1
|
Wu J, Gupta G, Buerki-Thurnherr T, Nowack B, Wick P. Bridging the gap: Innovative human-based in vitro approaches for nanomaterials hazard assessment and their role in safe and sustainable by design, risk assessment, and life cycle assessment. NANOIMPACT 2024:100533. [PMID: 39454678 DOI: 10.1016/j.impact.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
The application of nanomaterials in industry and consumer products is growing exponentially, which has pressed the development and use of predictive human in vitro models in pre-clinical analysis to closely extrapolate potential toxic effects in vivo. The conventional cytotoxicity investigation of nanomaterials using cell lines from cancer origin and culturing them two-dimensionally in a monolayer without mimicking the proper pathophysiological microenvironment may affect a precise prediction of in vitro effects at in vivo level. In recent years, complex in vitro models (also belonging to the new approach methodologies, NAMs) have been established in unicellular to multicellular cultures either by using cell lines, primary cells or induced pluripotent stem cells (iPSCs), and reconstituted into relevant biological dimensions mimicking in vivo conditions. These advanced in vitro models retain physiologically reliant exposure scenarios particularly appropriate for oral, dermal, respiratory, and intravenous administration of nanomaterials, which have the potential to improve the in vivo predictability and lead to reliable outcomes. In this perspective, we discuss recent developments and breakthroughs in using advanced human in vitro models for hazard assessment of nanomaterials. We identified fit-for-purpose requirements and remaining challenges for the successful implementation of in vitro data into nanomaterials Safe and Sustainable by Design (SSbD), Risk Assessment (RA), and Life Cycle Assessment (LCA). By addressing the gap between in vitro data generation and the utility of in vitro data for nanomaterial safety assessments, a prerequisite for SSbD approaches, we outlined potential key areas for future development.
Collapse
Affiliation(s)
- Jimeng Wu
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland; Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Govind Gupta
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Tina Buerki-Thurnherr
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Bernd Nowack
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Technology and Society Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland
| | - Peter Wick
- Empa, Swiss Federal Laboratories for Materials Science and Technology, Particles-Biology Interactions Laboratory, Lerchenfeldstrasse 5, 9014 St. Gallen, Switzerland.
| |
Collapse
|
2
|
Becht JM, Kohlleppel H, Schins RPF, Kämpfer AAM. Effect of Butyrate on Food-Grade Titanium Dioxide Toxicity in Different Intestinal In Vitro Models. Chem Res Toxicol 2024; 37:1501-1514. [PMID: 39213652 PMCID: PMC11409378 DOI: 10.1021/acs.chemrestox.4c00086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Short-chain fatty acids (SCFA) are an important energy source for colonocytes and crucial messenger molecules both locally in the intestine and systemically. Butyrate, one of the most prominent and best-studied SCFA, was demonstrated to exert anti-inflammatory effects, improve barrier integrity, enhance mucus synthesis in the intestine, and promote cell differentiation of intestinal epithelial cells in vitro. While the physiological relevance is undisputed, it remains unclear if and to what extent butyrate can influence the effects of xenobiotics, such as food-grade titanium dioxide (E171, fgTiO2), in the intestine. TiO2 has been controversially discussed for its DNA-damaging potential and banned as a food additive within the European Union (EU) since 2022. First, we used enterocyte Caco-2 monocultures to test if butyrate affects the cytotoxicity and inflammatory potential of fgTiO2 in a pristine state or following pretreatment under simulated gastric and intestinal pH conditions. We then investigated pretreated fgTiO2 in intestinal triple cultures of Caco-2, HT29-MTX-E12, and THP-1 cells in homeostatic and inflamed-like state for cytotoxicity, barrier integrity, cytokine release as well as gene expression of mucins, oxidative stress markers, and DNA repair. In Caco-2 monocultures, butyrate had an ambivalent role: pretreated but not pristine fgTiO2 induced cytotoxicity in Caco-2 cells, which was not observed in the presence of butyrate. Conversely, fgTiO2 induced the release of interleukin 8 in the presence but not in the absence of butyrate. In the advanced in vitro models, butyrate did not affect the characteristics of the healthy or inflamed states and caused negligible effects in the investigated end points following fgTiO2 exposure. Taken together, the effects of fgTiO2 strongly depend on the applied testing approach. Our findings underline the importance of the experimental setup, including the choice of in vitro model and the physiological relevance of the exposure scenario, for the hazard testing of food-grade pigments like TiO2.
Collapse
Affiliation(s)
- Janine M Becht
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Hendrik Kohlleppel
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Roel P F Schins
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| | - Angela A M Kämpfer
- IUF─Leibniz Research Institute for Environmental Medicine, Düsseldorf 40225, Germany
| |
Collapse
|
3
|
Matos MS, Ávila-Gálvez MÁ, González-Sarrías A, Silva NV, Crespo CL, Jacinto A, Serra AT, Matias AA, Nunes Dos Santos C. Unveiling the anti-inflammatory potential of 11β,13-dihydrolactucin for application in inflammatory bowel disease management. Food Funct 2024; 15:9254-9271. [PMID: 39162124 DOI: 10.1039/d4fo01446d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/21/2024]
Abstract
Management of inflammatory bowel disease (IBD) poses significant challenges, and there is a need for innovative therapeutic approaches. This study investigates the anti-inflammatory properties of the dietary sesquiterpene lactone (SL) 11β,13-dihydrolactucin, which can be found in chicory, in three distinct complementary models of intestinal inflammation (two cell models and a zebrafish model), offering comprehensive insights into its potential application for IBD treatment alternatives. In a triple cell co-culture composed of Caco-2, HT29-MTX-E12, and Raji B, 11β,13-dihydrolactucin demonstrated remarkable anti-inflammatory activity at several levels of the cellular inflammatory response. Notably, 11β,13-dihydrolactucin prevented the activation of critical signalling pathways associated with inflammation, namely NF-κB and MAPK p38. This SL also decreased the release of the neutrophil-recruiting chemokine IL-8. Additionally, the compound reduced the gene expression of IL-6 and TNF-α, as well as the gene and protein expression of the inflammatory inducible enzymes iNOS and COX-2. In a myofibroblast-like human cell model, 11β,13-dihydrolactucin decreased the release of the cytokine TNF-α and the COX-2-derived inflammation mediator PGE2. Finally, in a zebrafish model of gut inflammation, 11β,13-dihydrolactucin effectively reduced neutrophil infiltration, further supporting its anti-inflammatory efficacy in a physiological context. Collectively, our findings highlight the promising anti-inflammatory potential of 11β,13-dihydrolactucin across various facets of intestinal inflammation, providing a foundation for the consideration of chicory as a promising candidate for incorporation in food or nutraceutical products for the potential prevention of IBD.
