1
|
Carrillo-Romero J, Mentxaka G, García-Salvador A, Katsumiti A, Carregal-Romero S, Goñi-de-Cerio F. Assessing the Toxicity of Metal- and Carbon-Based Nanomaterials In Vitro: Impact on Respiratory, Intestinal, Skin, and Immune Cell Lines. Int J Mol Sci 2024; 25:10910. [PMID: 39456693 PMCID: PMC11507852 DOI: 10.3390/ijms252010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO2), zinc oxide (ZnO), silica (SiO2), cerium oxide (CeO2), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays. Physicochemical characterisation of the NMs was carried out, and in vitro assays were performed to assess the cytotoxicity, genotoxicity, reactive oxygen species (ROS) production, apoptosis/necrosis, and inflammation in cell lines representative of the systems evaluated (3T3, Caco-2, HepG2, A549, and THP-1 cell lines). The results obtained show that 3T3 and A549 cells exhibit high cytotoxicity and ROS production after exposure to ZnO NMs. Caco-2 and HepG2 cell lines show cytotoxicity when exposed to ZnO and Ag NMs and oxidative stress induced by SiO2 and MWCNTs. THP-1 cell line shows increased cytotoxicity and a pro-inflammatory response upon exposure to SiO2. This study emphasises the importance of conducting comprehensive toxicological assessments of NMs given their physicochemical interactions with biological systems. Therefore, it is of key importance to develop robust and specific methodologies for the assessment of their potential health risks.
Collapse
Affiliation(s)
- Juliana Carrillo-Romero
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
| | - Gartze Mentxaka
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Adrián García-Salvador
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| |
Collapse
|
2
|
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NANOIMPACT 2024; 36:100533. [PMID: 39454678 DOI: 10.1016/j.impact.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The application of nanomaterials in industry and consumer products is growing exponentially, which has pressed the development and use of predictive human in vitro models in pre-clinical analysis to closely extrapolate potential toxic effects in vivo. The conventional cytotoxicity investigation of nanomaterials using cell lines from cancer origin and culturing them two-dimensionally in a monolayer without mimicking the proper pathophysiological microenvironment may affect a precise prediction of in vitro effects at in vivo level. In recent years, complex in vitro models (also belonging to the new approach methodologies, NAMs) have been established in unicellular to multicellular cultures either by using cell lines, primary cells or induced pluripotent stem cells (iPSCs), and reconstituted into relevant biological dimensions mimicking in vivo conditions. These advanced in vitro models retain physiologically reliant exposure scenarios particularly appropriate for oral, dermal, respiratory, and intravenous administration of nanomaterials, which have the potential to improve the in vivo predictability and lead to reliable outcomes. In this perspective, we discuss recent developments and breakthroughs in using advanced human in vitro models for hazard assessment of nanomaterials. We identified fit-for-purpose requirements and remaining challenges for the successful implementation of in vitro data into nanomaterials Safe and Sustainable by Design (SSbD), Risk Assessment (RA), and Life Cycle Assessment (LCA). By addressing the gap between in vitro data generation and the utility of in vitro data for nanomaterial safety assessments, a prerequisite for SSbD approaches, we outlined potential key areas for future development.
