1
|
Liu H, Tian A, Liu T, Ying J. Syntheses and performance study of three POM-viologen compounds with photo- and electric-stimulation response. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 325:125143. [PMID: 39299071 DOI: 10.1016/j.saa.2024.125143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 09/09/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
In recent years, stimulus responsive materials have received widespread attention. Under solvothermal conditions, three polyoxometalates-viologen organic-inorganic hybrid compounds were successfully constructed by combining a viologen ligand 1-(3-Nitro-benzyl)-[4,4']bipyridinyl-1-ium bromide (1,3-nibipy·Br) with octamolybdate, namely [Cu2(1,3-nibipy)4(H2O)2(β-Mo8O26)2]·2H2O (1), [Cu2(1,3-nibipy)4(H2O)4(β-Mo8O26)]·(β-Mo8O26) (2) and (1,3-Hnibipy)2·(β-Mo8O26) (3). These three compounds can exhibit color changing properties under both light and electrical stimulation. Through characterizations of PXRD, FT-IR, UV-vis spectra, XPS, EPR, CV, and other tests, the photochromic and electrochromic properties of these three compounds are caused by the generation of viologen radicals. Compounds 1-3 have a rapid photoresponse efficiency and can be made into mixed matrix films for use as ultraviolet detectors. In addition, coated filter paper synthesized from acetonitrile and compounds can serve as an innovative erasable ink-free printing material medium, which is suitable for various erasable ink-free printing and anti-counterfeiting fields. We further investigated the electrochromic devices prepared from compounds 1-3, which achieved color change at a voltage of around -0.2 V and exhibited good stability after 500 cycles.
Collapse
Affiliation(s)
- Huan Liu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou 121013, China
| |
Collapse
|
2
|
Chen K, Li H, Ma J, Chang Z, Wang X. Tailoring the Coordination Microenvironment of Polymolybdate within a Metal-Organic Coordination System for Enhanced Capacitive Activity. Inorg Chem 2024; 63:16523-16532. [PMID: 39166274 DOI: 10.1021/acs.inorgchem.4c02867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
The design of a low-cost and efficient electrode material is crucial for electrochemical energy storage. Effectual utilization of polymolybdate as an electrode material for a supercapacitor is promising. Meanwhile, the coordination microenvironments of polymolybdate sho potential effects on its performance. Herein, we designed and synthesized four polymolybdate-based metal-organic complexes using a structure design strategy. Their structures were characterized and analyzed using single crystallographic data. The theoretical calculations revealed that the coordination microenvironments of polymolybdate play a vital role in the hydrogen ions migration. High H adsorption capacity can obviously boost the electrochemical activity. The 1-based glassy carbon electrode showed the highest specific capacitance value of 1739.4 F·g-1 at the current density of 1 A·g-1. Meanwhile, the carbon cloth-based electrode fabricated by complex 1 (1/CC) also displayed a high capacitance performance. A hybrid supercapacitor was assembled using the 1/CC electrodes and showed a high energy density of 29.0 Wh kg-1 at the power density of 0.80 kW kg-1.
Collapse
Affiliation(s)
- Keke Chen
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, PR China
| | - Hui Li
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, PR China
| | - Jingyi Ma
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, PR China
| | - Zhihan Chang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, PR China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Liaoning Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, PR China
| |
Collapse
|
3
|
Hui K, Liu T, Yang ML, Tian AX, Ying J. Four polyoxomolybdated-based 3D compounds as supercapacitors and amperometric sensors. Mikrochim Acta 2024; 191:410. [PMID: 38900272 DOI: 10.1007/s00604-024-06457-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Four polyoxomolybdated compounds based on Tetp (Tetp = 4-[4-(2-Thiophen-2-yl-ethyl)-4H-[1, 2, 4]triazole-3-yl]-pyridine), namely [Zn(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Zn-Mo8), [Co(Tetp)2(H2O)2][(β-Mo8O26)0.5] (Co-Mo8), [Cu4(Tetp)6(H2O)2]{H3[K(H2O)3](θ-Mo8O26)(Mo12O40)}·8H2O (Cu-Mo20) and [Cu3(Tetp)3][PMo12O40]·H2O (Cu-PMo12) are synthesized by hydrothermal methods and are used as electrode materials for supercapacitors(SCs) and electrochemical sensors. Inserting polyoxometalates (POMs) with redox active sites into transition metal compounds (TMCs) can improve the internal ion/electron transfer rate, thus effectively enhancing the electrochemical performance. Compared with the parent POMs, four compounds exhibit excellent electrochemical properties. In particular, Cu-PMo12 shows an excellent specific capacitance (812.3 F g-1 at 1 A g-1) and stability (94.42%), as well as a wide detection range (0.05 to 1250 µM) and a low detection limit (0.057 µM) for NO2- sensing.
Collapse
Affiliation(s)
- Kaili Hui
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei, 063210, People's Republic of China
| | - Mengle L Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Aixiang X Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China.
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, People's Republic of China
| |
Collapse
|
4
|
Gong Y, Liu T, Yang M, Tian A, Ying J. A series of viologen/POM materials with discoloration properties under the stimulation of X-ray, UV, electricity, and organic amines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 313:124154. [PMID: 38492466 DOI: 10.1016/j.saa.2024.124154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 03/10/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
At present, viologen-based compounds can undergo reversible chemical/physical changes under external stimuli such as light and electricity. This makes these compounds have potential applications in smart windows, displays, and sensors. In order to obtain such materials, three viologen-POM inorganic-organic hybrid compounds have been successfully synthesized by a hydrothermal method, namely {[Cu2(cybpy)8(α-P2W18O62)2}·18H2O (1), (Hbpy)·(cybpy)·[H4(α-P2W18O62)]}·32H2O (2) and {(Hcybpy)2(β-Mo8O26)}·2H2O (3) (cybpy·Br = 1-cyclobutylmethyl-[4,4']bipyridinyl-1-ium bromide, bpy = 4,4'-bipyridine). Three compounds exhibit good discoloration behaviors under various external stimuli, especially under the stimulation of X-ray, UV, electricity, and organic amines. In addition, in order to promote the compounds in the actual production of more applications, they were doped into the polymer matrix to construct hybrid films, which not only have the same response to external stimulation but also increase the repeatability of the photochromic process. Moreover, 1-3 powder samples in ethanol solution were ultrasonic treated and deposited on filter paper, which can be successfully used in erasable inkless printing.
Collapse
Affiliation(s)
- Yuan Gong
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Tao Liu
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Mengle Yang
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China.
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou 121013, PR China.
| |
Collapse
|
5
|
Liu H, Wu C, Yu H. Co(II)-coordination Complex: Fluorescence Performances and Combined with Taxotere-Hydrogels on Breast Cancer Treatment and Clinical Care. J Fluoresc 2024:10.1007/s10895-024-03734-5. [PMID: 38647959 DOI: 10.1007/s10895-024-03734-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/17/2024] [Indexed: 04/25/2024]
Abstract
In this study, a novel coordination polymer {Co2(Oaobtc)(bpe)(H2O)4]}n (1) was synthesized under hydrothermal conditions using a hybrid ligand synthesis method, where H4Oobtc represents 2,3,3'-tricarboxylate azobenzene, and bpe represents 1,2-bis(4-pyridyl)ethylene. The obtained CP1 was characterized by elemental analysis (EA), powder X-ray diffraction (PXRD), and thermal gravimetric analysis (TGA). Fluorescence testing confirmed the excellent photoluminescent performance of compound 1, indicating its potential as a cyan-emitting fluorescent material. Hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) are natural polysaccharides known for their biocompatibility. HA/CMCS hydrogels were synthesized using a chemical synthesis method, featuring a three-dimensional network structure with interconnected pores, and an average pore size of 314.75 ± 11.25 μm. The characterization of the taxotere-loaded hydrogel was performed using infrared spectroscopy, confirming the effective encapsulation of the drug within the hydrogel. Utilizing taxotere as a model drug, a novel taxotere-loaded metal gel was synthesized, and its anticancer efficacy was evaluated. Furthermore, the influence of different pH levels on drug release rate was investigated. Finally, the encapsulation and release of taxotere in the hydrogel were studied using UV-visible spectroscopy.
