1
|
Xu C, Li W, Mao J, Liu Z, Lao A, Mao L, Gu A, Wu J, Shen A, Lin K, Liu J. Using chondroitin sulfate lithium hydrogel for diabetic bone regeneration via regulation of macrophage polarization. Carbohydr Polym 2025; 347:122787. [PMID: 39487003 DOI: 10.1016/j.carbpol.2024.122787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 09/01/2024] [Accepted: 09/20/2024] [Indexed: 11/04/2024]
Abstract
Bone regeneration in a diabetic environment remains a clinical challenge because of the proinflammatory microenvironment and malfunction of osteogenesis. Traditional therapy for bone defects doesn't work out in diabetes. Therefore, we introduced lithium (Li) into chondroitin sulfate (CS) and developed a crosslinked hydrogel composed of gelatin methacryloyl (GelMA) and chondroitin sulfate lithium (CS-Li) which could release Li in a sustained manner. This crosslinked hydrogel has a porous microstructure, excellent biocompatibility, and osteogenesis properties. With the synergetic effects of CS and Li, this crosslinked hydrogel regulates macrophage polarization to anti-inflammatory phenotype in the high glucose microenvironment and alleviates the inhibition of angiogenesis and osteogenesis caused by diabetes both in vitro and in vivo. The relationship between macrophage polarization and the promotion of angiogenesis and osteogenesis in diabetic microenvironments may be attributed to the activation of Glycogen synthase kinase-3β/β-catenin pathways. Overall, significant results in this study present that CS-Li was a potential therapy for bone defects in diabetic patients.
Collapse
Affiliation(s)
- Chenci Xu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Weiqi Li
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jing Mao
- Department of Obstetrics, Shanghai Key Laboratory of Maternal Fetal Medicine, Shanghai Institute of Maternal-Fetal Medicine and Gynecologic Oncology, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Ziyang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - An Lao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Lixia Mao
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Anqi Gu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Jiaqing Wu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Aili Shen
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China
| | - Kaili Lin
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| | - Jiaqiang Liu
- Department of Oral and Cranio-maxillofacial Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai 200011, China.
| |
Collapse
|
2
|
Castanheira EJ, Rodrigues JMM, Mano JF. Cryogels Composites: Recent Improvement in Bone Tissue Engineering. NANO LETTERS 2024; 24:13875-13887. [PMID: 39437426 DOI: 10.1021/acs.nanolett.4c03197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
Autogenous bone grafts have long been considered the optimal choice for bone reconstruction due to their excellent biocompatibility and osteogenic properties. However, their limited availability and associated donor site morbidity have led to exploration of alternative bone substitutes. Cryogels, with their interconnected porosity, shape recovery, and enhanced mass transport capabilities, have emerged as a promising polymer-based solution. By incorporating bioactive glasses and nanofillers, cryogel composites offer bioactivity, cost-efficiency, and easy cell integration. This approach not only enhances bone regeneration but also underscores the broader role of nanotechnology in regenerative medicine. This mini-review discusses the advancement of organic-inorganic composites, focusing on biopolymeric cryogels and inorganic elements for reinforcement. We highlight how cryogels can be integrated into minimally invasive procedures, reducing patient distress and complications, and advanced 3D-printing techniques that enable further customization of these materials to mimic bone tissue architecture, offering potential for patient-specific treatments.