Collapse
Affiliation(s)
- Melanie S Matos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - María Ángeles Ávila-Gálvez
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Antonio González-Sarrías
- Laboratory of Food & Health, Research Group on Quality, Safety and Bioactivity of Plant Foods, CEBAS-CSIC, 30100 Campus de Espinardo, Murcia, Spain
| | - Nuno-Valério Silva
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - Carolina Lage Crespo
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
| | - António Jacinto
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Institute for Medical Systems Biology, NIMSB, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| | - Ana Teresa Serra
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
| | - Ana A Matias
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
| | - Cláudia Nunes Dos Santos
- Instituto de Biologia Experimental e Tecnológica (iBET), 2780-157 Oeiras, Portugal.
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa (ITQB-NOVA), 2780-157 Oeiras, Portugal
- NOVA Medical School, Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, 1169-056 Lisboa, Portugal
- NOVA Institute for Medical Systems Biology, NIMSB, Universidade Nova de Lisboa, 1099-085 Lisboa, Portugal
| |
Collapse
|
4
|
Huang X, Li C, Wei T, Liu N, Zou L, Bai C, Yao Y, Wang Z, Xue Y, Wu T, Zhang T, Tang M. Ag/TiO 2 nanohybrids induce fibrosis-related epithelial-mesenchymal transition in lung epithelial cells and the influences of silver content and silver particle size. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 901:165875. [PMID: 37517725 DOI: 10.1016/j.scitotenv.2023.165875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
The controlled synthesis of silver nanoparticles (AgNPs) decorated TiO2 nanohybrids (Ag/TiO2) for photocatalysis has received considerable attention. These photocatalysts are widely used in environment and energy, resulting in human exposure through inhalation. Pure TiO2 is generally considered a low-toxic nanomaterial. However, little is known about the toxicity after AgNPs loading. In this study, silver-decorated TiO2 nanohybrids were controllably synthesized by the photodeposition method, and their toxic effects on murine lung and human lung epithelial cells were explored. As a result, silver loading significantly enhanced the effect of TiO2 photocatalyst on EMT in lung epithelial cells, potentially acting as a pro-fibrogenic effect in murine lung. Meanwhile, the increase in autophagy vacuoles, LC3-II marker, stub-RFP-sens-GFP-LC3 fluorescence assay, and LC3 turnover assay showed that silver loading also significantly increased autophagy flux. Furthermore, analysis of autophagy inhibition by 3-Methyladenine indicated that the promotion of EMT by silver loading was related to the increased autophagy flux. Intriguingly, the autophagy and EMT biological effects could be alleviated when the silver loading amount was reduced or silver particle size was increased, and the enhanced pro-fibrogenic effect was mitigated at the same time. This study supplemented safety information of Ag-decorated TiO2 nanohybrids and provided methods of controlled synthesis for reducing toxicity.
Collapse
Affiliation(s)
- Xiaoquan Huang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Congcong Li
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tingting Wei
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Na Liu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Lingyue Zou
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Changcun Bai
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yongshuai Yao
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Zhihui Wang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Yuying Xue
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Tianshu Wu
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Ting Zhang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China
| | - Meng Tang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, PR China.
| |
Collapse
|
5
|
Macedo MH, Dias Neto M, Pastrana L, Gonçalves C, Xavier M. Recent Advances in Cell-Based In Vitro Models to Recreate Human Intestinal Inflammation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301391. [PMID: 37736674 PMCID: PMC10625086 DOI: 10.1002/advs.202301391] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 07/03/2023] [Indexed: 09/23/2023]
Abstract
Inflammatory bowel disease causes a major burden to patients and healthcare systems, raising the need to develop effective therapies. Technological advances in cell culture, allied with ethical issues, have propelled in vitro models as essential tools to study disease aetiology, its progression, and possible therapies. Several cell-based in vitro models of intestinal inflammation have been used, varying in their complexity and methodology to induce inflammation. Immortalized cell lines are extensively used due to their long-term survival, in contrast to primary cultures that are short-lived but patient-specific. Recently, organoids and organ-chips have demonstrated great potential by being physiologically more relevant. This review aims to shed light on the intricate nature of intestinal inflammation and cover recent works that report cell-based in vitro models of human intestinal inflammation, encompassing diverse approaches and outcomes.
Collapse
Affiliation(s)
- Maria Helena Macedo
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Mafalda Dias Neto
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Lorenzo Pastrana
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Catarina Gonçalves
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| | - Miguel Xavier
- INL – International Iberian Nanotechnology LaboratoryAvenida Mestre José VeigaBraga4715‐330Portugal
| |
Collapse
|
6
|
Bredeck G, Dobner J, Stahlmecke B, Fomba KW, Herrmann H, Rossi A, Schins RPF. Saharan dust induces NLRP3-dependent inflammatory cytokines in an alveolar air-liquid interface co-culture model. Part Fibre Toxicol 2023; 20:39. [PMID: 37864207 PMCID: PMC10588053 DOI: 10.1186/s12989-023-00550-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/09/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epidemiological studies have related desert dust events to increased respiratory morbidity and mortality. Although the Sahara is the largest source of desert dust, Saharan dust (SD) has been barely examined in toxicological studies. Here, we aimed to assess the NLRP3 inflammasome-caspase-1-pathway-dependent pro-inflammatory potency of SD in comparison to crystalline silica (DQ12 quartz) in an advanced air-liquid interface (ALI) co-culture model. Therefore, we exposed ALI co-cultures of alveolar epithelial A549 cells and macrophage-like differentiated THP-1 cells to 10, 21, and 31 µg/cm² SD and DQ12 for 24 h using a Vitrocell Cloud system. Additionally, we exposed ALI co-cultures containing caspase (CASP)1-/- and NLRP3-/- THP-1 cells to SD. RESULTS Characterization of nebulized DQ12 and SD revealed that over 90% of agglomerates of both dusts were smaller than 2.5 μm. Characterization of the ALI co-culture model revealed that it produced surfactant protein C and that THP-1 cells remained viable at the ALI. Moreover, wild type, CASP1-/-, and NLRP3-/- THP-1 cells had comparable levels of the surface receptors cluster of differentiation 14 (CD14), toll-like receptor 2 (TLR2), and TLR4. Exposing ALI co-cultures to non-cytotoxic doses of DQ12 and SD did not induce oxidative stress marker gene expression. SD but not DQ12 upregulated gene expressions of interleukin 1 Beta (IL1B), IL6, and IL8 as well as releases of IL-1β, IL-6, IL-8, and tumor necrosis factor α (TNFα). Exposing wild type, CASP1-/-, and NLRP3-/- co-cultures to SD induced IL1B gene expression in all co-cultures whereas IL-1β release was only induced in wild type co-cultures. In CASP1-/- and NLRP3-/- co-cultures, IL-6, IL-8, and TNFα releases were also reduced. CONCLUSIONS Since surfactants can decrease the toxicity of poorly soluble particles, the higher potency of SD than DQ12 in this surfactant-producing ALI model emphasizes the importance of readily soluble SD components such as microbial compounds. The higher potency of SD than DQ12 also renders SD a potential alternative particulate positive control for studies addressing acute inflammatory effects. The high pro-inflammatory potency depending on NLRP3, CASP-1, and IL-1β suggests that SD causes acute lung injury which may explain desert dust event-related increased respiratory morbidity and mortality.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany.