Collapse
Affiliation(s)
- Hao Liu
- Department of Breast and Thyroid Surgery, Bishan Maternity and Child Hospital of Chongqing, Chongqing, China
| | - Chengyi Wu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiying Yu
- Department of Oncology, Chongqing Hygeia Hospital, Chongqing, China.
| |
Collapse
|
6
|
Xin J, Pang H, Gómez-García CJ, Jin Z, Wang Y, Au CM, Ma H, Wang X, Yang G, Yu WY. Nitrogen doped 1 T/2H mixed phase MoS 2/CuS heterostructure nanosheets for enhanced peroxidase activity. J Colloid Interface Sci 2024; 659:312-319. [PMID: 38176240 DOI: 10.1016/j.jcis.2023.12.145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/03/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Heteroatom doping and phase engineering are effective ways to promote the catalytic activity of nanoenzymes. Nitrogen-doped 1 T/2H mixed phase MoS2/CuS heterostructure nanosheets N-1 T/2H-MoS2/CuS are prepared by a simple hydrothermal approach using polyoxometalate (POM)-based metal-organic frameworks (MOFs) (NENU-5) as a precursor and urea as nitrogen doping reagent. The XPS spectroscopy (XPS) and Raman spectrum of N-1 T/2H-MoS2/CuS prove the successful N-doping. NENU-5 was used as the template to prepare 1 T/2H-MoS2/CuS with high content of 1 T phase by optimizing the reaction time. The use of urea as nitrogen dopant added to 1 T/2H-MoS2/CuS, resulted in N-1 T/2H-MoS2/CuS with an increase in the content of the 1 T phase from 80 % to 84 % and higher number of defects. N-1 T/2H-MoS2/CuS shows higher peroxidase activity than 1 T/2H-MoS2/CuS and a catalytic efficiency (Kcat/Km) for H2O2 twice as high as that of 1 T/2H-MoS2/CuS. The enhanced catalytic activity has probably been attributed to several reasons: (i) the insertion of urea during the hydrothermal process in the S-Mo-S layer of MoS2, causing an increase in the interlayer spacing and in 1 T phase content, (ii) the replacement of S atoms in MoS2 by N atoms from the urea decomposition, resulting in more defects and more active sites. As far as we know, N-1 T/2H-MoS2/CuS nanosheets have the lowest detection limit (0.16 µm) for the colorimetric detection of hydroquinone among molybdenum disulfide-based catalysts. This study affords a new approach for the fabrication of high-performance nanoenzyme catalysts.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China; Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50. 46100 Burjasot, Spain
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Ying Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China.
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| |
Collapse
|
7
|
Di L, Lv Z, Zhang H, Li H. A New Co(II)-coordination Polymer: Fluorescence Performances, Loaded with Paclitaxel-hydrogel on Breast Cancer and Molecular Docking Study. J Fluoresc 2024:10.1007/s10895-024-03670-4. [PMID: 38517647 DOI: 10.1007/s10895-024-03670-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024]
Abstract
In the current context of the increasing incidence of breast cancer, we aim to develop an efficient drug carrier for breast cancer by constructing an innovative complex consisting of a metal-organic framework (MOF) and a hydrogel. The aim of this initiative is to provide new ideas and tools for breast cancer treatment strategies through scientific research, so as to address the current challenges in breast cancer treatment. In the present study, by employment of a new Co(II)-based coordination polymer with the chemical formula of [Co(H2O)(CH3OH)L]n (1) (H2L = 5-(1 H-tetrazol-5-yl)nicotinic acid) was solvothermally synthesized by reaction of Co(NO3)2·6H2O a mixed solvent of MeOH and water. The characteristics of ligand-based absorption and emission, as unveiled by ultraviolet and fluorescence spectroscopy tests, offer insights into the distinctive electronic transitions and structural features originating from the ligand in compound 1. Using natural polysaccharide hyaluronic acid (HA) and carboxymethyl chitosan (CMCS) as raw materials, HA/CMCS hydrogels were successfully prepared by chemical method and their internal morphology was studied by scanning electron microscopy. Using paclitaxel as a drug model, we further designed and synthesized a novel metal gel particle-loaded paclitaxel drug and evaluated its inhibitory effect on breast cancer cells. Finally, the hypothesized interactions between the complex and the receptor have been confirmed through molecular docking simulation, and multiple polar interactions have been verified, which further proves the potential anti-cancer capability and excellent bioactivity. Based on this, this composite material prepared from a novel Co(II)-coordinated polymer with paclitaxel hydrogel could provide a useful pathway for the identification and treatment of breast cancer.
Collapse
Affiliation(s)
- Lijun Di
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Zhihong Lv
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Haiping Zhang
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China
| | - Hui Li
- Department of Oncology, Linfen People's Hospital, Linfen, 041000, China.
| |
Collapse
|
8
|
Liang JJ, Lin YC, Chang ZH, Wang X. Improved capacitive performances and electrocatalytic reduction activity by regulating the bonding interaction between Zn-bistriazole-pyrazine/pyridine units and diverse Anderson-type polyoxometalates. Dalton Trans 2024. [PMID: 38265330 DOI: 10.1039/d3dt04195f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Electrochemical performances can be effectively improved by introducing metal-organic units (MOUs) into polyoxometalates (POMs). However, regulating the bonding strength between POMs and MOUs at the molecular level to improve the electrochemical performance is a challenging task. Three new POM-based metal-organic complexes (MOCs), namely H{Zn2(Hpytty)2(H2O)8[CrMo6(OH)6O18]}·2H2O (1), H{Zn2(Hpyttz)2(H2O)6[CrMo6(OH)6O18]}·8H2O (2), and {(μ2-OH)2Zn6(pyttz)2(H2O)10[TeMo6O24]}·2H2O (3) (H2pytty = 3-(pyrazin-2-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl, H2pyttz = 3-(pyrid-2-yl)-5-(1H-1,2,4-triazol-3-yl)-1,2,4-triazolyl), were obtained. Single-crystal X-ray diffraction shows that the bonding strength (from the hydrogen bond to the coordination bond) between Zn-bistriazole-pyrazine/pyridine units and diverse Anderson-type POMs gradually increases from complexes 1 to 3. Glassy carbon electrodes modified with complex 3 (3-GCE) has the highest specific capacitance, which is 930 F g-1 at 1 A g-1. Moreover, carbon paste electrodes (1-3-CPEs) modified with complexes 1-3 are used as electrochemical sensors for detecting Cr(VI) ions, with limits of detection well below the World Health Organization (WHO) maximum level in drinking water.
Collapse
Affiliation(s)
- Ju-Ju Liang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Yu-Chun Lin
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Zhi-Han Chang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Professional Technology Innovation Center of Liaoning Province for Conversion Materials of Solar Cell, Jinzhou 121013, P. R. China.
| |
Collapse
|
9
|
Hou Y, Han P, Li H, Zhang S, Qin M, Zhang N, Fu B, Mao R, Ge S. Bifunctional 3D POM-based coordination polymers for improved pseudocapacitance and catalytic oxidation performance. Dalton Trans 2024; 53:1541-1550. [PMID: 38164075 DOI: 10.1039/d3dt03650b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Developing novel high-efficiency supercapacitors as energy storage devices to solve the energy crisis is of vital significance. Meanwhile, designing highly active and selective oxidation catalysts for various sulfides is desirable but still a big challenge. To work out these problems, three novel 3D POM-based coordination polymers (POMCPs), formulated as [{Ag6(pytz)4}{SiMo12O40}] (1), [{Cu3(pytz)4}{SiMo12O40}]·5.5H2O (2) and [{Cu6(pytz)6}{SiMo12O40}]·2H2O (3) (pytz = 4-(5-(4-pyridyl)-1H-tetrazole)), are successfully prepared via a one-step synthetic strategy by changing different temperatures under hydrothermal or solvothermal conditions. In compounds 1 and 2, {SiMo12}, as 9-capped and 2-capped polyoxoanions, are engaged among the 2D Ag/Cu-organic sheets to generate the novel 3D POM-based coordination polymers. In addition, 1D Cu-organic chains are combined with 3-capped {SiMo12} polyoxoanions to construct 2D POM-based coordination polymers in 3. To our delight, as electrode materials for supercapacitors, the three compounds exhibit excellent specific capacitances of 261.76 F g-1, 248.82 F g-1 and 156.47 F g-1 at 0.5 A g-1, respectively. Besides, they can effectively and selectively catalyze the oxidation of various sulfides to sulfoxides.