Collapse
Affiliation(s)
- Edgar J Castanheira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João M M Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
3
|
Tang X, Zhou F, Wang S, Wang G, Bai L, Su J. Bioinspired injectable hydrogels for bone regeneration. J Adv Res 2024:S2090-1232(24)00486-7. [PMID: 39505143 DOI: 10.1016/j.jare.2024.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 09/28/2024] [Accepted: 10/27/2024] [Indexed: 11/08/2024] Open
Abstract
The effective regeneration of bone/cartilage defects remains a significant clinical challenge, causing irreversible damage to millions annually.Conventional therapies such as autologous or artificial bone grafting often yield unsatisfactory outcomes, emphasizing the urgent need for innovative treatment methods. Biomaterial-based strategies, including hydrogels and active scaffolds, have shown potential in promoting bone/cartilage regeneration. Among them, injectable hydrogels have garnered substantial attention in recent years on account of their minimal invasiveness, shape adaptation, and controlled spatiotemporal release. This review systematically discusses the synthesis of injectable hydrogels, bioinspired approaches-covering microenvironment, structural, compositional, and bioactive component-inspired strategies-and their applications in various bone/cartilage disease models, highlighting bone/cartilage regeneration from an innovative perspective of bioinspired design. Taken together, bioinspired injectable hydrogels offer promising and feasible solutions for promoting bone/cartilage regeneration, ultimately laying the foundations for clinical applications. Furthermore, insights into further prospective directions for AI in injectable hydrogels screening and organoid construction are provided.
Collapse
Affiliation(s)
- Xuan Tang
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi'an Jiao Tong University, Xi'an 710000, China
| | - Sicheng Wang
- National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Department of Orthopedics Trauma, Shanghai Zhongye Hospital, Shanghai 201900, China
| | - Guangchao Wang
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Long Bai
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China; Wenzhou Institute of Shanghai University, Wenzhou 325000, China.
| | - Jiacan Su
- Organoid Research Center, Institute of Translational Medicine, Shanghai University, Shanghai 200444, China; Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Xu R, Zhao ZY, Zhou LX, Chen L, Liu CY, Liao YX, Liao XY, Wang ZS, Yang ZH, Cao Y, Pan Z, Zou DH. GelMA-based moldable and rapid-curable osteogenic paste inspired by ceramic craft for alveolar bone defect regeneration. Int J Biol Macromol 2024; 283:137058. [PMID: 39500427 DOI: 10.1016/j.ijbiomac.2024.137058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/10/2024]
Abstract
Alveolar bone defects pose a significant challenge in oral clinical treatments, impacting procedures such as dental implants, orthodontics, and oral restoration. Despite their frequent occurrence due to various causes, the effective restoration and reconstruction of alveolar bone defects remain a significant clinical challenge in dentistry. Existing treatments often rely on intrinsic blood coagulation to stabilize bone grafts, but they present limitations such as gradual clotting and reduced effectiveness in patients with coagulation dysfunction. Injectable gel holds promise as an alternative to coagulation-dependent bone graft matrices, but it also faces challenges, including low initial viscosity and dependence on the natural formation of the defect area during the curing process. Here, we present a ceramic-craft-inspired osteogenic (CIO) hydrogel, designed to achieve moldable and curable properties for bone defect regeneration. This injectable paste, composed of gelatin methacrylate (GelMA), nanoclay, and bone grafts, allows for local injection and manual shaping without the need for molds. The shaped hydrogel rapidly crosslinks within 15 s under UV irradiation, providing malleability, strength, and coagulation-independent bone graft stabilization. This approach offers a potential breakthrough in addressing the persistent clinical challenge of alveolar bone defect restoration.
Collapse
Affiliation(s)
- Rui Xu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Zheng-Yi Zhao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Lin-Xi Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Lu Chen
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Chong-Yuan Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Yin-Xiu Liao
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Xiao-Yu Liao
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China
| | - Zi-Shuo Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Zi-Han Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China
| | - Yun Cao
- Orthopedic Department, First Affiliated Hospital of Anhui Medical University, Hefei 230032, China.
| | - Zhao Pan
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China.
| | - Duo-Hong Zou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, China; College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, Hefei 230032, China.