Collapse
Affiliation(s)
- Jimeng Wu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Govind Gupta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
3
|
Brown S, Evans SJ, Burgum MJ, Meldrum K, Herridge J, Akinbola B, Harris LG, Jenkins R, Doak SH, Clift MJD, Wilkinson TS. An In Vitro Model to Assess Early Immune Markers Following Co-Exposure of Epithelial Cells to Carbon Black (Nano)Particles in the Presence of S. aureus: A Role for Stressed Cells in Toxicological Testing. Biomedicines 2024; 12:128. [PMID: 38255233 PMCID: PMC10813740 DOI: 10.3390/biomedicines12010128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/21/2023] [Accepted: 12/25/2023] [Indexed: 01/24/2024] Open
Abstract
The exposure of human lung and skin to carbon black (CB) is continuous due to its widespread applications. Current toxicological testing uses 'healthy' cellular systems; however, questions remain whether this mimics the everyday stresses that human cells are exposed to, including infection. Staphylococcus aureus lung and skin infections remain prevalent in society, and include pneumonia and atopic dermatitis, respectively, but current in vitro toxicological testing does not consider infection stress. Therefore, investigating the effects of CB co-exposure in 'stressed' infected epithelial cells in vitro may better approximate true toxicity. This work aims to study the impact of CB exposure during Staphylococcus aureus infection stress in A549 (lung) and HaCaT (skin) epithelial cells. Physicochemical characterisation of CB confirmed its dramatic polydispersity and potential to aggregate. CB significantly inhibited S. aureus growth in cell culture media. CB did not induce cytokines or antimicrobial peptides from lung and skin epithelial cells, when given alone, but did reduce HaCaT and A549 cell viability to 55% and 77%, respectively. In contrast, S. aureus induced a robust interleukin (IL)-8 response in both lung and skin epithelial cells. IL-6 and human beta defensin (hβD)-2 could only be detected when cells were stimulated with S. aureus with no decreases in cell viability. However, co-exposure to CB (100 µg/mL) and S. aureus resulted in significant inhibition of IL-8 (compared to S. aureus alone) without further reduction in cell viability. Furthermore, the same co-exposure induced significantly more hβD-2 (compared to S. aureus alone). This work confirms that toxicological testing in healthy versus stressed cells gives significantly different responses. This has significant implications for toxicological testing and suggests that cell stresses (including infection) should be included in current models to better represent the diversity of cell viabilities found in lung and skin within a general population. This model will have significant application when estimating CB exposure in at-risk groups, such as factory workers, the elderly, and the immunocompromised.
Collapse
Affiliation(s)
- Scott Brown
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Stephen J. Evans
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Michael J. Burgum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Kirsty Meldrum
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Jack Herridge
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Blessing Akinbola
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Llinos G. Harris
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Rowena Jenkins
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| | - Shareen H. Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Martin J. D. Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK (M.J.D.C.)
| | - Thomas S. Wilkinson
- Microbiology and Infectious Disease, Institute of Life Science, Swansea University Medical School (SUMS), Swansea SA2 8PP, UK
| |
Collapse
|
4
|
Brandão F, Costa C, Bessa MJ, Valdiglesias V, Hellack B, Haase A, Fraga S, Teixeira JP. Multiparametric in vitro genotoxicity assessment of different variants of amorphous silica nanomaterials in rat alveolar epithelial cells. Nanotoxicology 2023; 17:511-528. [PMID: 37855675 DOI: 10.1080/17435390.2023.2265481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
The hazard posed to human health by inhaled amorphous silica nanomaterials (aSiO2 NM) remains uncertain. Herein, we assessed the cyto- and genotoxicity of aSiO2 NM variants covering different sizes (7, 15, and 40 nm) and surface modifications (unmodified, phosphonate-, amino- and trimethylsilyl-modified) on rat alveolar epithelial (RLE-6TN) cells. Cytotoxicity was evaluated at 24 h after exposure to the aSiO2 NM variants by the lactate dehydrogenase (LDH) release and WST-1 reduction assays, while genotoxicity was assessed using different endpoints: DNA damage (single- and double-strand breaks [SSB and DSB]) by the comet assay for all aSiO2 NM variants; cell cycle progression and γ-H2AX levels (DSB) by flow cytometry for those variants that presented higher cytotoxic and DNA damaging potential. The variants with higher surface area demonstrated a higher cytotoxic potential (SiO2_7, SiO2_15_Unmod, SiO2_15_Amino, and SiO2_15_Phospho). SiO2_40 was the only variant that induced significant DNA damage on RLE-6TN cells. On the other hand, all tested variants (SiO2_7, SiO2_15_Unmod, SiO2_15_Amino, and SiO2_40) significantly increased total γ-H2AX levels. At high concentrations (28 µg/cm2), a decrease in G0/G1 subpopulation was accompanied by a significant increase in S and G2/M sub-populations after exposure to all tested materials except for SiO2_40 which did not affect cell cycle progression. Based on the obtained data, the tested variants can be ranked for its genotoxic DNA damage potential as follows: SiO2_7 = SiO2_40 = SiO2_15_Unmod > SiO2_15_Amino. Our study supports the usefulness of multiparametric approaches to improve the understanding on NM mechanisms of action and hazard prediction.