Collapse
Affiliation(s)
- Yujiao Hou
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Peilin Han
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Hao Li
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Shixing Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Mengge Qin
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Nan Zhang
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Bingbing Fu
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Ruitao Mao
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| | - Suxiang Ge
- College of Chemical and Materials Engineering, Xuchang University, Xuchang 461000, P. R. China.
| |
Collapse
|
10
|
Xin J, Pang H, Gómez-García CJ, Sun W, Wu Q, Au CM, Ma H, Wang X, Yang G, Yu WY. One-Step Synthesis of Hollow CoS 2 Spheres Derived from Polyoxometalate-Based Metal-Organic Frameworks with Peroxidase-like Activity. Inorg Chem 2024; 63:860-869. [PMID: 38141027 DOI: 10.1021/acs.inorgchem.3c03890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2023]
Abstract
In this work, hollow CoS2 particles were prepared by a one-step sulfurization strategy using polyoxometalate-based metal-organic frameworks as the precursor. The morphology and structure of CoS2 have been monitored by scanning electron microscopy, X-ray photoelectron spectroscopy, and X-ray powder diffraction. The mechanism for the formation of CoS2 is discussed. The reaction time and sulfur content are found to be important factors that affect the morphology and pure phase formation of CoS2, and a hollow semioctahedral morphology of CoS2 with open voids was obtained when the sulfur source was twice as large as the precursor and the reaction time was 24 h. The CoS2 (24 h) particles show an excellent peroxidase-like activity for the oxidation of colorless 3,3',5,5'-tetramethylbenzidine (TMB) to blue oxidized (oxTMB) by hydrogen peroxide. The polyoxometalate used as a precursor helps to stabilize oxTMB during catalytic oxidation, forming a stable curve platform for at least 8 min. Additionally, the colorimetric detection of hydroquinone is developed with a low detection limit of 0.42 μM. This research provides a new strategy to design hollow materials with high peroxidase-mimicking activity.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P. R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Carlos J Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Dr. Moliner 50, Burjasot 46100, Spain
| | - Wenlong Sun
- Institute of Zhejiang University-Quzhou, Quzhou 324000, China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming 650214, Yunnan, China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
11
|
Xu T, Xu Z, Yao T, Zhang M, Chen D, Zhang X, Shen L. Discovery of fast and stable proton storage in bulk hexagonal molybdenum oxide. Nat Commun 2023; 14:8360. [PMID: 38102111 PMCID: PMC10724264 DOI: 10.1038/s41467-023-43603-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 11/14/2023] [Indexed: 12/17/2023] Open
Abstract
Ionic and electronic transport in electrodes is crucial for electrochemical energy storage technology. To optimize the transport pathway of ions and electrons, electrode materials are minimized to nanometer-sized dimensions, leading to problems of volumetric performance, stability, cost, and pollution. Here we find that a bulk hexagonal molybdenum oxide with unconventional ion channels can store large amounts of protons at a high rate even if its particle size is tens of micrometers. The diffusion-free proton transport kinetics based on hydrogen bonding topochemistry is demonstrated in hexagonal molybdenum oxide whose proton conductivity is several orders of magnitude higher than traditional orthorhombic molybdenum oxide. In situ X-ray diffraction and theoretical calculation reveal that the structural self-optimization in the first discharge effectively promotes the reversible intercalation/de-intercalation of subsequent protons. The open crystal structure, suitable proton channels, and negligible volume strain enable rapid and stable proton transport and storage, resulting in extremely high volumetric capacitance (~1750 F cm-3), excellent rate performance, and ultralong cycle life (>10,000 cycles). The discovery of unconventional materials and mechanisms that enable proton storage of micrometer-sized particles in seconds boosts the development of fast-charging energy storage systems and high-power practical applications.
Collapse
Affiliation(s)
- Tiezhu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Zhenming Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Tengyu Yao
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Miaoran Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Duo Chen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Laifa Shen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| |
Collapse
|
12
|
Yu S, Liu T, Ying J, Tian A, Yang M, Wang X. A series of isopolymolybdate-viologen hybrids with photo-, thermo- and electro-chromic properties. Dalton Trans 2023; 52:16631-16639. [PMID: 37888872 DOI: 10.1039/d3dt02928j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The combination of electron-deficient viologen ligands with electron-rich POMs is a typical acceptor-donor system that has recently received much attention. Under solvothermal and hydrothermal conditions, by introducing three symmetric viologen ligands into POM-based hybrid materials, we successfully constructed four POMs-viologen inorganic-organic hybrid compounds, namely (1,3-bcbpy)2·(δ-Mo8O26) (1) (1,3-bcbpy·2Cl = 1,1'-bis(3-carboxybenzyl)-4,4'-bipyridine dichloride), {CoII(1,4-bcbpy)2(H2O)2[H2(β-Mo8O26)]}·2H2O·2CH2O (2), (1,4-bcbpy)2·(δ-Mo8O26)·2H2O (3) (1,4-bcbpy·2Cl = 1,1'-bis(4-carboxybenzyl)-4,4'-bipyridine dichloride, CH2O = formaldehyde), and {CuII(1,1-pmbby)2(H2O)[H2(β-Mo8O26)2]}·5H2O·C2H7N (4) (1,1-pmbby·2Cl = 1,1'-[1,4-phenylbis(methylene)]bis-(4,4'-bipyridine)dichloride, C2H7N = dimethylamine). These four compounds exhibit different fascinating structures, especially compound 4 is a typical metal-organic framework. Compounds 1-4 exhibit good discoloration behaviors under various external stimuli. For example, compounds 1-4 showed a positive response to the irradiation from a 300 W Xe lamp. When a positive voltage was applied to the ECD based on compounds 1-4, 1/2/3/4-ECD underwent a significant color conversion. What's more, compound 4 also showed obvious discoloration results after heating. In a word, 1-4 are multifunctional discoloration materials under different external stimuli. In addition, the coated filter paper prepared based on compound 3 can be used as a new printing material medium and can be successfully applied in erasable inkless printing and dual anti-counterfeiting.
Collapse
Affiliation(s)
- Shuang Yu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Tao Liu
- College of Sciences, North China University of Science and Technology, Tangshan, Hebei 063210, China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Mengle Yang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
13
|
Lu Q, Ying J, Tian A, Wang X. A Series of POM-Viologen Photo-/Electrochromic Hybrids and Hydrogels Acting as Multifunctional Sensors for Detecting UV, Hg 2+, and Organic Amines. Inorg Chem 2023; 62:16617-16626. [PMID: 37769325 DOI: 10.1021/acs.inorgchem.3c02743] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
In this work, POM anions were introduced into the viologen system in order to synthesize POM-viologen hybrid compounds with excellent properties. Three new POM-viologen compounds, {CdII(tybipy)(DMF)2[β-Mo8O26]0.5Cl} (1), {CoII(tybipy)2(DMF)2[H2(β-Mo8O26)]2}·4C2H7N (2), and (tybipy)4·(β-Mo8O26) (3) (tybipy·Br = 1-thiophen-3-ylmethyl-[4,4']bipyridinyl-1-ium bromide), have been prepared by a solvothermal method, and their structures were characterized. POM anions are modified by mixing organic ligands with transition metals in compounds 1 and 2. However, compound 3 is a supramolecular structure constructed by hydrogen bonding interactions between the dissociative viologen and POM anions. These three compounds have rapid photoresponse and photochromic ability, which can be made into mixed matrix membranes and hydrogels for UV detection. The rigid sandwich devices prepared by compounds 1-3 have achieved ultrafast electrochromism and recovery. In addition, photochromic hydrogels based on compounds 1-3 can achieve ultrafast photochromic recovery. Compounds 1-3 can be used in ink-free printing and Hg2+ fluorescence detecting. Compounds 1 and 2 can also be used as organic amine detectors. Combined with photochromism and fluorescence detection of Hg2+, visual test papers for Hg2+, Cu2+, and Co2+ were successfully realized, which can improve the portability and detection speed of heavy metal ions in the actual environment.
Collapse
Affiliation(s)
- Qinghai Lu
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- College of Chemistry and Materials Engineering, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
14
|
Hao X, Ying J, Zhang Y, Tian A, Yang M, Wang X. Four octamolybdate compounds with properties of organic dye adsorption and photocatalytic reduction of Cr(VI). Dalton Trans 2023; 52:13537-13546. [PMID: 37721162 DOI: 10.1039/d3dt01976d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Hydrothermal synthesis was used to create four different POM-based compounds, namely {[Co(Hptpm)2(β-Mo8O26)0.5(ξ-Mo8O26)0.5]}·H2O (1), [Co(Hptpm)2(δ-Mo8O26)]·H2O (2), [Co(Hptpm)2(β-Mo8O26)] (3) and [Zn(Hptpm)2(β-Mo8O26)] (4) (ptpm = 4-[3-(3-pyridine-2-yl-[1,2,4]triazol-4-yl)-propyl]-morpholine). 1-4 containing different octamolybdate isomers were characterized. Compounds 1-4 showed good electrochemical performance and can be utilized as bifunctional sensors for NO2-, H2O2, Cr(VI) and Fe(III). Taking compound 1 as an example, the detection limits are 0.081 μM for NO2-, 0.072 μM for H2O2, 0.054 μM for Cr(VI) and 0.063 μM for Fe(III), respectively. Compounds 1-4 have good capacitance. Moreover, compounds 1-4 also show good adsorption properties for organic cationic dyes. The cationic dyes include methylene blue (MB), crystal violet (CV) and neutral red (NR). In addition, 1-4 have excellent characteristics that can reduce Cr(VI) to Cr(III) by photocatalytic technology. Within 30 min, the reduction rates were 95.85% for 1, 93.99% for 2, 90.29% for 3 and 88.18% for 4.