| | - Jochen Dobner
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institut für Umwelt & Energie, Technik & Analytik e. V. (IUTA), 47229, Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), 04318, Leipzig, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Doak SH, Andreoli C, Burgum MJ, Chaudhry Q, Bleeker EAJ, Bossa C, Domenech J, Drobne D, Fessard V, Jeliazkova N, Longhin E, Rundén-Pran E, Stępnik M, El Yamani N, Catalán J, Dusinska M. Current status and future challenges of genotoxicity OECD Test Guidelines for nanomaterials: a workshop report. Mutagenesis 2023; 38:183-191. [PMID: 37234002 PMCID: PMC10448853 DOI: 10.1093/mutage/gead017] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Indexed: 05/27/2023] Open
Abstract
Genotoxicity testing for nanomaterials remains challenging as standard testing approaches require some adaptation, and further development of nano-specific OECD Test Guidelines (TGs) and Guidance Documents (GDs) are needed. However, the field of genotoxicology continues to progress and new approach methodologies (NAMs) are being developed that could provide relevant information on the range of mechanisms of genotoxic action that may be imparted by nanomaterials. There is a recognition of the need for implementation of new and/or adapted OECD TGs, new OECD GDs, and utilization of NAMs within a genotoxicity testing framework for nanomaterials. As such, the requirements to apply new experimental approaches and data for genotoxicity assessment of nanomaterials in a regulatory context is neither clear, nor used in practice. Thus, an international workshop with representatives from regulatory agencies, industry, government, and academic scientists was convened to discuss these issues. The expert discussion highlighted the current deficiencies that exist in standard testing approaches within exposure regimes, insufficient physicochemical characterization, lack of demonstration of cell or tissue uptake and internalization, and limitations in the coverage of genotoxic modes of action. Regarding the latter aspect, a consensus was reached on the importance of using NAMs to support the genotoxicity assessment of nanomaterials. Also highlighted was the need for close engagement between scientists and regulators to (i) provide clarity on the regulatory needs, (ii) improve the acceptance and use of NAM-generated data, and (iii) define how NAMs may be used as part of weight of evidence approaches for use in regulatory risk assessments.
Collapse
Affiliation(s)
- Shareen H Doak
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Cristina Andreoli
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Michael J Burgum
- Institute of Life Science, Swansea University Medical School, Singelton Park, Swansea, SA2 8PP Wales, United Kingdom
| | - Qasim Chaudhry
- University of Chester, Parkgate Road, Chester, United Kingdom
| | - Eric A J Bleeker
- National Institute for Public Health and the Environment (RIVM), PO Box 1, 3720 BA Bilthoven, The Netherlands
| | - Cecilia Bossa
- Department of Environment and Health, Istituto Superiore di Sanità, Rome, Italy
| | - Josefa Domenech
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
| | - Damjana Drobne
- University of Ljubljana, Biotechnical Faculty, Department of Biology, Vecan pot 111, 1000 Ljubljana, Slovenia
| | - Valérie Fessard
- ANSES French Agency for Food, Environmental and Occupational Health and Safety, Fougères Laboratory, Toxicology of Contaminants Unit, 10b rue Claude Bourgelat, Fougères 35306, France
| | | | - Eleonora Longhin
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Elise Rundén-Pran
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | | | - Naouale El Yamani
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| | - Julia Catalán
- Finnish Institute of Occupational Health, Box 40, Työterveyslaitos, 00032 Helsinki, Finland
- Department of Anatomy, Embryology, and Genetics, University of Zaragoza, 50013 Zaragoza, Spain
| | - Maria Dusinska
- NILU-Norwegian Institute for Air Research, Instituttveien 18, Kjeller 2002, Norway
| |
Collapse
|
8
|
Jabor Z, Sutton SC. Effects of Digestion, Cell Culture Media, and Mucous on the Physical Properties, Cellular Effects, and Translocation of Polystyrene and Polymethacrylate Nanoparticles. TOXICS 2023; 11:708. [PMID: 37624213 PMCID: PMC10458608 DOI: 10.3390/toxics11080708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 07/27/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023]
Abstract
The discovery of plastic and metal nanoparticles in organisms, foods, and beverages has generated numerous studies on the effects of these particles on the barrier cells and their subsequent absorption into the body. Following ingestion, nanoparticles travel down the gastrointestinal tract (GIT), and their physicochemical characteristics change in response to the change in proteins and pH during their digestion. We measured the translocation of digested nanoparticles across a co-culture monolayer of Caco-2 and various combinations (1:9, 5:5, and 9:1) of HT29-MTX-E12. The in vitro model of the intestine was used to determine the translocation of digested 20 nm polymethacrylate (PMA) particles and the accompanying monolayer barrier effects after a 72 h exposure. The in vitro digestion increased the agglomeration and hydrodynamic diameters and decreased the surface charge of the nanoparticles. For NH2-functionalized polymethacrylate nanoparticles (PMA-NH2), the diameters increased from 57 nm (water) to 3800 nm (media), or 2660 nm (chyme). These nanoparticles compromised the integrity of the monolayer (trans-epithelial electrical resistance, Lucifer yellow translocation) and translocated across all the cell ratio configurations. Digestion can have a large effect on nanoparticle agglomeration and surface charge. Excess mucous was not seen as a barrier to the translocation of PMA-NH2.