Collapse
Affiliation(s)
- Fátima Brandão
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Carla Costa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| | - Maria João Bessa
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Institute of Biomedical Sciences Abel Salazar (ICBAS), University of Porto, Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Bryan Hellack
- Institute of Energy and Environmental Technology (IUTA) e.V, Duisburg, Germany
- German Environment Agency (UBA), Dessau, Germany
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Sónia Fraga
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Department of Environmental Health, National Institute of Health Dr. Ricardo Jorge, Porto, Portugal
- EPIUnit-Institute of Public Health, University of Porto, Porto, Portugal
- Laboratory for Integrative and Translational Research in Population Health (ITR), Porto, Portugal
| |
Collapse
|
5
|
Ahmed A, He P, He P, Wu Y, He Y, Munir S. Environmental effect of agriculture-related manufactured nano-objects on soil microbial communities. ENVIRONMENT INTERNATIONAL 2023; 173:107819. [PMID: 36842382 DOI: 10.1016/j.envint.2023.107819] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/30/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Agriculture-related manufactured nano-objects (MNOs) can revolutionize the crop production and help to achieve sustainable development goals. MNOs with diverse physico-chemical properties and ability to encapsulate and deliver active ingredients in controlled, targeted and stimuli responsive manner can enhance the efficiency while minimizing collateral damage to non-target organisms and environment. Application of MNOs in the form of nanopesticides and nanofertilizers is known to affect soil microbial communities both positively and negatively, but detailed studies with varying dose, type and environmental conditions are scarce. Therefore, it is imperative to understand the complex mechanisms and factors which shape the MNOs-microbial interactions through integrating state of the art technologies including omics (transcriptomics, metabolomics, and proteomics), artificial intelligence, and statistical frameworks. Lastly, we propose the idea of MNOs-mediated manipulation of soil microbiome to modify the soil microbial communities for improved microbial services. These microbial services, if harnessed appropriately, can revolutionize modern agriculture and help in achieving sustainable development goals.
Collapse
Affiliation(s)
- Ayesha Ahmed
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengfei He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Pengbo He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yixin Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
| | - Yueqiu He
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| | - Shahzad Munir
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China.
| |
Collapse
|
6
|
Ruijter N, Soeteman-Hernández LG, Carrière M, Boyles M, McLean P, Catalán J, Katsumiti A, Cabellos J, Delpivo C, Sánchez Jiménez A, Candalija A, Rodríguez-Llopis I, Vázquez-Campos S, Cassee FR, Braakhuis H. The State of the Art and Challenges of In Vitro Methods for Human Hazard Assessment of Nanomaterials in the Context of Safe-by-Design. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:472. [PMID: 36770432 PMCID: PMC9920318 DOI: 10.3390/nano13030472] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
The Safe-by-Design (SbD) concept aims to facilitate the development of safer materials/products, safer production, and safer use and end-of-life by performing timely SbD interventions to reduce hazard, exposure, or both. Early hazard screening is a crucial first step in this process. In this review, for the first time, commonly used in vitro assays are evaluated for their suitability for SbD hazard testing of nanomaterials (NMs). The goal of SbD hazard testing is identifying hazard warnings in the early stages of innovation. For this purpose, assays should be simple, cost-effective, predictive, robust, and compatible. For several toxicological endpoints, there are indications that commonly used in vitro assays are able to predict hazard warnings. In addition to the evaluation of assays, this review provides insights into the effects of the choice of cell type, exposure and dispersion protocol, and the (in)accurate determination of dose delivered to cells on predictivity. Furthermore, compatibility of assays with challenging advanced materials and NMs released from nano-enabled products (NEPs) during the lifecycle is assessed, as these aspects are crucial for SbD hazard testing. To conclude, hazard screening of NMs is complex and joint efforts between innovators, scientists, and regulators are needed to further improve SbD hazard testing.