Collapse
Affiliation(s)
- Xinxin Hao
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Mengle Yang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China.
| |
Collapse
|
15
|
Jin Y, Wu S, Sun Y, Chang Z, Li Z, Sun Y, Xu W. Nonporous, conducting bimetallic coordination polymers with an advantageous electronic structure for boosted faradaic capacitance. MATERIALS HORIZONS 2023; 10:3821-3829. [PMID: 37417338 DOI: 10.1039/d3mh00424d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Conductive coordination polymers (c-CPs) are promising electrode materials for supercapacitors (SCs) owing to their excellent conductivity, designable structures and dense redox sites. However, despite their high intrinsic density and outstanding electrical properties, nonporous c-CPs have largely been overlooked in SCs because of their low specific surface areas and deficient ion-diffusion channels. Herein, we demonstrate that the nonporous c-CPs Ag5BHT (BHT = benzenehexathiolate) and CuAg4BHT are both battery-type capacitor materials with high specific capacitances and a large potential window. Notably, nonporous CuAg4BHT with bimetallic bis(dithiolene) units exhibits superior specific capacitance (372 F g-1 at 0.5 A g-1) and better rate capability than isostructural Ag5BHT. Structural and electrochemical studies showed that the enhanced charge transfer between different metal sites is responsible for its outstanding capacitive performance. Additionally, the assembled CuAg4BHT//AC SC device displays a favorable energy density of 17.1 W h kg-1 at a power density of 446.1 W kg-1 and an excellent cycling stability (90% capacitance retention after 5000 cycles). This work demonstrates the potential applications of such nonporous redox-active c-CPs in SCs and highlights the roles of bimetallic redox sites in capacitive performance, which hold promise for the future development of c-CP-based energy storage technologies.
Collapse
Affiliation(s)
- Yigang Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Sha Wu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yong Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zixin Chang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
16
|
Sun W, Pang H, Khan SU, Yang R, Wu Q, Ma H, Au CM, Sun W, Wang X, Yang G, Yu WY. Highly Efficient Photocatalysts: Polyoxometalate Synthons Enable Tailored CdS-MoS 2 Morphologies and Enhanced H 2 Evolution. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37450308 DOI: 10.1021/acsami.3c04139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The development of photocatalysts toward highly efficient H2 evolution reactions is a feasible strategy to achieve the effective conversion of solar energy and meet the increasing demand for new energy. To this end, we prepared two different CdS-MoS2 photocatalysts with unique morphologies ranging from hexagonal prisms to tetragonal nanotubes by carefully tuning polyoxometalate synthons. These two photocatalysts, namely, CdS-MoS2-1 and CdS-MoS2-2, both exhibited remarkable photocatalytic efficiency in H2 generation, among which CdS-MoS2-2 showed superior performance. In fact, the best catalytic hydrogen desorption rate of CdS-MoS2-2 is as high as 1815.5 μmol g-1 h-1. Such performance is superior to twice that of single CdS and almost four times that of pure MoS2. This obvious enhancement can be accredited to the highly open nanotube morphology and highly dispersed heterometallic composition of CdS-MoS2-2, which represents an excellent example of the highest noble-metal-free H2 evolution photocatalysts reported so far. Taken together, these findings suggest that the development of highly dispersed heterometallic catalysts is an auspicious route to realize highly efficient conversion of solar energy and that CdS-MoS2-2 represents a major advance in this field.
Collapse
Affiliation(s)
- Weize Sun
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Shifa Ullah Khan
- The Institute of Chemistry, Faculty of Science, University of Okara, Renala Campus, Okara, Punjab 56300, Pakistan
| | - Ruoru Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Chi-Ming Au
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| | - Wenlong Sun
- Institute of Zhejiang University─Quzhou, Quzhou 324000, China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Wing-Yiu Yu
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon 999077, Hong Kong
| |
Collapse
|
17
|
Chen Y, Liang J, Chang Z, Wang X. A {PMo12}-based 2D sandwich-like supramolecular network constructed from a new semi-rigid amide-derived ligand with enhanced capacitive activity and electrochemical sensing performances. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2023.121490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
18
|
Wang K, Chen C, Li Y, Hong Y, Wu H, Zhang C, Zhang Q. Insight into Electrochemical Performance of Nitrogen-Doped Carbon/NiCo-Alloy Active Nanocomposites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300054. [PMID: 36879474 DOI: 10.1002/smll.202300054] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/14/2023] [Indexed: 06/08/2023]
Abstract
Nanocomposites containing Ni or Co or NiCo alloy and nitrogen-doped carbon with diverse ratios have been prepared and utilized as active elements in supercapacitors. The atomic contents of nitrogen, nickel, and cobalt have been adjusted by the supplement amount of Ni and Co salts. In virtue of the excellent surface groups and rich redox active sites, the NC/NiCo active materials exhibit superior electrochemical charge-storage performances. Among these as-prepared active electrode materials, the NC/NiCo1/1 electrode performs better than other bimetallic/carbon electrodes and pristine metal/carbon electrodes. Several characterization methods, kinetic analyses, and nitrogen-supplement strategies determine the specific reason for this phenomenon. As a result, the better performance can be ascribed to a combination of factors including the high surface area and nitrogen content, proper Co/Ni ratio, and relatively low average pore size. The NC/NiCo electrode delivers a maximum capacity of 300.5 C g-1 and superior capacity retention of 92.30% after 3000 unceasing charge-discharge cycles. After assembling it into the battery-supercapacitor hybrid device, a high energy density of 26.6 Wh kg-1 (at 412 W kg-1 ) is achieved, comparable to the recent reports. Furthermore, this device can also power four light-emitting-diode (LED) demos, suggesting the potential practicability of these N-doped carbon compositing with bimetallic materials.
Collapse
Affiliation(s)
- Kuaibing Wang
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Changyun Chen
- Key Laboratory of Advanced Functional Materials of Nanjing, School of Environmental Science, Nanjing Xiaozhuang University, Nanjing, Jiangsu, 211171, P. R. China
| | - Yihao Li
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Ye Hong
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Hua Wu
- Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Cheng Zhang
- Jiangsu Key Laboratory of Micro and Nano Heat Fluid Flow Technology and Energy Application, School of Physical Science and Technology, Suzhou University of Science and Technology, Suzhou, 215009, P. R. China
| | - Qichun Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
- Center of Super-Diamond and Advanced Films (COSDAF), City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong, SAR, 999077, P. R. China
| |
Collapse
|
19
|
Cheng H, Liu R, Zhang R, Huang L, Yuan Q. Recent advances in supramolecular self-assembly derived materials for high-performance supercapacitors. NANOSCALE ADVANCES 2023; 5:2394-2412. [PMID: 37143817 PMCID: PMC10153478 DOI: 10.1039/d3na00067b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 04/10/2023] [Indexed: 05/06/2023]
Abstract
The key preponderance of supramolecular self-assembly strategy is its ability to precisely assemble various functional units at the molecular level through non-covalent bonds to form multifunctional materials. Supramolecular materials have the merits of diverse functional groups, flexible structure, and unique self-healing properties, which make them of great value in the field of energy storage. This paper reviews the latest research progress of the supramolecular self-assembly strategy for the advanced electrode materials and electrolytes for supercapacitors, including supramolecular self-assembly for the preparation of high-performance carbon materials, metal-based materials and conductive polymer materials, and its beneficial effects on the performance of supercapacitors. The preparation of high performance supramolecular polymer electrolytes and their application in flexible wearable devices and high energy density supercapacitors are also discussed in detail. In addition, at the end of this paper, the challenges of the supramolecular self-assembly strategy are summarized and the development of supramolecular-derived materials for supercapacitors is prospected.