Collapse
Affiliation(s)
- Zainab Jabor
- School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, ME 04103, USA
| | - Steven C. Sutton
- Department of Pharmaceutical and Administrative Sciences, School of Pharmacy, Westbrook College of Health Professions, University of New England, 716 Stevens Ave, Portland, ME 04103, USA
| |
Collapse
|
9
|
Le NPK, Altenburger MJ, Lamy E. Development of an Inflammation-Triggered In Vitro "Leaky Gut" Model Using Caco-2/HT29-MTX-E12 Combined with Macrophage-like THP-1 Cells or Primary Human-Derived Macrophages. Int J Mol Sci 2023; 24:7427. [PMID: 37108590 PMCID: PMC10139037 DOI: 10.3390/ijms24087427] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/12/2023] [Accepted: 04/15/2023] [Indexed: 04/29/2023] Open
Abstract
The "leaky gut" syndrome describes a damaged (leaky) intestinal mucosa and is considered a serious contributor to numerous chronic diseases. Chronic inflammatory bowel diseases (IBD) are particularly associated with the "leaky gut" syndrome, but also allergies, autoimmune diseases or neurological disorders. We developed a complex in vitro inflammation-triggered triple-culture model using 21-day-differentiated human intestinal Caco-2 epithelial cells and HT29-MTX-E12 mucus-producing goblet cells (90:10 ratio) in close contact with differentiated human macrophage-like THP-1 cells or primary monocyte-derived macrophages from human peripheral blood. Upon an inflammatory stimulus, the characteristics of a "leaky gut" became evident: a significant loss of intestinal cell integrity in terms of decreased transepithelial/transendothelial electrical resistance (TEER), as well as a loss of tight junction proteins. The cell permeability for FITC-dextran 4 kDa was then increased, and key pro-inflammatory cytokines, including TNF-alpha and IL-6, were substantially released. Whereas in the M1 macrophage-like THP-1 co-culture model, we could not detect the release of IL-23, which plays a crucial regulatory role in IBD, this cytokine was clearly detected when using primary human M1 macrophages instead. In conclusion, we provide an advanced human in vitro model that could be useful for screening and evaluating therapeutic drugs for IBD treatment, including potential IL-23 inhibitors.
Collapse
Affiliation(s)
- Nguyen Phan Khoi Le
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| | - Markus Jörg Altenburger
- Department of Operative Dentistry and Periodontology, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| | - Evelyn Lamy
- Molecular Preventive Medicine, University Medical Center and Faculty of Medicine, University of Freiburg, 79108 Freiburg, Germany;
| |
Collapse
|
10
|
Bredeck G, Busch M, Rossi A, Stahlmecke B, Fomba KW, Herrmann H, Schins RPF. Inhalable Saharan dust induces oxidative stress, NLRP3 inflammasome activation, and inflammatory cytokine release. ENVIRONMENT INTERNATIONAL 2023; 172:107732. [PMID: 36680803 DOI: 10.1016/j.envint.2023.107732] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 12/07/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Desert dust is increasingly recognized as a major air pollutant affecting respiratory health. Since desert dust exposure cannot be regulated, the hazardousness of its components must be understood to enable health risk mitigation strategies. Saharan dust (SD) comprises about half of the global desert dust and contains quartz, a toxic mineral dust that is known to cause severe lung diseases via oxidative stress and activation of the NLRP3 inflammasome-interleukin-1β pathway. We aimed to assess the physicochemical and microbial characteristics of SD responsible for toxic effects. Also, we studied the oxidative and pro-inflammatory potential of SD in alveolar epithelial cells and the activation of the NLRP3 inflammasome in macrophage-like cells in comparison to quartz dusts and synthetic amorphous silica (SAS). Characterization revealed that SD contained Fe, Al, trace metals, sulfate, diatomaceous earth, and endotoxin and had the capacity to generate hydroxyl radicals. We exposed A549 lung epithelial cells and wild-type and NLRP3-/- THP-1 macrophage-like cells to SD, three well-investigated quartz dusts, and SAS. SD induced oxidative stress in A549 cells after 24 h more potently than the quartz dusts. The quartz dusts and SAS upregulated interleukin 8 expression after 4 h and 24 h while SD only caused a transient upregulation. SD, the quartz dusts, and SAS induced interleukin-1β release from wild-type THP-1 cells>20-fold stronger than from NLRP3-/- THP-1 cells. Interleukin-1β release was lower for SD, in which microbial components including endotoxin were heat-destructed. In conclusion, microbial components in SD are pivotal for its toxicity. In the epithelium, the effects of SD contrasted with crystalline and amorphous silica in terms of potency and persistence. In macrophages, the strong involvement of the NLRP3 inflammasome emphasizes the acute and chronic health risks associated with desert dust exposure.
Collapse
Affiliation(s)
- Gerrit Bredeck
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Mathias Busch
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Andrea Rossi
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany
| | - Burkhard Stahlmecke
- Institute for Energy and Environmental Technology e.V. (IUTA), Duisburg, Germany
| | - Khanneh Wadinga Fomba
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz-Institute for Tropospheric Research (TROPOS), Leipzig, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Düsseldorf, Germany.
| |
Collapse
|
11
|
Busch M, Brouwer H, Aalderink G, Bredeck G, Kämpfer AAM, Schins RPF, Bouwmeester H. Investigating nanoplastics toxicity using advanced stem cell-based intestinal and lung in vitro models. FRONTIERS IN TOXICOLOGY 2023; 5:1112212. [PMID: 36777263 PMCID: PMC9911716 DOI: 10.3389/ftox.2023.1112212] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/17/2023] [Indexed: 01/28/2023] Open
Abstract
Plastic particles in the nanometer range-called nanoplastics-are environmental contaminants with growing public health concern. As plastic particles are present in water, soil, air and food, human exposure via intestine and lung is unavoidable, but possible health effects are still to be elucidated. To better understand the Mode of Action of plastic particles, it is key to use experimental models that best reflect human physiology. Novel assessment methods like advanced cell models and several alternative approaches are currently used and developed in the scientific community. So far, the use of cancer cell line-based models is the standard approach regarding in vitro nanotoxicology. However, among the many advantages of the use of cancer cell lines, there are also disadvantages that might favor other approaches. In this review, we compare cell line-based models with stem cell-based in vitro models of the human intestine and lung. In the context of nanoplastics research, we highlight the advantages that come with the use of stem cells. Further, the specific challenges of testing nanoplastics in vitro are discussed. Although the use of stem cell-based models can be demanding, we conclude that, depending on the research question, stem cells in combination with advanced exposure strategies might be a more suitable approach than cancer cell lines when it comes to toxicological investigation of nanoplastics.