Collapse
Affiliation(s)
- Nienke Ruijter
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| | | | - Marie Carrière
- Univ. Grenoble-Alpes, CEA, CNRS, SyMMES-CIBEST, 17 rue des Martyrs, 38000 Grenoble, France
| | - Matthew Boyles
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Polly McLean
- Institute of Occupational Medicine (IOM), Edinburgh EH14 4AP, UK
| | - Julia Catalán
- Finnish Institute of Occupational Health, 00250 Helsinki, Finland
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | | | | | | | - Isabel Rodríguez-Llopis
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain
| | | | - Flemming R. Cassee
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, 3584 CS Utrecht, The Netherlands
| | - Hedwig Braakhuis
- National Institute for Public Health & the Environment (RIVM), 3721 MA Bilthoven, The Netherlands
| |
Collapse
|
7
|
Alternative lung cell model systems for toxicology testing strategies: Current knowledge and future outlook. Semin Cell Dev Biol 2023; 147:70-82. [PMID: 36599788 DOI: 10.1016/j.semcdb.2022.12.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 01/04/2023]
Abstract
Due to the current relevance of pulmonary toxicology (with focus upon air pollution and the inhalation of hazardous materials), it is important to further develop and implement physiologically relevant models of the entire respiratory tract. Lung model development has the aim to create human relevant systems that may replace animal use whilst balancing cost, laborious nature and regulatory ambition. There is an imperative need to move away from rodent models and implement models that mimic the holistic characteristics important in lung function. The purpose of this review is therefore, to describe and identify the various alternative models that are being applied towards assessing the pulmonary toxicology of inhaled substances, as well as the current and potential developments of various advanced models and how they may be applied towards toxicology testing strategies. These models aim to mimic various regions of the lung, as well as implementing different exposure methods with the addition of various physiologically relevent conditions (such as fluid-flow and dynamic movement). There is further progress in the type of models used with focus on the development of lung-on-a-chip technologies and bioprinting, as well as and the optimization of such models to fill current knowledge gaps within toxicology.
Collapse
|
8
|
Siivola KK, Burgum MJ, Suárez-Merino B, Clift MJD, Doak SH, Catalán J. A systematic quality evaluation and review of nanomaterial genotoxicity studies: a regulatory perspective. Part Fibre Toxicol 2022; 19:59. [PMID: 36104711 PMCID: PMC9472411 DOI: 10.1186/s12989-022-00499-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Accepted: 08/26/2022] [Indexed: 12/29/2022] Open
Abstract
The number of publications in the field of nanogenotoxicology and the amount of genotoxicity data on nanomaterials (NMs) in several databases generated by European Union (EU) funded projects have increased during the last decade. In parallel, large research efforts have contributed to both our understanding of key physico-chemical (PC) parameters regarding NM characterization as well as the limitations of toxicological assays originally designed for soluble chemicals. Hence, it is becoming increasingly clear that not all of these data are reliable or relevant from the regulatory perspective. The aim of this systematic review is to investigate the extent of studies on genotoxicity of NMs that can be considered reliable and relevant by current standards and bring focus to what is needed for a study to be useful from the regulatory point of view. Due to the vast number of studies available, we chose to limit our search to two large groups, which have raised substantial interest in recent years: nanofibers (including nanotubes) and metal-containing nanoparticles. Focusing on peer-reviewed publications, we evaluated the completeness of PC characterization of the tested NMs, documentation of the model system, study design, and results according to the quality assessment approach developed in the EU FP-7 GUIDEnano project. Further, building on recently published recommendations for best practices in nanogenotoxicology research, we created a set of criteria that address assay-specific reliability and relevance for risk assessment purposes. Articles were then reviewed, the qualifying publications discussed, and the most common shortcomings in NM genotoxicity studies highlighted. Moreover, several EU projects under the FP7 and H2020 framework set the aim to collectively feed the information they produced into the eNanoMapper database. As a result, and over the years, the eNanoMapper database has been extended with data of various quality depending on the existing knowledge at the time of entry. These activities are highly relevant since negative results are often not published. Here, we have reviewed the NanoInformaTIX instance under the eNanoMapper database, which hosts data from nine EU initiatives. We evaluated the data quality and the feasibility of use of the data from a regulatory perspective for each experimental entry.
