1
|
Javi F, Torabi H, Dadmohammadi Y, Tiwari R, Prakash I, Abbaspourrad A. Quantification of diffusion coefficients of commonly used high-intensity sweeteners through mucin. Food Res Int 2024; 183:114185. [PMID: 38760122 DOI: 10.1016/j.foodres.2024.114185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 02/17/2024] [Accepted: 02/28/2024] [Indexed: 05/19/2024]
Abstract
Low- and no-calorie sweeteners reduce the amount of carbohydrates in foods and beverages. However, concerns about taste perception surrounding the role of non-nutritive sweeteners in the oral cavity remain unanswered. One of the parameters that influences taste perception is the diffusion coefficient of the sweetener molecules inside the mucin layer lining the mouth. This study investigated the impact of diffusion coefficients of common high-intensity sweeteners on taste perception focusing on the sweeteners' diffusion through mucin. Transwell Permeable Support well plates were used to measure diffusion coefficients of samples that were collected at specific intervals to estimate the coefficients based on concentration measurements. The diffusion coefficients of acesulfame-K, aspartame, rebaudioside M, sucralose, and sucrose with and without NaCl were compared. We found that different sweeteners show different diffusion behavior through mucin and that the presence of salt enhances the diffusion. These findings contribute insights into the diffusion of high-intensity sweeteners, offer a way to evaluate diffusion coefficients in real-time, and inform the development of products with improved taste profiles.
Collapse
Affiliation(s)
- Farhad Javi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Hooman Torabi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Younas Dadmohammadi
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Rashmi Tiwari
- The Coca-Cola Company, One Coca-Cola Plaza, Atlanta, GA 30313, USA
| | - Indra Prakash
- The Coca-Cola Company, One Coca-Cola Plaza, Atlanta, GA 30313, USA
| | - Alireza Abbaspourrad
- Department of Food Science, College of Agriculture and Life Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Skiba M, Guedes G, Karpov D, Feliu N, L. Cortajarena A, Parak WJ, Sanchez-Cano C. Probing the Cellular Fate of the Protein Corona around Nanoparticles with Nanofocused X-ray Fluorescence Imaging. Int J Mol Sci 2023; 25:528. [PMID: 38203697 PMCID: PMC10778884 DOI: 10.3390/ijms25010528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
X-ray fluorescence imaging (XRF-imaging) with subcellular resolution is used to study the intracellular integrity of a protein corona that was pre-formed around gold nanoparticles (AuNP). Artificial proteins engineered to obtain Gd coordination for detection by XRF-imaging were used to form the corona. Indications about the degradation of this protein corona at a cellular and subcellular level can be observed by following the Au and Gd quantities in a time and spatial-dependent manner. The extended acquisition times necessary for capturing individual XRF-imaging cell images result in relatively small sample populations, stressing the need for faster image acquisition strategies in future XRF-imaging-based studies to deal with the inherent variability between cells. Still, results obtained reveal degradation of the protein corona during cellular trafficking, followed by differential cellular processing for AuNP and Gd-labelled proteins. Overall, this demonstrates that the dynamic degradation of the protein corona can be tracked by XRF-imaging to a certain degree.