Collapse
Affiliation(s)
- Mathias Busch
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Hugo Brouwer
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Germaine Aalderink
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands
| | - Gerrit Bredeck
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | | | - Roel P. F. Schins
- IUF—Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Hans Bouwmeester
- Division of Toxicology, Wageningen University and Research, Wageningen, Netherlands,*Correspondence: Hans Bouwmeester,
| |
Collapse
|
12
|
Sreedharan S, Zouganelis G, Drake SJ, Tripathi G, Kermanizadeh A. Nanomaterial-induced toxicity in pathophysiological models representative of individuals with pre-existing medical conditions. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:1-27. [PMID: 36474307 DOI: 10.1080/10937404.2022.2153456] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The integration of nanomaterials (NMs) into an ever-expanding number of daily used products has proven to be highly desirable in numerous industries and applications. Unfortunately, the same "nano" specific physicochemical properties, which make these materials attractive, may also contribute to hazards for individuals exposed to these materials. In 2021, it was estimated that 7 out of 10 deaths globally were accredited to chronic diseases, such as chronic liver disease, asthma, and cardiovascular-related illnesses. Crucially, it is also understood that a significant proportion of global populace numbering in the billions are currently living with a range of chronic undiagnosed health conditions. Due to the significant number of individuals affected, it is important that people suffering from chronic disease also be considered and incorporated in NM hazard assessment strategies. This review examined and analyzed the literature that focused on NM-induced adverse health effects in models which are representative of individuals exhibiting pre-existing medical conditions with focus on the pulmonary, cardiovascular, hepatic, gastrointestinal, and central nervous systems. The overall objective of this review was to outline available data, highlighting the important role of pre-existing disease in NM-induced toxicity with the aim of establishing a weight of evidence approach to inform the public on the potential hazards posed by NMs in both healthy and compromised persons in general population.
Collapse
|
13
|
Gerber LS, Heusinkveld HJ, Langendoen C, Stahlmecke B, Schins RPF, Westerink RHS. Acute, sub-chronic and chronic exposures to TiO2 and Ag nanoparticles differentially affects neuronal function in vitro. Neurotoxicology 2022; 93:311-323. [DOI: 10.1016/j.neuro.2022.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022]
|
14
|
Busch M, Ramachandran H, Wahle T, Rossi A, Schins RPF. Investigating the Role of the NLRP3 Inflammasome Pathway in Acute Intestinal Inflammation: Use of THP-1 Knockout Cell Lines in an Advanced Triple Culture Model. Front Immunol 2022; 13:898039. [PMID: 35911682 PMCID: PMC9326178 DOI: 10.3389/fimmu.2022.898039] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/16/2022] [Indexed: 01/09/2023] Open
Abstract
The NLRP3 inflammasome plays an important role in intestinal homeostasis as well as inflammation. However, in vivo studies investigating the role of the NLRP3 inflammasome in inflammatory bowel disease (IBD) report contrasting results, leaving it unclear if the NLRP3 inflammasome augments or attenuates intestinal inflammation. To investigate the role of the NLRP3/caspase-1 pathway in a model of acute intestinal inflammation, we modified a previously established in vitro triple culture model of the healthy and inflamed intestine (Caco-2/HT29-MTX-E12/THP-1). Using THP-1 knockout cell lines, we analyzed how the NLRP3 inflammasome and its downstream enzyme caspase-1 (CASP1) affect inflammatory parameters including barrier integrity and cytotoxicity, as well as gene expression and secretion of pro-inflammatory cytokines and mucus. Furthermore, we investigated differences in inflammation-mediated cytotoxicity towards enterocyte-like (Caco-2) or goblet-like (HT29-MTX-E12) epithelial cells. As a complementary approach, inflammation-related cytotoxicity and gene expression of cytokines was analyzed in intestinal tissue explants from wildtype (WT) and Nlrp3-/- mice. Induction of intestinal inflammation impaired the barrier, caused cytotoxicity, and altered gene expression of pro-inflammatory cytokines and mucins in vitro, while the knockout of NLRP3 and CASP1 in THP 1 cells led to attenuation of these inflammatory parameters. The knockout of CASP1 tended to show a slightly stronger attenuating effect compared to the NLRP3 knockout model. We also found that the inflammation-mediated death of goblet-like cells is NLRP3/caspase-1 dependent. Furthermore, inflammation-related cytotoxicity and upregulation of pro-inflammatory cytokines was present in ileal tissue explants from WT, but not Nlrp3-/- mice. The here presented observations indicate a pro-inflammatory and adverse role of the NLRP3 inflammasome in macrophages during acute intestinal inflammation.
Collapse
|
15
|
Jalili P, Krause BC, Lanceleur R, Burel A, Jungnickel H, Lampen A, Laux P, Luch A, Fessard V, Hogeveen K. Chronic effects of two rutile TiO 2 nanomaterials in human intestinal and hepatic cell lines. Part Fibre Toxicol 2022; 19:37. [PMID: 35578293 PMCID: PMC9112549 DOI: 10.1186/s12989-022-00470-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 04/05/2022] [Indexed: 01/05/2023] Open
Abstract
Background TiO2 nanomaterials (NMs) are present in a variety of food and personal hygiene products, and consumers are exposed daily to these NMs through oral exposition. While the bulk of ingested TiO2 NMs are eliminated rapidly in stool, a fraction is able to cross the intestinal epithelial barrier and enter systemic circulation from where NMs can be distributed to tissues, primarily liver and spleen. Daily exposure to TiO2 NMs, in combination with a slow rate of elimination from tissues, results in their accumulation within different tissues. Considerable evidence suggests that following oral exposure to TiO2 NMs, the presence of NMs in tissues is associated with a number of adverse effects, both in intestine and liver. Although numerous studies have been performed in vitro investigating the acute effects of TiO2 NMs in intestinal and hepatic cell models, considerably less is known about the effect of repeated exposure on these models. In this study, we investigated the cytotoxic effects of repeated exposure of relevant models of intestine and liver to two TiO2 NMs differing in hydrophobicity for 24 h, 1 week and 2 weeks at concentrations ranging from 0.3 to 80 µg/cm2. To study the persistence of these two NMs in cells, we included a 1-week recovery period following 24 h and 1-week treatments. Cellular uptake by TEM and ToF–SIMS analyses, as well as the viability and pro-inflammatory response were evaluated. Changes in the membrane composition in Caco-2 and HepaRG cells treated with TiO2 NMs for up to 2 weeks were also studied.