Collapse
Affiliation(s)
- Kirsi K. Siivola
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Michael J. Burgum
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | | | - Martin J. D. Clift
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | - Shareen H. Doak
- grid.4827.90000 0001 0658 8800In Vitro Toxicology Group, Faculty of Medicine, Health and Life Sciences, Institute of Life Sciences, Swansea University Medical School, Singleton Park, Swansea, SA2 8PP Wales UK
| | - Julia Catalán
- grid.6975.d0000 0004 0410 5926Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland ,grid.11205.370000 0001 2152 8769Department of Anatomy Embryology and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| |
Collapse
|
9
|
Gambardella C, Pinsino A. Nanomaterial Ecotoxicology in the Terrestrial and Aquatic Environment: A Systematic Review. TOXICS 2022; 10:393. [PMID: 35878298 PMCID: PMC9323026 DOI: 10.3390/toxics10070393] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 07/09/2022] [Accepted: 07/12/2022] [Indexed: 01/16/2023]
Abstract
This systematic review analyzes the studies available on the ecotoxicity of nanomaterials (NMs) in the environment to understand where future research should be addressed for achieving Agenda 2030 goals on sustainable development and environmental safety. We discuss the status of NMs ecotoxicological effects across different organisms that are representative of all natural environments (land, air, water). A total of 1562 publications were retrieved from the Web of Science (all databases) by using the search criteria "nanomaterials" and "ecotoxicology"; among them, 303 studies were included in the systematic review because they met any of the following criteria: (i) focalize on both search criteria; (ii) deal with terrestrial, or aquatic environment; (iii) address models (organisms, cells) for the nano environmental risk assessment and exposure. The knowledge gaps are identified together with novel insights that need to be further investigated to better understand the ecotoxicological environmental impacts of NMs.
Collapse
Affiliation(s)
- Chiara Gambardella
- Institute for the Study of Anthropic Impacts and Sustainability in the Marine Environment, National Research Council, 16149 Genova, Italy
| | - Annalisa Pinsino
- Institute of Translational Pharmacology, National Research Council, 90146 Palermo, Italy
| |
Collapse
|
10
|
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022; 12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure–activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Français du Sang, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
11
|
Meldrum K, Evans SJ, Vogel U, Tran L, Doak SH, Clift MJD. The influence of exposure approaches to in vitro lung epithelial barrier models to assess engineered nanomaterial hazard. Nanotoxicology 2022; 16:114-134. [PMID: 35343373 DOI: 10.1080/17435390.2022.2051627] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Exposure to engineered nanomaterials (ENM) poses a potential health risk to humans through long-term, repetitive low-dose exposures. Currently, this is not commonplace within in vitro lung cell cultures. Therefore, the purpose of this study was to consider the optimal exposure approach toward determining the stability, sensitivity and validity of using in vitro lung cell mono- and co-cultures to determine ENM hazard. A range of exposure scenarios were conducted with DQ12 (previously established as a positive particle control) (historic and re-activated), TiO2 (JRC NM-105) and BaSO4 (JRC NM-220) on both monocultures of A549 cells as well as co-cultures of A549 cells and differentiated THP-1 cells. Cell cultures were exposed to either a single, or a repeated exposure over 24, 48- or 72-hours at in vivo extrapolated concentrations of 0-5.2 µg/cm2, 0-6 µg/cm2 and 0-1µg/cm2. The focus of this study was the pro-inflammatory, cytotoxic and genotoxic response elicited by these ENMs. Exposure to DQ12 caused pro-inflammatory responses after 48 hours repeat exposures, as well as increases in micronucleus frequency. Neither TiO2 nor BaSO4 elicited a pro-inflammatory response at this time point. However, there was induction of IL-6 after 24 hours TiO2 exposure. In conclusion, it is important to consider the appropriateness of the positive control implemented, the cell culture model, the time of exposure as well as the type of exposure (bolus or fractionated) before establishing if an in vitro model is appropriate to determine the level of response to the specific ENM of interest.