Collapse
Affiliation(s)
- Honghong Cheng
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Ruliang Liu
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Ruyi Zhang
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Lan Huang
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| | - Qiaoyi Yuan
- School of Chemistry and Materials Science, Guangdong University of Education Guangzhou 510800 P.R. China
| |
Collapse
|
20
|
Sea-Cucumber-like Microstructure Polyoxometalate/TiO2 Nanocomposite Electrode for High-Performance Electrochromic Energy Storage Devices. Molecules 2023; 28:molecules28062634. [PMID: 36985606 PMCID: PMC10058481 DOI: 10.3390/molecules28062634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/07/2023] [Accepted: 03/07/2023] [Indexed: 03/15/2023] Open
Abstract
The key challenge in the practical application of electrochromic energy storage devices (EESDs) is the fabrication of high-performance electrode materials. Herein, we deposited K7[La(H2O)x(α2-P2W17O61)] (P2W17La) onto TiO2 nanowires (NW) to construct an NW–P2W17La nanocomposite using a layer-by-layer self-assembly method. In contrast to the pure P2W17La films, the nanocomposite exhibits enhanced electrochromic and electrochemical performance owing to the 3D sea-cucumber-like microstructure. An EESD using the NW–P2W17La film as the cathode exhibited outstanding electrochromic and energy storage properties, with high optical modulation (48.6% at 605 nm), high switching speeds (tcoloring = 15 s, tbleaching = 4 s), and high area capacitance (5.72 mF cm−2 at 0.15 mA cm−2). The device can reversibly switch between transparent and dark blue during the charge/discharge process, indicating that electrochromic contrast can be used as a quantitative indicator of the energy storage status.
Collapse
|
21
|
Avcıoğlu S, Buldu-Akturk M, Erdem E, Kaya F, Kaya C. Boron Carbide as an Electrode Material: Tailoring Particle Morphology to Control Capacitive Behaviour. MATERIALS (BASEL, SWITZERLAND) 2023; 16:861. [PMID: 36676598 PMCID: PMC9862298 DOI: 10.3390/ma16020861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/07/2023] [Accepted: 01/10/2023] [Indexed: 06/17/2023]
Abstract
In this study, boron carbide powders consisting mainly of nano/micro fibers or polyhedral-equiaxed particles were synthesized via the sol-gel technique, and the influence of particle morphology on electrochemical performance of boron carbide electrodes was investigated. Thermal decomposition duration of the precursors played a determinant role in the final morphology of the synthesized boron carbide powders. The morphology of boron carbide powders successfully tuned from polyhedral-equiaxed (with ~3 µm average particle size) to nano/micro fibers by adjusting the thermal decomposition duration of precursors. The length and thickness of fibers were in the range of 30 to 200 µm and sub-micron to 5 µm, respectively. The electrochemical performance analysis of boron carbide powders has shown that the particle morphology has a considerable impact on the boron carbide electrodes electrochemical performance. It was found that the synergetic effects of polyhedral-equiaxed and nano/micro fiber morphologies exhibited the best electrochemical performance in supercapacitor devices, resulting in the power and energy density of 34.9 W/kg and 0.016 Wh/kg, respectively.
Collapse
Affiliation(s)
- Suna Avcıoğlu
- Department of Metallurgical and Materials Engineering, Faculty of Chemistry and Metallurgy, Davutpaşa Campus, Yildiz Technical University, Istanbul 34210, Turkey
| | - Merve Buldu-Akturk
- Faculty of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
| | - Emre Erdem
- Faculty of Engineering and Natural Sciences, Materials Science and Nano Engineering, Sabanci University, Istanbul 34956, Turkey
- Sabanci University Integrated Manufacturing Technologies Research and Application Center, Composite Technologies Center of Excellence, Teknopark Istanbul, Pendik, Istanbul 34906, Turkey
| | - Figen Kaya
- Department of Metallurgical and Materials Engineering, Faculty of Chemistry and Metallurgy, Davutpaşa Campus, Yildiz Technical University, Istanbul 34210, Turkey
| | - Cengiz Kaya
- Department of Metallurgical and Materials Engineering, Faculty of Chemistry and Metallurgy, Davutpaşa Campus, Yildiz Technical University, Istanbul 34210, Turkey
| |
Collapse
|
22
|
Yu T, Li S, Zhang L, Li F, Wang J, Pan H, Zhang D. In situ growth of ZIF-67-derived nickel-cobalt-manganese hydroxides on 2D V 2CT x MXene for dual-functional orientation as high-performance asymmetric supercapacitor and electrochemical hydroquinone sensor. J Colloid Interface Sci 2023; 629:546-558. [PMID: 36179575 DOI: 10.1016/j.jcis.2022.09.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 09/13/2022] [Accepted: 09/20/2022] [Indexed: 11/30/2022]
Abstract
Designing dual-functional electrode materials for supercapacitors and pollutant sensors has attracted great interest from researchers for urgent demand in green energy and the environment. In this work, a novel electrode material V2CTx@NiCoMn-OH was successfully constructed for dual-functional orientation via a two-step synthesis strategy, in which the NiCoMn-OH with a three-dimensional (3D) hollow structure was fabricated by employing ZIF-67 as a template and simple anion exchange and composited with the two-dimensional (2D) layered V2CTx MXene. The intercalation of NiCoMn-OH can effectively limit the self-accumulation of V2CTx MXene nanosheets and build a 3D cross-linked hollow structure, thereby broadening the ion transport channel, exposing more active sites of V2CTx@NiCoMn-OH, and simultaneously improving the conductivity of NiCoMn-OH. Benefiting from the unique 3D cross-linked hollow structure, the optimized V2CTx@NiCoMn-OH-20 electrode material exhibits an excellent specific capacitance of 827.45 C g-1 at 1 A g-1. Furthermore, the electrode material has excellent capacitance retention of 88.44% after 10,000 cycles. Moreover, the V2CTx@NiCoMn-OH-20//AC ASC device displays a high energy density of 88.35 Wh kg-1 as well as high power density of 7500 W kg-1 during operation. Additionally, the V2CTx@NiCoMn-OH-20 exhibited excellent electrocatalytic performance in the detection of hydroquinone, including the low detection limit of 0.559 μM (S/N = 3) and the wide linear range of 2-1050 μM. Therefore, the prepared V2CTx@NiCoMn-OH-20 has great potential applications in the fields of supercapacitors and hydroquinone sensors.
Collapse
Affiliation(s)
- Tingting Yu
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Shaobin Li
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China.
| | - Li Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China; College of Materials Science and Engineering, Advanced Inorganic Function Composites Research Laboratory, Qiqihar University, Qiqihar 161006, China
| | - Fengbo Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, China.
| | - Jianxin Wang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Hong Pan
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| | - Deqing Zhang
- Key Laboratory of Polymeric Composite Materials of Heilongjiang Province, College of Materials Science and Engineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
23
|
Chen KK, Chang ZH, Chen YZ, Lu JJ, Liang JJ, Wang XL. Transition metal-decorated molybdotellurate-based architectures constructed from flexible pyrazine-pyridine ligand with tuneable electrochemical sensing performance. Inorganica Chim Acta 2023. [DOI: 10.1016/j.ica.2022.121250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
24
|
Zhou CW, Wang XY, Duan ZP, Hu TZ, Wang HT, Gong SQ, Shi SY, Chu XY. Construction of Sb-capped Dawson-type POM derivatives for high-performance asymmetric supercapacitors. Electrochim Acta 2023. [DOI: 10.1016/j.electacta.2023.141823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
25
|
Determination of Curcumin on Functionalized Carbon Nano Tube Modified Electrode and Probing its Interaction with DNA and Copper Ion. JOURNAL OF ANALYSIS AND TESTING 2022. [DOI: 10.1007/s41664-022-00242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
26
|
Shi C, Kang N, Wang C, Yu K, Lv J, Wang C, Zhou B. An inorganic-organic hybrid nanomaterial with a core-shell structure constructed by using Mn-BTC and Ag 5[BW 12O 40] for supercapacitors and photocatalytic dye degradation. NANOSCALE ADVANCES 2022; 4:4358-4365. [PMID: 36321138 PMCID: PMC9552923 DOI: 10.1039/d2na00510g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 09/01/2022] [Indexed: 05/16/2023]
Abstract
Creating inorganic-organic hybrids with polyoxometalates (POMs) and metal-organic frameworks (MOFs) as energy storage and dye-degradation materials remains challenging. Here, a new hybrid nanomaterial Mn-BTC@Ag5[BW12O40] is synthesized by using Ag5[BW12O40] and Mn3(BTC)2(H2O)6 (Mn-BTC, BTC = 1,3,5-benzenetricarboxylic acid) through a plain grinding method. The structure and morphology characterization by scanning electron microscopy (SEM), powder X-ray diffraction (XRD), and transmission electron microscopy (TEM) shows that the synthetic products have core-shell construction. Due to its unique structure wherein the core is Mn-BTC and the shell is Ag5[BW12O40], it exhibits excellent capacitance performance. In a three-electrode system where nickel foam is a collector, at a current density of 1 A g-1, its specific capacitance is 198.09 F g-1; after 5000 cycles, the capacitance retention rate is 94.4%. When the power density is 503.1 W kg-1, the symmetrical supercapacitor reveals a high energy density which is 10.9 W h kg-1. At the same time, the capacitance retention is 92.9% after 5000 cycles which showed good cycle stability. The photocatalytic degradation efficiencies of rhodamine B (RhB), methyl orange (MO) and methylene blue (MB) dyes exceed 90% after 140 min, and the degradation results remained unchanged after five photocatalytic cycles. The photocatalytic degradation mechanism shows that ˙OH has a major effect. The results show that this research provides a fresh idea for the development of energy storage and dye photocatalytic degradation materials.