Results Despite the uptake of NM-103 and NM-104 in cells, no significant cytotoxic effects were observed in either Caco-2 or HepaRG cells treated for up to 2 weeks at NM concentrations up to 80 µg/cm2. In addition, no significant effects on IL-8 secretion were observed. However, significant changes in membrane composition were observed in both cell lines. Interestingly, while most of these phospholipid modifications were reversed following a 1-week recovery, others were not affected by the recovery period. Conclusion These findings indicate that although no clear effects on cytotoxicity were observed following repeated exposure of differentiated Caco-2 and HepaRG cells to TiO2 NMs, subtle effects on membrane composition could induce potential adverse effects in the long-term. Supplementary Information The online version contains supplementary material available at 10.1186/s12989-022-00470-1.
Collapse
Affiliation(s)
- Pégah Jalili
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | | | - Rachelle Lanceleur
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | - Agnès Burel
- MRic Cell Imaging Platform, BIOSIT, University of Rennes 1, 2 avenue du Pr Léon Bernard - CS 34317, 35043, Rennes, France
| | - Harald Jungnickel
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Alfonso Lampen
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Peter Laux
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Andreas Luch
- German Federal Institute for Risk Assessment, Max-Dohrn-Straße 8-10, 10589, Berlin, Germany
| | - Valérie Fessard
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France
| | - Kevin Hogeveen
- Toxicology of Contaminants Unit, Fougères Laboratory, ANSES, French Agency for Food, Environmental and Occupational Health & Safety, 10 B rue Claude Bourgelat - Javené, 35306, Fougères, France.
| |
Collapse
|
16
|
Guilloteau E, Djouina M, Caboche S, Waxin C, Deboudt K, Beury D, Hot D, Pichavant M, Dubuquoy L, Launay D, Vignal C, Choël M, Body-Malapel M. Exposure to atmospheric Ag, TiO 2, Ti and SiO 2 engineered nanoparticles modulates gut inflammatory response and microbiota in mice. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 236:113442. [PMID: 35367877 DOI: 10.1016/j.ecoenv.2022.113442] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 03/08/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The development of nanotechnologies is leading to greater abundance of engineered nanoparticles (EN) in the environment, including in the atmospheric air. To date, it has been shown that the most prevalent EN found in the air are silver (Ag), titanium dioxide (TiO2), titanium (Ti), and silicon dioxide (SiO2). As the intestinal tract is increasingly recognized as a target for adverse effects induced by inhalation of air particles, the aim of this study was to assess the impact of these 4 atmospheric EN on intestinal inflammation and microbiota. We assessed the combined toxicity effects of Ag, Ti, TiO2, and SiO2 following a 28-day inhalation protocol in male and female mice. In distal and proximal colon, and in jejunum, EN mixture inhalation did not induce overt histological damage, but led to a significant modulation of inflammatory cytokine transcript abundance, including downregulation of Tnfα, Ifnγ, Il1β, Il17a, Il22, IL10, and Cxcl1 mRNA levels in male jejunum. A dysbiosis was observed in cecal microbiota of male and female mice exposed to the EN mixture, characterized by sex-dependent modulations of specific bacterial taxa, as well as sex-independent decreased abundance of the Eggerthellaceae family. Under dextran sodium sulfate-induced inflammatory conditions, exposure to the EN mixture increased the development of colitis in both male and female mice. Moreover, the direct dose-response effects of individual and mixed EN on gut organoids was studied and Ag, TiO2, Ti, SiO2, and EN mixture were found to generate specific inflammatory responses in the intestinal epithelium. These results indicate that the 4 most prevalent atmospheric EN could have the ability to disturb intestinal homeostasis through direct modulation of cytokine expression in gut epithelium, and by altering the inflammatory response and microbiota composition following inhalation.
Collapse
Affiliation(s)
- Eva Guilloteau
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Madjid Djouina
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Ségolène Caboche
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - Christophe Waxin
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Karine Deboudt
- Université du Littoral Côte d'Opale, EA 4493 - LPCA - Laboratoire de Physico-Chimie de l'Atmosphère, 59140 Dunkerque, France
| | - Delphine Beury
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - David Hot
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, UMR2014 - US41 - PLBS-Plateformes Lilloises de Biologie & Santé, F-59000 Lille, France
| | - Muriel Pichavant
- University of Lille, CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 9017 - CIIL - Center for Infection and Immunity of Lille, F-59000 Lille, France
| | - Laurent Dubuquoy
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - David Launay
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Cécile Vignal
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France
| | - Marie Choël
- University of Lille, CNRS, UMR 8516 - LASIRE - Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, F-59000 Lille, France
| | - Mathilde Body-Malapel
- University of Lille, Inserm, CHU Lille, U1286- INFINITE - Institute for Translational Research in Inflammation, F-59000 Lille, France.
| |
Collapse
|
17
|
Forest V. Experimental and Computational Nanotoxicology-Complementary Approaches for Nanomaterial Hazard Assessment. NANOMATERIALS 2022; 12:nano12081346. [PMID: 35458054 PMCID: PMC9031966 DOI: 10.3390/nano12081346] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/07/2022] [Accepted: 04/12/2022] [Indexed: 12/25/2022]
Abstract
The growing development and applications of nanomaterials lead to an increasing release of these materials in the environment. The adverse effects they may elicit on ecosystems or human health are not always fully characterized. Such potential toxicity must be carefully assessed with the underlying mechanisms elucidated. To that purpose, different approaches can be used. First, experimental toxicology consisting of conducting in vitro or in vivo experiments (including clinical studies) can be used to evaluate the nanomaterial hazard. It can rely on variable models (more or less complex), allowing the investigation of different biological endpoints. The respective advantages and limitations of in vitro and in vivo models are discussed as well as some issues associated with experimental nanotoxicology. Perspectives of future developments in the field are also proposed. Second, computational nanotoxicology, i.e., in silico approaches, can be used to predict nanomaterial toxicity. In this context, we describe the general principles, advantages, and limitations especially of quantitative structure–activity relationship (QSAR) models and grouping/read-across approaches. The aim of this review is to provide an overview of these different approaches based on examples and highlight their complementarity.