| |
Collapse
|
5
|
Ling Z, Zhang H, Zhao J, Wang P, An Z, Xiao S, Sun Y, Fu W. Electrostimulation-Based Decellularized Matrix Bladder Patch Promotes Bladder Repair in Rats. ACS Biomater Sci Eng 2024; 10:6498-6508. [PMID: 39240226 DOI: 10.1021/acsbiomaterials.4c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Bladder tissue engineering offers significant potential for repairing defects resulting from congenital and acquired conditions. However, the effectiveness of engineered grafts is often constrained by insufficient vascularization and neural regeneration. This study utilized four primary biomaterials─gelatin methacryloyl (GelMA), chitin nanocrystals (ChiNC), titanium carbide (MXene), and adipose-derived stem cells (ADSC)─to formulate two types of bioinks, GCM0.2 and GCM0.2-ADSC, in specified proportions. These bioinks were 3D printed onto bladder acellular matrix (BAM) patches to create BAM-GCM0.2 and BAM-GCM0.2-ADSC patches. The BAM-GCM0.2-ADSC patches underwent electrical stimulation to yield GCM0.2-ADSC-ES bladder patches. Employed for the repair of rat bladder defects, these patches were evaluated against a Control group, which underwent partial cystectomy followed by direct suturing. Our findings indicate that the inclusion of ADSC and electrical stimulation significantly enhances the regeneration of rat bladder smooth muscle (from [24.052 ± 2.782] % to [57.380 ± 4.017] %), blood vessels (from [5.326 ± 0.703] % to [12.723 ± 1.440] %), and nerves (from [0.227 ± 0.017] % to [1.369 ± 0.218] %). This research underscores the superior bladder repair capabilities of the GCM0.2-ADSC-ES patch and opens new pathways for bladder defect repair.
Collapse
Affiliation(s)
- Zhengyun Ling
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Haoqian Zhang
- Inner Mongolia Medical University, Hohhot, Inner Mongolia 010050, China
| | - Jian Zhao
- Department of Urology, 960th Hospital of PLA, Jinan 250031, China
| | | | - Ziyan An
- Medical School of PLA, Beijing 100853, China
| | - Shuwei Xiao
- Department of Urology, Air Force Medical Center, Beijing 100142, China
| | - Yanfeng Sun
- Department of Pediatrics, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| | - Weijun Fu
- Department of Urology, The Third Medical Center, PLA General Hospital, Beijing 100039, China
| |
Collapse
|
6
|
Wang W, Liu Q, Yang Q, Fu S, Zheng D, Su Y, Xu J, Wang Y, Piao H, Liu K. 3D-printing hydrogel programmed released exosomes to restore aortic medial degeneration through inhibiting VSMC ferroptosis in aortic dissection. J Nanobiotechnology 2024; 22:600. [PMID: 39367412 PMCID: PMC11453022 DOI: 10.1186/s12951-024-02821-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/30/2024] [Indexed: 10/06/2024] Open
Abstract
Aortic dissection (AD) is a devastating disease with a high mortality rate. Exosomes derived from mesenchymal stem cells (exo-MSCs) offer a promising strategy to restore aortic medial degeneration and combat ferroptosis in AD. However, their rapid degradation in the circulatory system and low treatment efficiency limit their clinical application. Methylacrylated gelatin (Gelma) was reported as a matrix material to achieve controlled release of exosomes. Herein, exo-MSCs-embedded in Gelma hydrogels (Gelma-exos) using ultraviolet light and three-dimensional (3D) printing technology. These Gelma-exos provide a sustained release of exo-MSCs as Gelma gradually degrades, helping to restore aortic medial degeneration and prevent ferroptosis. The sustained release of exosomes can inhibit the phenotypic switch of vascular smooth muscle cells (VSMCs) to a proliferative state, and curb their proliferation and migration. Additionally, the 3D-printed Gelma-exos demonstrated the ability to inhibit ferroptosis in vitro, in vivo and ex vivo experiments. In conclusion, our Gelma-exos, combined with 3D-printed technology, offer an alternative treatment approach for repairing aortic medial degeneration and ferroptosis in AD, potentially reducing the incidence of aortic dissection rupture.