Collapse
Affiliation(s)
- Marvin Skiba
- Center for Hybrid Nanostructures, University of Hamburg, 22761 Hamburg, Germany;
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Gabriela Guedes
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
| | - Dmitry Karpov
- European Synchrotron Radiation Facility, 38000 Grenoble, France
| | - Neus Feliu
- Zentrum für Angewandte Nanotechnologie CAN, Fraunhofer-Institut für Angewandte Polymerforschung IAP, 20146 Hamburg, Germany
| | - Aitziber L. Cortajarena
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 Donostia-San Sebastian, Spain
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Wolfgang J. Parak
- Center for Hybrid Nanostructures, University of Hamburg, 22761 Hamburg, Germany;
- The Hamburg Centre for Ultrafast Imaging, 22761 Hamburg, Germany
| | - Carlos Sanchez-Cano
- Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
- Donostia International Physics Center, 20018 Donostia-San Sebastian, Spain
- Polimero eta Material Aurreratuak: Fisika, Kimika eta Teknologia, Kimika Fakultatea, Euskal Herriko Unibertsitatea UPV/EHU, 20018 Donostia-San Sebastian, Spain
| |
Collapse
|
3
|
Boinapalli Y, Shankar Pandey R, Singh Chauhan A, Sudheesh MS. Physiological relevance of in-vitro cell-nanoparticle interaction studies as a predictive tool in cancer nanomedicine research. Int J Pharm 2023; 632:122579. [PMID: 36603671 DOI: 10.1016/j.ijpharm.2022.122579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 12/30/2022] [Indexed: 01/03/2023]
Abstract
Cell uptake study is a routine experiment used as a surrogate to predict in vivo response in cancer nanomedicine research. Cell culture conditions should be designed in such a way that it emulates 'real' physiological conditions and avoid artefacts. It is critical to dissect the steps involved in cellular uptake to understand the physical, chemical, and biological factors responsible for particle internalization. The two-dimensional model (2D) of cell culture is overly simplistic to mimic the complexity of cancer tissues that exist in vivo. It cannot simulate the critical tissue-specific properties like cell-cell interaction and cell-extracellular matrix (ECM) interaction and its influences on the temporal and spatial distribution of nanoparticles (NPs). The three dimensional model organization of heterogenous cancer and normal cells with the ECM acts as a formidable barrier to NP penetration and cellular uptake. The three dimensional cell culture (3D) technology is a breakthrough in this direction that can mimic the barrier properties of the tumor microenvironment (TME). Herein, we discuss the physiological factors that should be considered to bridge the translational gap between in and vitro cell culture studies and in-vivo studies in cancer nanomedicine.
Collapse
Affiliation(s)
- Yamini Boinapalli
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India
| | - Ravi Shankar Pandey
- SLT Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya, Bilaspur, C.G. 495009, India
| | - Abhay Singh Chauhan
- Department of Biopharmaceutical Sciences, School of Pharmacy, Medical College of Wisconsin, Milwaukee, WI 53226, United States.
| | - M S Sudheesh
- Dept. of Pharmaceutics, Amrita School of Pharmacy, Amrita Health Science Campus, Amrita Vishwa Vidyapeetham, Ponekkara, Kochi 682041, India.
| |
Collapse
|
4
|
Toro-Mendoza J, Maio L, Gallego M, Otto F, Schulz F, Parak WJ, Sanchez-Cano C, Coluzza I. Bioinspired Polyethylene Glycol Coatings for Reduced Nanoparticle-Protein Interactions. ACS NANO 2023; 17:955-965. [PMID: 36602983 DOI: 10.1021/acsnano.2c05682] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanoparticles (NPs) and other engineered nanomaterials have great potential as nanodrugs or nanomedical devices for biomedical applications. However, the adsorption of proteins in blood circulation or similar physiological fluids can significantly alter the surface properties and therapeutic response induced by most nanomaterials. For example, interaction with proteins can change the bloodstream circulation time and availability of therapeutic NPs or hinder the accumulation in their desired target organs. Proteins can also trigger or prevent agglomeration. By combining experimental and computational approaches, we have developed NPs carrying polyethylene glycol (PEG) polymeric coatings that mimic the surface charge distribution of proteins typically found in blood, which are known to show low aggregation under normal blood conditions. Here, we show that NPs with coatings based on apoferritin or human serum albumin display better antifouling properties and weaker protein interaction compared to similar NPs carrying conventional PEG polymeric coatings.