Collapse
Affiliation(s)
- Valérie Forest
- Mines Saint-Etienne, Univ Lyon, Univ Jean Monnet, Etablissement Français du Sang, INSERM, U1059 Sainbiose, Centre CIS, F-42023 Saint-Etienne, France
| |
Collapse
|
18
|
Doak SH, Clift MJD, Costa A, Delmaar C, Gosens I, Halappanavar S, Kelly S, Pejinenburg WJGM, Rothen-Rutishauser B, Schins RPF, Stone V, Tran L, Vijver MG, Vogel U, Wohlleben W, Cassee FR. The Road to Achieving the European Commission's Chemicals Strategy for Nanomaterial Sustainability-A PATROLS Perspective on New Approach Methodologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2200231. [PMID: 35324067 DOI: 10.1002/smll.202200231] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/17/2022] [Indexed: 06/14/2023]
Abstract
The European Green Deal outlines ambitions to build a more sustainable, climate neutral, and circular economy by 2050. To achieve this, the European Commission has published the Chemicals Strategy for Sustainability: Towards a Toxic-Free Environment, which provides targets for innovation to better protect human and environmental health, including challenges posed by hazardous chemicals and animal testing. The European project PATROLS (Physiologically Anchored Tools for Realistic nanOmateriaL hazard aSsessment) has addressed multiple aspects of the Chemicals Strategy for Sustainability by establishing a battery of new approach methodologies, including physiologically anchored human and environmental hazard assessment tools to evaluate the safety of engineered nanomaterials. PATROLS has delivered and improved innovative tools to support regulatory decision-making processes. These tools also support the need for reducing regulated vertebrate animal testing; when used at an early stage of the innovation pipeline, the PATROLS tools facilitate the safe and sustainable development of new nano-enabled products before they reach the market.
Collapse
Affiliation(s)
- Shareen H Doak
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Martin J D Clift
- Swansea University Medical School, Singleton Park, Swansea, SA2 8PP, UK
| | - Anna Costa
- Institute of Science and Technology for Ceramics, CNR-ISTEC-National Research Council of Italy, Faenza, Italy
| | - Christiaan Delmaar
- National Institute for Public Health and the Environment Netherlands, PO box 1, Bilthoven, 3720, the Netherlands
| | - Ilse Gosens
- National Institute for Public Health and the Environment Netherlands, PO box 1, Bilthoven, 3720, the Netherlands
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, K1A0K9, Canada
| | - Sean Kelly
- Nanotechnology Industries Association, Avenue Tervueren 143, Brussels, 1150, Belgium
| | - Willie J G M Pejinenburg
- National Institute for Public Health and the Environment Netherlands, PO box 1, Bilthoven, 3720, the Netherlands
- Leiden University, PO Box 9518, Leiden, 2300 RA, the Netherlands
| | | | - Roel P F Schins
- IUF-Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Vicki Stone
- School of Engineering and Physical Sciences, Heriot Watt University, Edinburgh, UK
| | - Lang Tran
- Institute of Occupational Medicine (IOM), Edinburgh, Scotland, EH14 4AP, UK
| | - Martina G Vijver
- Leiden University, PO Box 9518, Leiden, 2300 RA, the Netherlands
| | - Ulla Vogel
- National Research Centre for the Working Environment, Copenhagen, DK-2100, Denmark
| | - Wendel Wohlleben
- Advanced Materials Research, BASF SE, 67056, Ludwigshafen, Germany
| | - Flemming R Cassee
- National Institute for Public Health and the Environment Netherlands, PO box 1, Bilthoven, 3720, the Netherlands
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
19
|
Elberskirch L, Binder K, Riefler N, Sofranko A, Liebing J, Minella CB, Mädler L, Razum M, van Thriel C, Unfried K, Schins RPF, Kraegeloh A. Digital research data: from analysis of existing standards to a scientific foundation for a modular metadata schema in nanosafety. Part Fibre Toxicol 2022; 19:1. [PMID: 34983569 PMCID: PMC8728981 DOI: 10.1186/s12989-021-00442-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 12/16/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Assessing the safety of engineered nanomaterials (ENMs) is an interdisciplinary and complex process producing huge amounts of information and data. To make such data and metadata reusable for researchers, manufacturers, and regulatory authorities, there is an urgent need to record and provide this information in a structured, harmonized, and digitized way. RESULTS This study aimed to identify appropriate description standards and quality criteria for the special use in nanosafety. There are many existing standards and guidelines designed for collecting data and metadata, ranging from regulatory guidelines to specific databases. Most of them are incomplete or not specifically designed for ENM research. However, by merging the content of several existing standards and guidelines, a basic catalogue of descriptive information and quality criteria was generated. In an iterative process, our interdisciplinary team identified deficits and added missing information into a comprehensive schema. Subsequently, this overview was externally evaluated by a panel of experts during a workshop. This whole process resulted in a minimum information table (MIT), specifying necessary minimum information to be provided along with experimental results on effects of ENMs in the biological context in a flexible and modular manner. The MIT is divided into six modules: general information, material information, biological model information, exposure information, endpoint read out information and analysis and statistics. These modules are further partitioned into module subdivisions serving to include more detailed information. A comparison with existing ontologies, which also aim to electronically collect data and metadata on nanosafety studies, showed that the newly developed MIT exhibits a higher level of detail compared to those existing schemas, making it more usable to prevent gaps in the communication of information. CONCLUSION Implementing the requirements of the MIT into e.g., electronic lab notebooks (ELNs) would make the collection of all necessary data and metadata a daily routine and thereby would improve the reproducibility and reusability of experiments. Furthermore, this approach is particularly beneficial regarding the rapidly expanding developments and applications of novel non-animal alternative testing methods.