Collapse
Affiliation(s)
- Caihong Shi
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Ning Kang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Chunmei Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Jinghua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Chunxiao Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
| | - Baibin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, Harbin Normal University Harbin Heilongjiang 150025 China
- Key Laboratory of Synthesis of Functional Materials and Green Catalysis, Colleges of Heilongjiang Province, Harbin Normal University Harbin Heilongjiang 150025 China
| |
Collapse
|
27
|
Xin J, Pang H, Jin Z, Wu Q, Yu X, Ma H, Wang X, Tan L, Yang G. Two Polyoxometalate-Encapsulated Two-Fold Interpenetrating dia Metal-Organic Frameworks for the Detection, Discrimination, and Degradation of Phenolic Pollutants. Inorg Chem 2022; 61:16055-16063. [PMID: 36173134 DOI: 10.1021/acs.inorgchem.2c02454] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Phenols are widely used for commercial production, while they pose a hazard to the environment and human health. Thus, investigation of convenient and efficient methods for the detection, discrimination, and degradation of phenols becomes particularly important. Herein, two new polyoxometalate (POM)-based compounds, [Co2(btap)4(H2O)4][SiW12O40] (Co-POM) and [Ni2(btap)4(H2O)4][SiW12O40] (Ni-POM) (btap = 3,5-bis(triazol-1-yl)pyridine), are prepared via a hydrothermal synthesis method. The compounds show a fascinating structural feature of a POM-encapsulated twofold interpenetrating dia metal-organic framework. More importantly, besides the novel structures, the compound Co-POM realizes three functions, namely, the simultaneous detection, discrimination, and degradation of phenols. Specifically, Co-POM shows an excellent colorimetric detection performance toward phenol with a detection limit (LOD) ca. 1.32 μM, which is lower than most reported colorimetric detectors for phenol. Also, a new colorimetric sensor system based on Co-POM can discriminate phenol, 4-chlorophenol, and o-cresol with ease. Further, Co-POM exhibits a photocatalytic degradation property for 4-chlorophenol under irradiation of visible light with the highest degradation rate at 62% after irradiation for 5 h. Therefore, this work provides the first example of a POMs-based multifunctional material for achieving the detection, discrimination, and degradation of phenolic pollutants.
Collapse
Affiliation(s)
- Jianjiao Xin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China.,Center of Teaching Experiment and Equipment Management, Qiqihar University, Qiqihar 161006, P.R. China
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Zhongxin Jin
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, China
| | - Xiaojing Yu
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Lichao Tan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| | - Guixin Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P.R. China
| |
Collapse
|
28
|
Ghandour Y, Mchiri C, Mestiri I, Alzahrani AYA, Nasri H. Insights into the new cobalt (II) monosubstituted keggin-type polyoxomolybdate: synthesis, characterizations, and application in the catalytic degradation of crystal violet dye. J CHEM SCI 2022. [DOI: 10.1007/s12039-022-02071-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
29
|
Zhang Z, Gómez-García CJ, Wu Q, Xin J, Pang H, Ma H, Chai D, Li S, Zhao C. Synthesis of a Polyoxometalate-Encapsulated Metal–Organic Framework via In Situ Ligand Transformation Showing Highly Catalytic Activity in Both Hydrogen Evolution and Dye Degradation. Inorg Chem 2022; 61:11830-11836. [DOI: 10.1021/acs.inorgchem.2c01579] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zhuanfang Zhang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Carlos J. Gómez-García
- Departamento de Química Inorgánica, Universidad de Valencia, C/Cr. Moliner, 50, 46100 Burjasot, Valencia, Spain
| | - Qiong Wu
- Department of Chemical Science and Technology, Kunming University, Kunming, Yunnan 650214, P. R. China
| | - Jianjiao Xin
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Haijun Pang
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Huiyuan Ma
- The School of Material Science and Chemical Engineering, Harbin University of Science and Technology, Harbin 150040, P. R. China
| | - Dongfeng Chai
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Shaobin Li
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| | - Chunyan Zhao
- College of Chemistry and Chemical Engineering, Qiqihar University, Qiqihar 161006, P. R. China
| |
Collapse
|
30
|
Zhao T, Cui LP, Yu K, Lv JH, Ma YJ, Yang AS, Zhou BB. Porous {P 6Mo 18O 73}-type Poly(oxometalate) Metal-Organic Frameworks for Improved Pseudocapacitance and Electrochemical Sensing Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:30099-30111. [PMID: 35729744 DOI: 10.1021/acsami.2c06369] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
{P6Mo18} poly(oxometalate) (POM) clusters have huge steric hindrance and limited active oxygen atoms, which make them difficult to combine with metal-organic units to form three-dimensional (3D) porous structures. Therefore, functionalization of such POMs has always been a bottleneck that is difficult to break through. In this study, {P6Mo18} POM was successfully grafted on a lock-like metal-organic chain to generate a multiporous coordination polymer, [{Na(H2O)(H2btb)}{Cu4I(H2O)(pz)5Cl}{H2Sr⊂P6Mo2VMo16VIO73}]·3H2O (1) (pz = pyrazine; btb = 1,4-bis(1,2,4-triazole) butane). Meanwhile, a zero-dimensional (0-D) control compound with only btb ligands as counterions, (H4btb)[H4Sr⊂P6Mo2VMo16VIO73]·3H2O (2), was also obtained via a hydrothermal reaction. Compound 1 represents the first basket-type 3D poly(oxometalate) metal-organic framework (POMOF) assembly, which possesses interpenetrating pores and complex topology. 1-GO-CPE displays improved supercapacitor (SC) performance (the specific capacitance of 929.4 F g-1 at a current density of 3 A g-1 with 94.1% of cycle efficiency after 5000 cycles) compared with 2-GO-CPE and most reported POMOF electrode materials, which may be due to the outstanding redox capability of basket-POM, introduction of metal-organic chains, intersecting pores, and excellent conductivity of graphene. An asymmetric SC device with 1-GO-CPE as the negative electrode exhibits an energy density of 29.7 Wh kg-1 with a power density of 3148.2 W kg-1 and long-lasting cycling life. In addition, 1-GO-GCE as an electrochemical sensor responds to dopamine (DA) at a voltage of 0.40 V and shows lower detection limits (0.19 μM (signal-to-noise ratio (SNR) = 3)), higher selectivity, and good reproducibility in the linear range of 0.56 μM to 0.24 mM. The ability to accurately detect the content of DA in biological samples further proves the feasibility of the sensor in practical applications.