Collapse
Affiliation(s)
- Weitie Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Qing Liu
- Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Qiwei Yang
- China Medical Research Center, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Songning Fu
- The First Hospital of Jilin University, Changchun, Jilin, China
| | - Dongdong Zheng
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Yale Su
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Jinyu Xu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Yong Wang
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Hulin Piao
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China
| | - Kexiang Liu
- Department of Cardiovascular Surgery, The Second Hospital of Jilin University, Yatai Street 4026, Changchun, 130041, Jilin, China.
| |
Collapse
|
7
|
Augustine R, Gezek M, Nikolopoulos VK, Buck PL, Bostanci NS, Camci-Unal G. Stem Cells in Bone Tissue Engineering: Progress, Promises and Challenges. Stem Cell Rev Rep 2024; 20:1692-1731. [PMID: 39028416 DOI: 10.1007/s12015-024-10738-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2024] [Indexed: 07/20/2024]
Abstract
Bone defects from accidents, congenital conditions, and age-related diseases significantly impact quality of life. Recent advancements in bone tissue engineering (TE) involve biomaterial scaffolds, patient-derived cells, and bioactive agents, enabling functional bone regeneration. Stem cells, obtained from numerous sources including umbilical cord blood, adipose tissue, bone marrow, and dental pulp, hold immense potential in bone TE. Induced pluripotent stem cells and genetically modified stem cells can also be used. Proper manipulation of physical, chemical, and biological stimulation is crucial for their proliferation, maintenance, and differentiation. Stem cells contribute to osteogenesis, osteoinduction, angiogenesis, and mineralization, essential for bone regeneration. This review provides an overview of the latest developments in stem cell-based TE for repairing and regenerating defective bones.
Collapse
Affiliation(s)
- Robin Augustine
- Department of Radiology, Stanford Medicine, Stanford University, Palo Alto, CA, 94304, USA
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
| | - Mert Gezek
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | | | - Paige Lauren Buck
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Nazli Seray Bostanci
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA
- Biomedical Engineering and Biotechnology Graduate Program, University of Massachusetts, Lowell, MA, 01854, USA
| | - Gulden Camci-Unal
- Department of Chemical Engineering, University of Massachusetts, Lowell, MA, 01854, USA.
- Department of Surgery, University of Massachusetts Medical School, Worcester, MA, 01605, USA.
| |
Collapse
|
8
|
Wang Y, Lv H, Ren S, Zhang J, Liu X, Chen S, Zhai J, Zhou Y. Biological Functions of Macromolecular Protein Hydrogels in Constructing Osteogenic Microenvironment. ACS Biomater Sci Eng 2024; 10:5513-5536. [PMID: 39173130 DOI: 10.1021/acsbiomaterials.4c00910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
Irreversible bone defects resulting from trauma, infection, and degenerative illnesses have emerged as a significant health concern. Structurally and functionally controllable hydrogels made by bone tissue engineering (BTE) have become promising biomaterials. Natural proteins are able to establish connections with autologous proteins through unique biologically active regions. Hydrogels based on proteins can simulate the bone microenvironment and regulate the biological behavior of stem cells in the tissue niche, making them candidates for research related to bone regeneration. This article reviews the biological functions of various natural macromolecular proteins (such as collagen, gelatin, fibrin, and silk fibroin) and highlights their special advantages as hydrogels. Then the latest research trends on cross-linking modified macromolecular protein hydrogels with improved mechanical properties and composite hydrogels loaded with exogenous micromolecular proteins have been discussed. Finally, the applications of protein hydrogels, such as 3D printed hydrogels, microspheres, and injectable hydrogels, were introduced, aiming to provide a reference for the repair of clinical bone defects.