Collapse
Affiliation(s)
- Linda Elberskirch
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany
| | - Kunigunde Binder
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Norbert Riefler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Adriana Sofranko
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Julia Liebing
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Christian Bonatto Minella
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Lutz Mädler
- IWT - Leibniz-Institut für Werkstofforientierte Technologien, Badgasteiner Str. 3, 28359, Bremen, Germany
| | - Matthias Razum
- FIZ Karlsruhe - Leibniz Institute for Information Infrastructure, Hermann-von-Helmholtz-Platz 1, 76133, Eggenstein-Leopoldshafen, Germany
| | - Christoph van Thriel
- IfADo - Leibniz Research Centre for Working Environment and Human Factors, Ardeystraße 67, 44139, Dortmund, Germany
| | - Klaus Unfried
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz Research Institute for Environmental Medicine, Auf'm Hennekamp 50, 40225, Düsseldorf, Germany
| | - Annette Kraegeloh
- INM - Leibniz Institute for New Materials, Campus D2 2, 66123, Saarbrücken, Germany.
| |
Collapse
|
20
|
Busch M, Kämpfer AAM, Schins RPF. An inverted in vitro triple culture model of the healthy and inflamed intestine: Adverse effects of polyethylene particles. CHEMOSPHERE 2021; 284:131345. [PMID: 34216924 DOI: 10.1016/j.chemosphere.2021.131345] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 06/01/2021] [Accepted: 06/25/2021] [Indexed: 06/13/2023]
Abstract
As environmental pollution with plastic waste is increasing, numerous reports show the contamination of natural habitats, food and drinking water with plastic particles in the micro- and nanometer range. Since oral exposure to these particles is virtually unavoidable, health concerns towards the general population have been expressed and risk assessment regarding ingested plastic particles is of great interest. To study the intestinal effects of polymeric particles with a density of <1 g/cm³ in vitro, we spatially inverted a triple culture transwell model of the healthy and inflamed intestine (Caco-2/HT29-MTX-E12/THP-1), which allows contact between buoyant particles and cells. We validated the inverted model against the original model using the enterotoxic, non-steroidal anti-inflammatory drug diclofenac and subsequently assessed the cytotoxic and pro-inflammatory effects of polyethylene (PE) microparticles. The results show that the inverted model exhibits the same distinct features as the original model in terms of barrier development and inflammatory parameters. Treatment with 2 mM diclofenac causes severe cytotoxicity, DNA damage and complete barrier disruption in both models. PE particles induced cytotoxicity and pro-inflammatory effects in the inverted model, which would have remained undetected in conventional in vitro approaches, as no effect was observed in non-inverted control cultures.
Collapse
Affiliation(s)
- Mathias Busch
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Angela A M Kämpfer
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany
| | - Roel P F Schins
- IUF - Leibniz-Research Institute for Environmental Medicine, Duesseldorf, Germany.
| |
Collapse
|
21
|
Di Cristo L, Oomen AG, Dekkers S, Moore C, Rocchia W, Murphy F, Johnston HJ, Janer G, Haase A, Stone V, Sabella S. Grouping Hypotheses and an Integrated Approach to Testing and Assessment of Nanomaterials Following Oral Ingestion. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:2623. [PMID: 34685072 PMCID: PMC8541163 DOI: 10.3390/nano11102623] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 02/07/2023]
Abstract
The risk assessment of ingested nanomaterials (NMs) is an important issue. Here we present nine integrated approaches to testing and assessment (IATAs) to group ingested NMs following predefined hypotheses. The IATAs are structured as decision trees and tiered testing strategies for each decision node to support a grouping decision. Implications (e.g., regulatory or precautionary) per group are indicated. IATAs integrate information on durability and biopersistence (dissolution kinetics) to specific hazard endpoints, e.g., inflammation and genotoxicity, which are possibly indicative of toxicity. Based on IATAs, groups of similar nanoforms (NFs) of a NM can be formed, such as very slow dissolving, highly biopersistent and systemically toxic NFs. Reference NMs (ZnO, SiO2 and TiO2) along with related NFs are applied as case studies to testing the oral IATAs. Results based on the Tier 1 level suggest a hierarchy of biodurability and biopersistence of TiO2 > SiO2 > ZnO, and are confirmed by in vivo data (Tier 3 level). Interestingly, our analysis suggests that TiO2 and SiO2 NFs are able to induce both local and systemic toxicity along with microbiota dysbiosis and can be grouped according to the tested fate and hazard descriptors. This supports that the decision nodes of the oral IATAs are suitable for classification and assessment of the toxicity of NFs.
Collapse
Affiliation(s)
- Luisana Di Cristo
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Agnes G. Oomen
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Susan Dekkers
- National Institute for Public Health and the Environment (RIVM), 3720 Bilthoven, The Netherlands; (A.G.O.); (S.D.)
| | - Colin Moore
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| | - Walter Rocchia
- Computational Modelling of Nanoscale and Biophysical Systems—CONCEPT Lab, Istituto Italiano Di Tecnologia, 16163 Genova, Italy;
| | - Fiona Murphy
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Helinor J. Johnston
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Gemma Janer
- LEITAT Technological Center, 08005 Barcelona, Spain;
| | - Andrea Haase
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), 10589 Berlin, Germany;
| | - Vicki Stone
- Nano Safety Research Group, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, UK; (F.M.); (H.J.J.); (V.S.)
| | - Stefania Sabella
- Nanoregulatory Platform, Drug Discovery and Development Department, Istituto Italiano Di Tecnologia, 16163 Genova, Italy; (L.D.C.); (C.M.)
| |
Collapse
|
22
|
Bredeck G, Kämpfer AAM, Sofranko A, Wahle T, Büttner V, Albrecht C, Schins RPF. Ingested Engineered Nanomaterials Affect the Expression of Mucin Genes-An In Vitro-In Vivo Comparison. NANOMATERIALS 2021; 11:nano11102621. [PMID: 34685068 PMCID: PMC8537393 DOI: 10.3390/nano11102621] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/29/2021] [Accepted: 09/30/2021] [Indexed: 12/22/2022]
Abstract
The increasing use of engineered nanomaterials (ENM) in food has fueled the development of intestinal in vitro models for toxicity testing. However, ENM effects on intestinal mucus have barely been addressed, although its crucial role for intestinal health is evident. We investigated the effects of ENM on mucin expression and aimed to evaluate the suitability of four in vitro models of increasing complexity compared to a mouse model exposed through feed pellets. We assessed the gene expression of the mucins MUC1, MUC2, MUC5AC, MUC13 and MUC20 and the chemokine interleukin-8 in pre-confluent and confluent HT29-MTX-E12 cells, in stable and inflamed triple cultures of Caco-2, HT29-MTX-E12 and THP-1 cells, and in the ileum of mice following exposure to TiO2, Ag, CeO2 or SiO2. All ENM had shared and specific effects. CeO2 downregulated MUC1 in confluent E12 cells and in mice. Ag induced downregulation of Muc2 in mice. Overall, the in vivo data were consistent with the findings in the stable triple cultures and the confluent HT29-MTX-E12 cells but not in pre-confluent cells, indicating the higher relevance of advanced models for hazard assessment. The effects on MUC1 and MUC2 suggest that specific ENM may lead to an elevated susceptibility towards intestinal infections and inflammations.
Collapse
|