Collapse
Affiliation(s)
- Tingting Zhao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Li-Ping Cui
- Academy of Life Science and Technology, State Key Laboratory of Molecular Genetics, Harbin Normal University, Harbin 150025, P. R. China
| | - Kai Yu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| | - Jing-Hua Lv
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Ya-Jie Ma
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| | - Ao-Shuang Yang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
| | - Bai-Bin Zhou
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin 150025, P. R. China
- Key Laboratory of Photochemical Biomaterials and Energy Storage Material, Harbin Normal University, Harbin 150025, Heilongjiang, P. R. China
| |
Collapse
|
31
|
Sun Y, Jin Y, Xu C, Zhu M, Li Y, Li Z, Sun Y, Xu W, Zhu D. The Increasing Number of Electron Reservoirs in Nonporous, High-Conducting Coordination Polymers Cu x BHT (x = 3, 4, and 5, BHT = Benzenehexathiol) for Improved Faradaic Capacitance. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203702. [PMID: 35771097 DOI: 10.1002/smll.202203702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Indexed: 06/15/2023]
Abstract
Although asymmetric supercapacitors (ASCs) can achieve high energy density, the lifespan and power density are severely suppressed due to the low conductivity of using pseudocapacitive or battery-type electrode materials. Recently, nonporous conductive coordination polymers (c-CPs) have sparked interests in supercapacitors. However, their performance is expected to be limited by the nonporous features, low specific surface area and absence of ion-diffusion channels. Here, it is demonstrated that the capacity of nonporous CPs will be significantly enhanced by maximizing the number of faradaic redox sites in their structures through a comparative investigation on three highly conductive nonporous c-CPs, Cux BHT(x = 3, 4, 5.5). They show excellent capacitance of 312.1 F g-1 (374.5 C g-1 ) (Cu3 BHT), 186.7 F g-1 (224.0 C g-1 ) (Cu4 BHT) and 89.2 F g-1 (107.0 C g-1 ) (Cu5.5 BHT) at 0.5 A g-1 in a sequence related to the number of electron storage units in structures and outstanding rate performance and cycle stability. Furthermore, the constructed Cu3 BHT//MnO2 ASC device exhibits capacity retention of 92% (after 1500 cycles at 3 A g-1 ) and delivers a high energy density of 39.1 Wh kg-1 at power density of 549.6 W kg-1 within a large working potential window of 0-2.2 V.
Collapse
Affiliation(s)
- Yong Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yigang Jin
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Cheng Xu
- Key Laboratory for Advanced Materials and Joint International Research Laboratory of Precision Chemistry and Molecular Engineering, Feringa Nobel Prize Scientist Joint Research Center, School of Chemistry and Molecular Engineering, Frontiers Center for Materiobiology and Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Mengsu Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yang Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ze Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yimeng Sun
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Wei Xu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Daoben Zhu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Organic Solids, Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
32
|
Wang G, Guo S, Wu Y, Wu J, Zhang F, Li L, Zhang M, Yao C, Gómez-García CJ, Wang T, Zhang Y, Chen T, Ma H. POMCPs with Novel Two Water-Assisted Proton Channels Accommodated by MXenes for Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202087. [PMID: 35729064 DOI: 10.1002/smll.202202087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.
Collapse
Affiliation(s)
- Guangning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Siyu Guo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Jiaqi Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Lu Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Chengbao Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Carlos J Gómez-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán, Paterna, Valencia, 46980, Spain
| | - Tianyang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yajing Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Tingting Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Huiyuan Ma
- Key Laboratory of Green Chemical Engineering and Technology, School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
33
|
Xu T, Wang D, Li Z, Chen Z, Zhang J, Hu T, Zhang X, Shen L. Electrochemical Proton Storage: From Fundamental Understanding to Materials to Devices. NANO-MICRO LETTERS 2022; 14:126. [PMID: 35699769 PMCID: PMC9198198 DOI: 10.1007/s40820-022-00864-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 04/12/2022] [Indexed: 05/14/2023]
Abstract
Simultaneously improving the energy density and power density of electrochemical energy storage systems is the ultimate goal of electrochemical energy storage technology. An effective strategy to achieve this goal is to take advantage of the high capacity and rapid kinetics of electrochemical proton storage to break through the power limit of batteries and the energy limit of capacitors. This article aims to review the research progress on the physicochemical properties, electrochemical performance, and reaction mechanisms of electrode materials for electrochemical proton storage. According to the different charge storage mechanisms, the surface redox, intercalation, and conversion materials are classified and introduced in detail, where the influence of crystal water and other nanostructures on the migration kinetics of protons is clarified. Several reported advanced full cell devices are summarized to promote the commercialization of electrochemical proton storage. Finally, this review provides a framework for research directions of charge storage mechanism, basic principles of material structure design, construction strategies of full cell device, and goals of practical application for electrochemical proton storage.
Collapse
Affiliation(s)
- Tiezhu Xu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Di Wang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Zhiwei Li
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Ziyang Chen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Jinhui Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Tingsong Hu
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China
| | - Xiaogang Zhang
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| | - Laifa Shen
- Jiangsu Key Laboratory of Electrochemical Energy Storage Technologies, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, People's Republic of China.
| |
Collapse
|
34
|
Honeycomb-like biomass carbon with planted CoNi 3 alloys to form hierarchical composites for high-performance supercapacitors. J Colloid Interface Sci 2022; 608:2602-2612. [PMID: 34772499 DOI: 10.1016/j.jcis.2021.10.184] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 02/02/2023]
Abstract
It is a significant challenge to combine a large pseudocapacitive material with conductive honeycomb-like carbon frameworks for long-term stable supercapacitors. Herein, hierarchical composite materials are manufactured by using biomass carbon, ZIF-67, and a mild pore former (Ni(CH3COO)2) to generate alloy-type CoNi3 nanoparticles planted into conductive honeycomb-like carbon frameworks (C@ZIF-67-T). Meanwhile, the effect of carbonization temperature on the honeycomb-like pore size and the structure of composite materials is systematically investigated. As the honeycomb-like carbon skeleton structure guarantees good ionic and electronic conductivities and a large contact area, whereas the alloy nanoparticles provide a rich redox reaction for Faradaic capacitance. Therefore, the as-obtained C@ZIF-67-600 electrode presents a remarkable specific capacitance of 1044.8 F · g-1 at 1.0 A · g-1 and an ultra-long cycling stability with 30,000 cycles at 5.0 A · g-1 in a three-electrode system. In addition, the assembled C@ZIF-67-600//activated carbon asymmetrical supercapacitor exhibit a high specific capacitance of 274.4F · g-1 at 1.0 A · g-1 and a long-term stable lifespan with a capacitance retention of 87% after 20,000 cycles at 5.0 A · g-1. Besides, the asymmetrical supercapacitor also presents a maximum energy density of 85.13 Wh · kg-1 at a power density of 750 W · kg-1. Such superior electrochemical performance demonstrate that the designed electrode material provides a promising energy storage application.
Collapse
|
35
|
Sun X, Qu Y, Wang G, Chen T, Wang G. Two Coordination Polymers@Graphene Hybrid Electrodes for High‐Performance Supercapacitors with Enhanced Rate Capability and Specific Capacitance. ChemistrySelect 2022. [DOI: 10.1002/slct.202103660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xuwen Sun
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Yan Qu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Guangming Wang
- Basic Science Institute Harbin University of Commerce Harbin 150025 P. R. China
| | - Tingting Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| | - Guangning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering Harbin Normal University Harbin 150025 P. R. China
| |
Collapse
|
36
|
Enhancing the electrochemical capacitor performance of Keggin polyoxometalates by anchoring cobalt-triazole complexes. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131753] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Yu X, Gao E, Yao W, Fedin VP, Potapov AS. Zinc(II) and cobalt(II) complexes with unusual coordination of mixed imidazole-1,2,4-triazole ligand in a protonated cationic form. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Ma S, Ying J, Zhang Y, Tian A. Four POM-based complexes modified by multi-nuclear clusters: structures, photocatalytic, supercapacitor and chromogenic properties. CrystEngComm 2022. [DOI: 10.1039/d2ce00255h] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four POM-based complexes were synthesized under hydrothermal conditions by using two kinds of triazole derivatives, namely [Cu2(Cmt)2(OH)Cl(β-Mo8O26)0.5] (1), [Cu(H2O)3(H3/2Tpm)2](HTpm)(PMo12O40)2·4H2O (2), [Cu3Cl2(H2Tpm)2(HTpm)4(PMo12O40)4]·26H2O (3), [Co3(HTpm)6(H2O)2(Mo13O42)2]·21H2O (4) (Cmt = 1-cyclopropylmethyl-1-H-[1,2,4]triazole, Tpm = 4-(3-[1,2,4]triazole-4-propyl)morpholine)....