Collapse
Affiliation(s)
- Yihan Wang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Huixin Lv
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sicong Ren
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jiameng Zhang
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Xiuyu Liu
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Sheng Chen
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Jingjie Zhai
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| | - Yanmin Zhou
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Hospital of Stomatology, Jilin University, Changchun 130021, P. R. China
| |
Collapse
|
9
|
Chen H, Wu X, Lan Y, Zhou X, Zhang Y, Long L, Zhong Y, Hao Z, Zhang W, Xue D. SCUBE3 promotes osteogenic differentiation and mitophagy in human bone marrow mesenchymal stem cells through the BMP2/TGF-β signaling pathway. FASEB J 2024; 38:e70011. [PMID: 39250278 DOI: 10.1096/fj.202400991r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/21/2024] [Accepted: 08/12/2024] [Indexed: 09/11/2024]
Abstract
In clinical settings, addressing large bone defects remains a significant challenge for orthopedic surgeons. The use of genetically modified bone marrow mesenchymal stem cells (BMSCs) has emerged as a highly promising approach for these treatments. Signal peptide-CUB-EGF domain-containing protein 3 (SCUBE3) is a multifunctional secreted glycoprotein, the role of which remains unclear in human hBMSCs. This study used various experimental methods to elucidate the potential mechanism by which SCUBE3 influences osteogenic differentiation of hBMSCs in vitro. Additionally, the therapeutic efficacy of SCUBE3, in conjunction with porous GeLMA microspheres, was evaluated in vivo using a mouse bone defect model. Our findings indicate that SCUBE3 levels increase significantly during early osteogenic differentiation of hBMSCs, and that reducing SCUBE3 levels can hinder this differentiation. Overexpressing SCUBE3 elevated osteogenesis gene and protein levels and enhanced calcium deposition. Furthermore, treatment with recombinant human SCUBE3 (rhSCUBE3) protein boosted BMP2 and TGF-β expression, activated mitophagy in hBMSCs, ameliorated oxidative stress, and restored osteogenic function through SMAD phosphorylation. In vivo, GELMA/OE treatment effectively accelerated bone healing in mice. In conclusion, SCUBE3 fosters osteogenic differentiation and mitophagy in hBMSCs by activating the BMP2/TGF-β signaling pathway. When combined with engineered hydrogel cell therapy, it could offer valuable guidance for the clinical management of extensive bone defects.
Collapse
Affiliation(s)
- Hongyu Chen
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Xiaoyong Wu
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Yinan Lan
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Xijie Zhou
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ye Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Long Long
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Yuliang Zhong
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Zhengan Hao
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - Weijun Zhang
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| | - DeTing Xue
- Department of Orthopaedics, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Orthopedics Research Institute of Zhejiang University, Hangzhou, Zhejiang, P.R. China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou, Zhejiang, P.R. China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, P.R. China
| |
Collapse
|
10
|
Koç S, Gümüşderelioğlu M. Versatile cell cultivation on injectable poly(butylene adipate-co-terephthalate) microcarriers: Impact of surface properties across different cell types. J Biomed Mater Res B Appl Biomater 2024; 112:e35464. [PMID: 39194038 DOI: 10.1002/jbm.b.35464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/12/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Injectable cell therapies offer several advantages compared with traditional open surgery, including less trauma to the patient, shorter recovery time, and lower risk of infection. However, a significant problem is the difficulty in developing effective cell delivery carriers that are cyto-compatible and maintain cell viability both during and after injection. In the presented study, it was aimed to develop poly(butylene adipate-co-terephthalate) (PBAT) microcarriers using the emulsion preparation-solvent evaporation technique. The optimized diameter of the PBAT microcarriers was determined as 104 ± 15 μm at 700 rpm and there would be no blockage after injection due to the nonswelling feature of microcarriers. Furthermore, the cellular activities of PBAT microcarriers were evaluated in static culture for 7 days using L929 mouse fibroblasts, MC3T3-E1 mouse pre-osteoblasts, and rat adipose-derived mesenchymal cells (AdMSCs). 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide results and Sscanning electron microscope images showed that PBAT microcarriers increased the adhesion and proliferation properties of pre-osteoblasts and stem cells, while L929 fibroblasts formed aggregates by adhering to certain regions of the microcarrier surface and did not spread on the surface. These results emphasize that PBAT microcarriers can be used as injectable carriers, especially in stem cell therapies, but their surface properties need to be modified for some cells.