Collapse
Affiliation(s)
- Kirsty Meldrum
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Lang Tran
- Institute of Occupational Medicine (IOM), Edinburgh, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Swansea University, Swansea, UK
| | | |
Collapse
|
12
|
Singh B, Abdelgawad ME, Ali Z, Bailey J, Budyn E, Civita P, Clift MJD, Connelly JT, Constant S, Hittinger M, Kandarova H, Kearns VR, Kiuru T, Kostrzewski T, Kress S, Durban VM, Lehr CM, McMillan H, Metz JK, Monteban V, Movia D, Neto C, Owen C, Paasonen L, Palmer KA, Pilkington GJ, Pilkington K, Prina-Mello A, Roper C, Sheard J, Smith S, Turner JE, Roy I, Tutty MA, Velliou E, Wilkinson JM. Towards More Predictive, Physiological and Animal-free In Vitro Models: Advances in Cell and Tissue Culture 2020 Conference Proceedings. Altern Lab Anim 2021; 49:93-110. [PMID: 34225465 DOI: 10.1177/02611929211025006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Experimental systems that faithfully replicate human physiology at cellular, tissue and organ level are crucial to the development of efficacious and safe therapies with high success rates and low cost. The development of such systems is challenging and requires skills, expertise and inputs from a diverse range of experts, such as biologists, physicists, engineers, clinicians and regulatory bodies. Kirkstall Limited, a biotechnology company based in York, UK, organised the annual conference, Advances in Cell and Tissue Culture (ACTC), which brought together people having a variety of expertise and interests, to present and discuss the latest developments in the field of cell and tissue culture and in vitro modelling. The conference has also been influential in engaging animal welfare organisations in the promotion of research, collaborative projects and funding opportunities. This report describes the proceedings of the latest ACTC conference, which was held virtually on 30th September and 1st October 2020, and included sessions on in vitro models in the following areas: advanced skin and respiratory models, neurological disease, cancer research, advanced models including 3-D, fluid flow and co-cultures, diabetes and other age-related disorders, and animal-free research. The roundtable session on the second day was very interactive and drew huge interest, with intriguing discussion taking place among all participants on the theme of replacement of animal models of disease.
