visible-blind wavelengths. Here, a simple and nontoxic surfactant-assisted synthesis strategy is reported for the controllable growth of atomically thin (1.5 to 4 nm) ZnO nanosheets with size ranging from 3 to 30 µm. Benefit from the short carbon chains and the water-soluble ability of sodium dodecyl sulfate (SDS), the synthesized ZnO nanosheets possess high crystal quality and clean surface, leading to good compatibility with traditional micromanufacturing technology and high sensitivity to UV light. The photodetectors constructed with ZnO demonstrate the highest responsivity (up to 2.0 × 104 A W-1 ) and detectivity (D* = 6.83 × 1014 Jones) at a visible-blind wavelength of 254 nm, and the photoresponse speed is optimized by the 400 °C annealing treatment (τR = 3.97 s, τD = 5.32 s), thus the 2D ZnO can serve as a promising material to fill in the gap for deep-UV photodetection. The method developed here opens a new avenue to controllably synthesize 2D nonlayered materials and accelerates their applications in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Huihui Yu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Qingliang Liao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhuo Kang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zhenyu Wang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Baishan Liu
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiankun Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Junli Du
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yang Ou
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Mengyu Hong
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Jiankun Xiao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Zheng Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Yue Zhang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Beijing Key Laboratory for Advanced Energy Materials and Technologies, University of Science and Technology Beijing, Beijing, 100083, P. R. China
- State Key Laboratory for Advanced Metals and Materials, School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| |
Collapse
|