Collapse
Affiliation(s)
- Jhoan Toro-Mendoza
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014Donostia-San Sebastián, Spain
| | - Lucia Maio
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014Donostia-San Sebastián, Spain
| | - Marta Gallego
- CIC biomaGUNE, Basque Research and Technology Alliance (BRTA), Paseo de Miramón 182, 20014Donostia-San Sebastián, Spain
| | - Ferdinand Otto
- Universität Hamburg, Luruper Chaussee 149, 22607Hamburg, Germany
| | - Florian Schulz
- Universität Hamburg, Luruper Chaussee 149, 22607Hamburg, Germany
| | - Wolfgang J Parak
- Universität Hamburg, Luruper Chaussee 149, 22607Hamburg, Germany
| | - Carlos Sanchez-Cano
- Ikerbasque, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao48009, Spain
- Donostia International Physics Center (DIPC)Paseo Manuel de Lardizabal, 4, 20018Donostia/San Sebastian, Gipuzkoa, Spain
| | - Ivan Coluzza
- Ikerbasque, Basque Foundation for Science, Plaza de Euskadi 5, Bilbao48009, Spain
- BCMaterials, Bld. Martina Casiano, Third Floor, UPV/EHU Science Park, Barrio Sarriena s/n, 48940Leioa, Spain
| |
Collapse
|
5
|
Mashiach R, Avram L, Bar-Shir A. Diffusion 19F-NMR of Nanofluorides: In Situ Quantification of Colloidal Diameters and Protein Corona Formation in Solution. NANO LETTERS 2022; 22:8519-8525. [PMID: 36255401 PMCID: PMC9650773 DOI: 10.1021/acs.nanolett.2c02994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/08/2022] [Indexed: 06/16/2023]
Abstract
The NMR-detectability of elements of organic ligands that stabilize colloidal inorganic nanocrystals (NCs) allow the study of their diffusion characteristics in solutions. Nevertheless, these measurements are sensitive to dynamic ligand exchange and often lead to overestimation of diffusion coefficients of dispersed colloids. Here, we present an approach for the quantitative assessment of the diffusion properties of colloidal NCs based on the NMR signals of the elements of their inorganic cores. Benefiting from the robust 19F-NMR signals of the fluorides in the core of colloidal CaF2 and SrF2, we show the immunity of 19F-diffusion NMR to dynamic ligand exchange and, thus, the ability to quantify, with high accuracy, the colloidal diameters of different types of nanofluorides in situ. With the demonstrated ability to characterize the formation of protein corona at the surface of nanofluorides, we envision that this study can be extended to additional formulations and applications.
Collapse
Affiliation(s)
- Reut Mashiach
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Liat Avram
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| | - Amnon Bar-Shir
- Department
of Molecular Chemistry and Materials Science and Department of
Chemical Research Support, Weizmann Institute
of Science, Rehovot, 7610001, Israel
| |
Collapse
|
6
|
Otto F, Sun X, Schulz F, Sanchez-Cano C, Feliu N, Westermeier F, Parak WJ. X-Ray Photon Correlation Spectroscopy Towards Measuring Nanoparticle Diameters in Biological Environments Allowing for the In Situ Analysis of their Bio-Nano Interface. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2201324. [PMID: 35905490 DOI: 10.1002/smll.202201324] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/06/2022] [Indexed: 06/15/2023]
Abstract
X-ray photon correlation spectroscopy (XPCS), a synchrotron source-based technique to measure sample dynamics, is used to determine hydrodynamic diameters of gold nanoparticles (Au NPs) of different sizes in biological environments. In situ determined hydrodynamic diameters are benchmarked with values obtained by dynamic light scattering. The technique is then applied to analyze the behavior of the Au NPs in a biological environment. First, a concentration-dependent agglomeration in the presence of NaCl is determined. Second, concentration-dependent increase in hydrodynamic diameter of the Au NPs upon the presence of proteins is determined. As X-rays in the used energy range are barely scattered by biological matter, dynamics of the Au NPs can be also detected in situ in complex biological environments, such as blood. These measurements demonstrate the possibility of XPCS for in situ analytics of nanoparticles (NPs) in biological environments where similar detection techniques based on visible light would severely suffer from scattering, absorption, and reflection effects.
Collapse
Affiliation(s)
- Ferdinand Otto
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Xing Sun
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Hunan University, Lushan Road (S) 2, Changsha, 410012, P. R. China
| | - Florian Schulz
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| | - Carlos Sanchez-Cano
- Donostia International Physics Center, Paseo Manuel de Lardizabal 4, Donostia-San Sebastian, 20018, Spain
- Ikerbasque, Basque Foundation for Science, Plaza Euskadi 5, Bilbao, 48009, Spain
| | - Neus Feliu
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
- Fraunhofer Center for Applied Nanotechnology (IAP-CAN), Grindelallee 117, 20146, Hamburg, Germany
| | - Fabian Westermeier
- Deutsches Elektronen-Synchrotron DESY, Notkestraße 85, 22607, Hamburg, Germany
| | - Wolfgang J Parak
- Center for Hybrid Nanostructures (CHyN), Universität Hamburg, Luruper Chaussee 149, 22761, Hamburg, Germany
| |
Collapse
|
7
|
Xin Y, Hou Y, Cong X, Tan H, Wang J, Mao K, Wang X, Liu F, Yang YG, Sun T. Kidney functional stages influence the role of PEG end-group on the renal accumulation and distribution of PEGylated nanoparticles. NANOSCALE 2022; 14:9379-9391. [PMID: 35727088 DOI: 10.1039/d2nr02194c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Modification with polyethylene glycol (PEG), or PEGylation, has become a popular method to improve the efficiency of drug delivery in vivo using nanoparticle-based delivery systems. The PEG end-group plays an important role in the in vivo fate of PEGylated nanoparticles through its interactions with proteins in the serum and the cell membrane. However, the effects of PEG end-groups on the renal clearance of PEGylated nanoparticles remain unclear. Kidney function may also affect the renal accumulation and distribution of nanoparticles. Herein, we demonstrate that the accumulation and distribution of PEGylated nanoparticles in kidneys are significantly affected by both the PEG end-group and kidney function damage. Interestingly, compared to PEG with an amino or methoxy end-group, PEG with maleimide as the end-group markedly enhanced the accumulation of PEGylated nanoparticles in normal kidneys, which may improve renal clearance. However, obvious enhancements in the renal accumulation and medullary distribution of PEGylated nanoparticles are detected in kidneys with functional impairment. Damage to renal function further affects how the PEG end-group influences the accumulation and distribution of PEGylated nanoparticles in kidneys in vivo. Collectively, the findings provide deep insights into the interactions between PEGylated nanoparticles and kidneys in vivo.