Collapse
Affiliation(s)
| | - Mohamed Essameldin Abdelgawad
- Cellular, Molecular & Industrial Biotechnology and Cellular & Molecular Immunobiology, Faculty of Science, Helwan University, Cairo, Egypt
| | - Zulfiqur Ali
- Healthcare Innovation Centre, School of Health and Life Sciences, Teesside University, Middlesbrough, UK
| | - Jarrod Bailey
- Center for Contemporary Sciences, Gaithersburg, MD, USA
| | - Elisa Budyn
- CNRS Laboratory of Mechanics and Technology, Ecole Normale Superieure Paris-Saclay, University Paris-Saclay, Gif-sur-Yvette, France
| | - Prospero Civita
- Brain Tumour Research Centre, Institute of Biological and Biomedical Sciences (IBBS), School of Pharmacy and Biomedical Sciences, University of Portsmouth, Portsmouth, UK.,School of Pharmacy and Pharmaceutical Sciences, College of Biomedical and Life Sciences, Cardiff University, Cardiff, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Sciences, Swansea University Medical School, Swansea, UK
| | - John T Connelly
- Blizard Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | | | | | - Helena Kandarova
- Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Victoria Rosalind Kearns
- Department of Eye and Vision Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Tony Kiuru
- UPM-Kymmene Corporation, Helsinki, Finland
| | | | - Sebastian Kress
- Department of Biotechnology, Institute for Cell and Tissue Culture Technologies, University of Natural Resources and Life Sciences, Vienna, Austria
| | | | - Claus-Michael Lehr
- Helmholtz-Institute for Pharmaceutical Research Saarland (HIPS), Helmholtz Center for Infection Research (HZI), and Saarland University, Saarbrücken, Germany
| | - Hayley McMillan
- School of Medicine, Dentistry and Biomedical Sciences, Queen's University Belfast, Belfast, UK
| | - Julia Katharina Metz
- Pharmbiotec Research and Development GmbH, Saarbrücken, Germany.,Department of Pharmacy, Saarland University, Saarbrücken, Germany
| | | | - Dania Movia
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Catia Neto
- School of Pharmacy and Pharmaceutical Sciences, Cardiff University, Cardiff, UK
| | | | | | - Kerri Anne Palmer
- Institute of Medical Sciences, School of Medicine, Medical Sciences & Nutrition, University of Aberdeen, Aberdeen, UK
| | | | - Karen Pilkington
- School of Health and Social Care Professions, Faculty of Health and Science, University of Portsmouth, Portsmouth, UK
| | - Adriele Prina-Mello
- Laboratory for Biological Characterisation of Advanced Materials (LBCAM), Department of Clinical Medicine, Trinity Translational Medicine Institute, Trinity College Dublin, Dublin, Ireland
| | - Clive Roper
- Roper Toxicology Consulting Limited, Edinburgh, UK
| | | | - Sheree Smith
- School of Clinical and Applied Sciences, Leeds Beckett University, Leeds, UK
| | | | - Ipsita Roy
- Department of Materials Science & Engineering, Kroto Research Institute, University of Sheffield, Sheffield, UK
| | - Melissa Anne Tutty
- Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, Dublin, Ireland
| | - Eirini Velliou
- Centre for 3D Models of Health and Disease, Department of Targeted Intervention, Division of Surgery and Interventional Science-UCL, London, UK
| | | |
Collapse
|
13
|
Llewellyn SV, Conway GE, Zanoni I, Jørgensen AK, Shah UK, Seleci DA, Keller JG, Kim JW, Wohlleben W, Jensen KA, Costa A, Jenkins GJS, Clift MJD, Doak SH. Understanding the impact of more realistic low-dose, prolonged engineered nanomaterial exposure on genotoxicity using 3D models of the human liver. J Nanobiotechnology 2021; 19:193. [PMID: 34183029 PMCID: PMC8240362 DOI: 10.1186/s12951-021-00938-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 06/13/2021] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND With the continued integration of engineered nanomaterials (ENMs) into everyday applications, it is important to understand their potential for inducing adverse human health effects. However, standard in vitro hazard characterisation approaches suffer limitations for evaluating ENM and so it is imperative to determine these potential hazards under more physiologically relevant and realistic exposure scenarios in target organ systems, to minimise the necessity for in vivo testing. The aim of this study was to determine if acute (24 h) and prolonged (120 h) exposures to five ENMs (TiO2, ZnO, Ag, BaSO4 and CeO2) would have a significantly different toxicological outcome (cytotoxicity, (pro-)inflammatory and genotoxic response) upon 3D human HepG2 liver spheroids. In addition, this study evaluated whether a more realistic, prolonged fractionated and repeated ENM dosing regime induces a significantly different toxicity outcome in liver spheroids as compared to a single, bolus prolonged exposure. RESULTS Whilst it was found that the five ENMs did not impede liver functionality (e.g. albumin and urea production), induce cytotoxicity or an IL-8 (pro-)inflammatory response, all were found to cause significant genotoxicity following acute exposure. Most statistically significant genotoxic responses were not dose-dependent, with the exception of TiO2. Interestingly, the DNA damage effects observed following acute exposures, were not mirrored in the prolonged exposures, where only 0.2-5.0 µg/mL of ZnO ENMs were found to elicit significant (p ≤ 0.05) genotoxicity. When fractionated, repeated exposure regimes were performed with the test ENMs, no significant (p ≥ 0.05) difference was observed when compared to the single, bolus exposure regime. There was < 5.0% cytotoxicity observed across all exposures, and the mean difference in IL-8 cytokine release and genotoxicity between exposure regimes was 3.425 pg/mL and 0.181%, respectively. CONCLUSION In conclusion, whilst there was no difference between a single, bolus or fractionated, repeated ENM prolonged exposure regimes upon the toxicological output of 3D HepG2 liver spheroids, there was a difference between acute and prolonged exposures. This study highlights the importance of evaluating more realistic ENM exposures, thereby providing a future in vitro approach to better support ENM hazard assessment in a routine and easily accessible manner.