Collapse
|
39
|
Miao F, Zhang M, Zhou Y. Syntheses and structures of two new inorganic-organic hybrid nickel vanadates [Ni(H2biim)3]V2O6 and [Ni(H2biim)3][(VO2)(SO4)] (H2biim=2,2′-biimidazole). J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
40
|
Chu M, Bai Z, Zhu D, Chen W, Yang G, Xin J, Ma H, Pang H, Tan L, Wang X. A β-nicotinamide adenine dinucleotide electrochemical sensor based on polyoxometalate built by the combination of electrodeposition and self-assembly. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
41
|
Asymmetric polyoxometalate-polypyrrole composite electrode material for electrochemical energy storage supercapacitors. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2021.115856] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
42
|
Sun C, Ying J, Zhang Y, Jin L, Tian A, Wang X. A series of POM-based compounds by tuning coordination groups and spacers of ligands: electrocatalytic, capacitive and photoelectrocatalytic properties. CrystEngComm 2022. [DOI: 10.1039/d1ce01419f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of POM-based compounds can be used as amperometric detectors for NO2− and Cr(vi). They also have capacitive properties and can effect the high-efficiency photoelectrocatalytic degradation of organic dyes.
Collapse
Affiliation(s)
- Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
43
|
Sun C, Zhang Y, Ying J, Jin L, Tian A, Wang X. A series of POM compounds constructed using a flexible ligand containing three coordination groups: electrocatalytic and photocatalytic reduction and amperometric detection of Cr( vi). NEW J CHEM 2022. [DOI: 10.1039/d1nj05316g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Four polyoxometalate-based compounds can be used as electrocatalysts and electrochemical sensors for amperometric detection of NO2− and Cr(VI), and also have the performance of photocatalytic reduction of Cr(VI).
Collapse
Affiliation(s)
- Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
44
|
Jin L, Ying J, Zhang Y, Sun C, Tian A, Wang X. A series of polyoxometalate compounds by tuning N sites and numbers of ligands: syntheses, characterization and electrochemical sensing, and photocatalytic and supercapacitor properties. NEW J CHEM 2022. [DOI: 10.1039/d2nj00674j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Using morpholine derivatives with different N sites and numbers, we synthesized seven compounds by a hydrothermal method. They can photocatalytically degrade organic dyes and reduce Cr(vi) and can be used as electrochemical sensors. 4 has capacitor performance.
Collapse
Affiliation(s)
- Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Chenxi Sun
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
45
|
Synthesis of aspirin catalyzed by supramolecular compound based on Keggin-Type phosphomolybates with flexible 1,3-bis(4-pyridyl)propane. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2021.109100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
46
|
Zhuo JL, Wang YL, Wang YG, Xu MQ, Sha JQ. Surfactant-assisted fabrication and supercapacitor performances of a 12-phosphomolybdate-pillared metal–organic framework containing a helix and its SWNT nanocomposites. CrystEngComm 2022. [DOI: 10.1039/d1ce01471d] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
By employing a surfactant-assisted hydrothermal method, a new POMOF with a multi-fold helix was obtained, and NiPMo12/SWNTs exhibits excellent electrochemical performance and good stability as an electrode material for supercapacitors.
Collapse
Affiliation(s)
- Jin-Long Zhuo
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| | - Yun-Liang Wang
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
| | - Yu-Guang Wang
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| | - Ming-Qi Xu
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| | - Jing-Quan Sha
- College of Materials Science & Engineering, Jiamusi University, HeilongJiang, Jiamusi, 154007, P.R. China
- School of Chemistry, Chemical Engineering and Materials, Jining University, Shandong, Qufu, 273155, P. R. China
| |
Collapse
|
47
|
Xu X, Zhang Y, Ying J, Jin L, Tian A, Wang X. POM-based compounds modified by mono- and bis-triazole derivatives: photocatalytic, electrochemical, and supercapacitor properties. CrystEngComm 2022. [DOI: 10.1039/d1ce01596f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Using triazole derivatives 5 POM-based compounds with electrocatalytic and capacitive properties were obtained under hydrothermal conditions. The compounds have good photocatalytic activity for the degradation of organic dyes and the reduction of Cr(vi).
Collapse
Affiliation(s)
- Xi Xu
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Yanping Zhang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Jun Ying
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Aixiang Tian
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| | - Xiuli Wang
- Department of Chemistry, Bohai University, Jinzhou, 121013, P. R. China
| |
Collapse
|
48
|
Wang C, Yang M, Wang X, Ma H, Tian Y, Pang H, Tan L, Gao K. Hierarchical CoS 2/MoS 2 flower-like heterostructured arrays derived from polyoxometalates for efficient electrocatalytic nitrogen reduction under ambient conditions. J Colloid Interface Sci 2021; 609:815-824. [PMID: 34839922 DOI: 10.1016/j.jcis.2021.11.087] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
Electrochemical nitrogen reduction reaction (NRR) has been identified as a prospective alternative for sustainable ammonia production. Developing cost-effective and highly efficient electrocatalysts is critical for NRR under ambient conditions. Herein, the hierarchical cobalt-molybdenum bimetallic sulfide (CoS2/MoS2) flower-like heterostructure assembled from well-aligned nanosheets has been easily fabricated through a one-step strategy. The efficient synergy between different components and the formation of heterostructure in CoS2/MoS2 nanosheets with abundant active sites makes the non-noble metal catalyst CoS2/MoS2 highly effective in NRR, with a high NH3 yield rate (38.61 μg h-1 mgcat.-1), Faradaic efficiency (34.66%), high selectivity (no formation of hydrazine) and excellent long-term stability in 1.0 mol L-1 K2SO4 electrolyte (pH = 3.5) at -0.25 V versus the reversible hydrogen electrode (vs. RHE) under ambient conditions, exceeding much recently reported cobalt- and molybdenum-based materials, even catch up with some noble-metal-based catalyst. Density functional theory (DFT) calculation indicates that the formation of N2H* species on CoS2(200)/MoS2(002) is the rate-determining step via both the alternating and distal pathways with the maximum ΔG values (1.35 eV). These results open up opportunities for the development of efficient non-precious bimetal-based catalysts for NRR.
Collapse
Affiliation(s)
- Chenglong Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Mengle Yang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Xinming Wang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Huiyuan Ma
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China.
| | - Yu Tian
- Institute for Interdisciplinary Quantum Information Technology, Jilin Engineering Normal University, Changchun, 130052, Jilin, China.
| | - Haijun Pang
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Lichao Tan
- School of Materials Science and Chemical Engineering, Harbin University of Science and Technology, Harbin, 150040, PR China
| | - Keqing Gao
- Beijing Caron Fiber Engineering Technology Research Center, Beijing Bluestar Technical Center, Beijing 101318, PR China
| |
Collapse
|
49
|
Ying J, Jin L, Sun CX, Tian AX, Wang XL. A Series of Polyoxometalate-Viologen Photochromic Materials for UV Probing, Amine Detecting and Inkless and Erasable Printing. Chemistry 2021; 28:e202103268. [PMID: 34791731 DOI: 10.1002/chem.202103268] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Indexed: 12/20/2022]
Abstract
In this work, by using two kinds of viologen ligands three POM-based Compounds were obtained under hydrothermal conditions, namely [AgI (bmypd)0.5 (β-Mo8 O26 )0.5 ] (1) (bmypd ⋅ 2Cl=1,1'-[Biphenyl-4,4'-bis(methylene)]bis(4,4'-bipyridyinium)dichloride), [AgI 2 (bypy)4 (HSiW12 O40 )2 ] ⋅ 14H2 O (2) and [AgI (bypy)(γ-Mo8 O26 )0.5 ] (3) (bypy⋅Cl=1-Benzyl-4,4'-bipyridyinium chloride). The structures were characterized by Fourier transform infrared spectroscopy (FT-IR), Powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single crystal X-ray diffraction. Compounds 1-3 show excellent photochromic ability with fast photoresponse under the irradiation of ultraviolet light with different degrees of color changes. So compounds 1-3 can be used as visible ultraviolet detectors. Compounds 1-3 also possess photoluminescence properties with fast and excellent fluorescence quenching effect. Compounds 1-3 also can be used as inkless and erasable printing materials with suspensions of 1-3 applied to filter paper. Compounds 1-3 can also produce color changes in amine vapor environment, especially in an NH3 atmosphere. Compounds 1-3 can be used as organic amine detectors.
Collapse
Affiliation(s)
- Jun Ying
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Liang Jin
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Chen-Xi Sun
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Ai-Xiang Tian
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| | - Xiu-Li Wang
- Department of College of Chemistry and Materials Engineering, University of Bohai, Jinzhou, 121013, P. R. China
| |
Collapse
|
50
|
Kim H, Prasad Tiwari A, Mukhiya T, Kim HY. Temperature-controlled in situ synthesized carbon nanotube-protected vanadium phosphate particle-anchored electrospun carbon nanofibers for high energy density symmetric supercapacitors. J Colloid Interface Sci 2021; 600:740-751. [DOI: 10.1016/j.jcis.2021.05.090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 01/06/2023]
|