Collapse
Affiliation(s)
- Yanbao Xin
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Yue Hou
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Xiuxiu Cong
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Huizhu Tan
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Jialiang Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Kuirong Mao
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
| | - Xin Wang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Feiqi Liu
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
| | - Yong-Guang Yang
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
| | - Tianmeng Sun
- Key Laboratory of Organ Regeneration and Transplantation of the Ministry of Education, Institute of Immunology, The First Hospital, Jilin University, Changchun, Jilin, China.
- International Center of Future Science, Jilin University, Changchun, Jilin, China
- National-local Joint Engineering Laboratory of Animal Models for Human Diseases, Changchun, Jilin, China
- State Key Laboratory of Supramolecular Structure and Materials, Jilin University, Changchun, Jilin, China
| |
Collapse
|
8
|
Hoang KNL, Wheeler KE, Murphy CJ. Isolation Methods Influence the Protein Corona Composition on Gold-Coated Iron Oxide Nanoparticles. Anal Chem 2022; 94:4737-4746. [PMID: 35258278 DOI: 10.1021/acs.analchem.1c05243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Upon exposure to a biological environment, nanoparticles (NPs) acquire biomolecular coatings, the most studied of which is the protein corona. This protein corona gives NPs a new biological identity that will determine various biological responses including cellular uptake, biodistribution, and toxicity. The standard method to isolate NPs from a biological matrix in order to study their coronas is centrifugation, but more gentle means of retrieval may enable deeper understanding of both irreversibly bound hard coronas and more loosely bound soft coronas. In this study, magnetic gold-coated iron oxide NPs were incubated with rainbow trout gill cell total protein extracts and mass spectrometric proteomic analysis was conducted to determine the composition of the protein coronas isolated by either centrifugation or magnetic retrieval. The number of washes were varied to strip away the soft coronas and isolate the hard corona. Hundreds of proteins were adsorbed to the NPs. Some proteins were common to all isolation methods and many others were particular to the isolation method. Some qualitative trends in protein character were discerned from quantitative proteomic analyses, but more importantly, a new kind of protein corona was identified, mixed corona, in which the labile or inert nature of the protein-NP interaction is dependent upon sample history.
Collapse
Affiliation(s)
- Khoi Nguyen L Hoang
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| | - Korin E Wheeler
- Department of Chemistry and Biochemistry, Santa Clara University, 500 El Camino Real, Santa Clara, California 95053, United States
| | - Catherine J Murphy
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, Illinois 61801, United States
| |
Collapse
|
9
|
Latreille PL, Le Goas M, Salimi S, Robert J, De Crescenzo G, Boffito DC, Martinez VA, Hildgen P, Banquy X. Scratching the Surface of the Protein Corona: Challenging Measurements and Controversies. ACS NANO 2022; 16:1689-1707. [PMID: 35138808 DOI: 10.1021/acsnano.1c05901] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
This Review aims to provide a systematic analysis of the literature regarding ongoing debates in protein corona research. Our goal is to portray the current understanding of two fundamental and debated characteristics of the protein corona, namely, the formation of mono- or multilayers of proteins and their binding (ir)reversibility. The statistical analysis we perform reveals that these characterisitics are strongly correlated to some physicochemical factors of the NP-protein system (particle size, bulk material, protein type), whereas the technique of investigation or the type of measurement (in situ or ex situ) do not impact the results, unlike commonly assumed. Regarding the binding reversibility, the experimental design (either dilution or competition experiments) is also shown to be a key factor, probably due to nontrivial protein binding mechanisms, which could explain the paradoxical phenomena reported in the literature. Overall, we suggest that to truly predict and control the protein corona, future efforts should be directed toward the mechanistic aspects of protein adsorption.