Collapse
Affiliation(s)
- Samantha V Llewellyn
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Gillian E Conway
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Ilaria Zanoni
- Institute of Science and Technology for Ceramics, CNR-ISTEC-National Research Council of Italy, Faenza, Italy
| | - Amalie Kofoed Jørgensen
- National Research Centre for the Working Environment (NRCWE), Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Ume-Kulsoom Shah
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Didem Ag Seleci
- Advanced Materials Research, Department of Material Physics and Analytics, BASF SE, 67056, Ludwigshafen, Germany
- Advanced Materials Research, Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Johannes G Keller
- Advanced Materials Research, Department of Material Physics and Analytics, BASF SE, 67056, Ludwigshafen, Germany
- Advanced Materials Research, Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Jeong Won Kim
- Korea Research Institute of Standards and Science (KRISS), 267 Gajeong-ro, Daejeon, 34113, Korea
| | - Wendel Wohlleben
- Advanced Materials Research, Department of Material Physics and Analytics, BASF SE, 67056, Ludwigshafen, Germany
- Advanced Materials Research, Department of Experimental Toxicology and Ecology, BASF SE, 67056, Ludwigshafen, Germany
| | - Keld Alstrup Jensen
- National Research Centre for the Working Environment (NRCWE), Lersø Parkallé 105, 2100, Copenhagen, Denmark
| | - Anna Costa
- Institute of Science and Technology for Ceramics, CNR-ISTEC-National Research Council of Italy, Faenza, Italy
| | - Gareth J S Jenkins
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Martin J D Clift
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK
| | - Shareen H Doak
- In Vitro Toxicology Group, Institute of Life Science, Swansea University Medical School, Swansea University, Singleton Park, Swansea, SA2 8PP, UK.
| |
Collapse
|
14
|
Wang Y, Wang F, Chen Z, Song M, Yao X, Jiang G. In situ High-Throughput Single-Cell Analysis Reveals the Crosstalk between Nanoparticle-Induced Cell Responses. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5136-5142. [PMID: 33760593 DOI: 10.1021/acs.est.0c08424] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Nanomaterials are widely used in a variety of industrial, biological, and medical applications. Therefore, high concerns about their possible impact on human and environmental health have been raised. Here, we describe a high-throughput single-cell imaging method to reveal the crosstalk among quantum dot (QDot)-induced ROS generation, apoptosis, and changes in nucleus size in macrophages. In triple marker combinations, we assessed the correlations of three QDot-induced cellular responses via divided subsets based on single-cell analysis. In contrast to the results obtained from the cell population, we demonstrated that the change in nucleus size was positively correlated with ROS generation. We found that QDot exposure induced ROS generation, which led to cell apoptosis, followed by a change in nucleus size. In general, these observations on crosstalk of cellular responses provide detailed insights into the heterogeneity of nanoparticle exposure.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengbang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zihan Chen
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinglei Yao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|