Collapse
Affiliation(s)
- Pierre-Luc Latreille
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Marine Le Goas
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Sina Salimi
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Jordan Robert
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Gregory De Crescenzo
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Daria C Boffito
- Department of Chemical Engineering, Polytechnique Montréal, Montreal H3C 3A7, Canada
| | - Vincent A Martinez
- School of Physics and Astronomy, The University of Edinburgh, Peter Guthrie Tait Road, Edinburgh, EH9 3FD, U.K
| | - Patrice Hildgen
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| | - Xavier Banquy
- Faculty of Pharmacy, Université de Montréal, PO Box 6128, Succursale Centre-ville, Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
10
|
Arango JM, Padro D, Blanco J, Lopez-Fernandez S, Castellnou P, Villa-Valverde P, Ruiz-Cabello J, Martin A, Carril M. Fluorine Labeling of Nanoparticles and In Vivo 19F Magnetic Resonance Imaging. ACS APPLIED MATERIALS & INTERFACES 2021; 13:12941-12949. [PMID: 33706503 DOI: 10.1021/acsami.1c01291] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Fluorinated nanoparticles have increasing applications, but they are still challenging to prepare, especially in the case of water-soluble fluorinated nanoparticles. Herein, a fluorine labeling strategy is presented that is based on the conjugation of custom-made small fluorinated building blocks, obtained by simple synthetic transformations, with carboxylated gold nanoparticles through a convenient phase-transfer process. The synthesis of four fluorinated building blocks with different chemical shifts in 19F nuclear magnetic resonance and varied functionalities is reported, along with their conjugation onto nanoparticles. Fluorinated nanoparticles of small core size obtained by this conjugation methodology and by direct synthesis presented high transverse relaxation times (T2) ranging from 518 to 1030 ms, and a large number of equivalent fluorine atoms per nanoparticle (340-1260 fluorine atoms), which made them potential candidates for 19F magnetic resonance related applications. Finally, nontargeted fluorinated nanoparticles were probed by performing in vivo 19F magnetic resonance spectroscopy (19F MRS) in mice. Nanoparticles were detected at both 1 and 2 h after being injected. 19F MRI images were also acquired after either intravenous or subcutaneous injection. Their fate was studied by analyzing the gold content in tissues by ICP-MS. Thus, the present work provides a general fluorination strategy for nanoparticles and shows the potential use of small fluorinated nanoparticles in magnetic-resonance-related applications.
Collapse
Affiliation(s)
- Juan Manuel Arango
- Instituto Biofisika UPV/EHU, CSIC, Barrio Sarriena s/n, Leioa E-48940, Bizkaia, Spain
- Departamento de Bioquímica y Biología Molecular, UPV/EHU, Barrio Sarriena s/n, Leioa E-48940, Bizkaia, Spain
| | - Daniel Padro
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia-San Sebastián 20014, Spain
| | - Jorge Blanco
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia-San Sebastián 20014, Spain
| | - Sonia Lopez-Fernandez
- Instituto Biofisika UPV/EHU, CSIC, Barrio Sarriena s/n, Leioa E-48940, Bizkaia, Spain
- Fundación Biofísica Bizkaia/Biofisika Bizkaia Fundazioa (FBB), Leioa E-48940, Spain
| | - Pilar Castellnou
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia-San Sebastián 20014, Spain
| | - Palmira Villa-Valverde
- CAI Bioimagen Complutense, Unidad de RMN. Universidad Complutense, Madrid 28040, Spain
- Departamento de Ingeniería Electrónica. Escuela Técnica Superior de Ingenieros de Telecomunicaciones. Universidad Politécnica de Madrid, Madrid 28040, Spain
| | - Jesús Ruiz-Cabello
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), Paseo de Miramon 182, Donostia-San Sebastián 20014, Spain
- CAI Bioimagen Complutense, Unidad de RMN. Universidad Complutense, Madrid 28040, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Ciber de Enfermedades Respiratorias (Ciberes), Madrid 28029, Spain
| | - Abraham Martin
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
- Achucarro Basque Center for Neuroscience, Leioa E-48940, Spain
| | - Mónica Carril
- Instituto Biofisika UPV/EHU, CSIC, Barrio Sarriena s/n, Leioa E-48940, Bizkaia, Spain
- Departamento de Bioquímica y Biología Molecular, UPV/EHU, Barrio Sarriena s/n, Leioa E-48940, Bizkaia, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao 48013, Spain
| |
Collapse
|
11
|
Du L, Nosratabad NA, Jin Z, Zhang C, Wang S, Chen B, Mattoussi H. Luminescent Quantum Dots Stabilized by N-Heterocyclic Carbene Polymer Ligands. J Am Chem Soc 2021; 143:1873-1884. [PMID: 33448803 DOI: 10.1021/jacs.0c10592] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
We have tested the ability of N-heterocyclic carbene (NHC)-modified ligands to coordinate and stabilize luminescent CdSe-ZnS core-shell quantum dot (QD) dispersions in hydrophilic media. In particular, we probed the effects of ligand structure and coordination number on the coating affinity to the nanocrystals. We find that such NHC-based ligands rapidly coordinate onto the QDs (requiring ∼5-10 min of reaction time), which reflects the soft Lewis base nature of the NHC groups, with its two electrons sharing capacity. Removal of the hydrophobic cap and promotion of carbene-driven coordination on the nanocrystals have been verified by 1H NMR spectroscopy, while 13C NMR was used to identify the formation of carbene-Zn complexes. The newly coated QD dispersions exhibit great long-term colloidal stability over a wide range of conditions. Additionally, we find that coordination onto the QD surfaces affects the optical and spectroscopic properties of the nanocrystals. These include a size-dependent red-shift of the absorption and fluorescence spectra and a pronounced increase in the measured fluorescence intensity when the samples are stored under white light exposure compared to those stored in the dark.
Collapse
Affiliation(s)
- Liang Du
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Neda Arabzadeh Nosratabad
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Zhicheng Jin
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Chengqi Zhang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Sisi Wang
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Banghao Chen
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| | - Hedi Mattoussi
- Department of Chemistry and Biochemistry, Florida State University, 95 Chieftan Way, Tallahassee, Florida 32306, United States
| |
Collapse
|
12
|
Mishra RK, Ahmad A, Vyawahare A, Alam P, Khan TH, Khan R. Biological effects of formation of protein corona onto nanoparticles. Int J Biol Macromol 2021; 175:1-18. [PMID: 33508360 DOI: 10.1016/j.ijbiomac.2021.01.152] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 01/21/2021] [Accepted: 01/21/2021] [Indexed: 12/25/2022]
Abstract
Administration of nanomaterials based medicinal and drug carrier systems into systemic circulation brings about interaction of blood components e.g. albumin and globulin proteins with these nanosystems. These blood or serum proteins either get loosely attached over these nanocarriers and form soft protein corona or are tightly adsorbed over nanoparticles and hard protein corona formation occurs. Formation of protein corona has significant implications over a wide array of physicochemical and medicinal attributes. Almost all pharmacological, toxicological and carrier characteristics of nanoparticles get prominently touched by the protein corona formation. It is this interaction of nanoparticle protein corona that decides and influences fate of nanomaterials-based systems. In this article, authors reviewed several diverse aspects of protein corona formation and its implications on various possible outcomes in vivo and in vitro. A brief description regarding formation and types of protein corona has been included along with mechanisms and pharmacokinetic, pharmacological behavior and toxicological profiles of nanoparticles has been described. Finally, significance of protein corona in context of its in vivo and in vitro behavior, involvement of biomolecules at nanoparticle plasma interface and other interfaces and effects of protein corona on biocompatibility characteristics have also been touched upon.
Collapse
Affiliation(s)
- Rakesh Kumar Mishra
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Anas Ahmad
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Akshay Vyawahare
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities, Prince Sattam bin Abdulaziz University, PO box 173, Alkharj, 11942, Saudi Arabia
| | | | - Rehan Khan
- Department of Nano-Therapeutics, Institute of Nano Science and Technology, Habitat Centre, Phase 10, Sector 64, Mohali, Punjab 160062, India.
| |
Collapse
|