Collapse
Affiliation(s)
- Sena Koç
- Graduate School of Science and Engineering, Hacettepe University, Ankara, Turkey
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
| | - Menemşe Gümüşderelioğlu
- Chemical Engineering Department, Hacettepe University, Ankara, Turkey
- Bioengineering Department, Hacettepe University, Ankara, Turkey
| |
Collapse
|
11
|
He Q, Liao Y, Zhang H, Sun W, Zhou W, Lin J, Zhang T, Xie S, Wu H, Han J, Zhang Y, Wei W, Li C, Hong Y, Shen W, Ouyang H. Gel microspheres enhance the stemness of ADSCs by regulating cell-ECM interaction. Biomaterials 2024; 309:122616. [PMID: 38776592 DOI: 10.1016/j.biomaterials.2024.122616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
The gel microsphere culture system (GMCS) showed various advantages for mesenchymal stem cell (MSC) expansion and delivery, such as high specific surface area, small and regular shape, extensive adjustability, and biomimetic properties. Although various technologies and materials have been developed to promote the development of gel microspheres, the differences in the biological status of MSCs between the GMCS and the traditional Petri dish culture system (PDCS) are still unknown, hindering gel microspheres from becoming a culture system as widely used as petri dishes. In the previous study, an excellent "all-in-one" GMCS has been established for the expansion of human adipose-derived MSCs (hADSCs), which showed convenient cell culture operation. Here, we performed transcriptome and proteome sequencing on hADSCs cultured on the "all-in-one" GMCS and the PDCS. We found that hADSCs cultured in the GMCS kept in an undifferentiation status with a high stemness index, whose transcriptome profile is closer to the adipose progenitor cells (APCs) in vivo than those cultured in the PDCS. Further, the high stemness status of hADSCs in the GMCS was maintained through regulating cell-ECM interaction. For application, bilayer scaffolds were constructed by osteo- and chondro-differentiation of hADSCs cultured in the GMCS and the PDCS. The effect of osteochondral regeneration of the bilayer scaffolds in the GMCS group was better than that in the PDCS group. This study revealed the high stemness and excellent functionality of MSCs cultured in the GMCS, which promoted the application of gel microspheres in cell culture and tissue regeneration.
Collapse
Affiliation(s)
- Qiulin He
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Youguo Liao
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Haonan Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wei Sun
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Wenyan Zhou
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Junxin Lin
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China
| | - Tao Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Shaofang Xie
- Westlake Laboratory of Life Sciences and Biomedicine, School of Life Sciences, Westlake University, Hangzhou, 310024, Zhejiang, China
| | - Hongwei Wu
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Han
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuxiang Zhang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Wei
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Chenglin Li
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Hong
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiliang Shen
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| | - Hongwei Ouyang
- Department of Sports Medicine of the Second Affiliated Hospital, and Liangzhu Laboratory, Zhejiang University School of Medicine, Hangzhou, China; Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China; Zhejiang University-University of Edinburgh Institute, Zhejiang University School of Medicine, Haining, China; China Orthopedic Regenerative Medicine Group (CORMed), Hangzhou, China.
| |
Collapse
|
12
|
Wang Y, Yang X, Yang Z, Xia H, Si X, Hao J, Yan D, Li H, Peng K, Sun J, Shi C, Li H, Li W. Additive-free Absorbable Keratin Sponge With Procoagulant Activity for Noncompressible Hemostasis. Biomacromolecules 2024; 25:3930-3945. [PMID: 38820501 DOI: 10.1021/acs.biomac.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2024]
Abstract
The development of a natural, additive-free, absorbable sponge with procoagulant activity for noncompressible hemostasis remains a challenging task. In this study, we extracted high molecular weight keratin (HK) from human hair and transformed it into a hemostatic sponge with a well-interconnected pore structure using a foaming technique, freeze-drying, and oxidation cross-linking. By controlling the cross-linking degree, the resulting sponge demonstrated excellent liquid absorption ability, shape recovery characteristics, and robust mechanical properties. The HK10 sponge exhibited rapid liquid absorption, expanding up to 600% within 5 s. Moreover, the HK sponge showed superior platelet activation and blood cell adhesion capabilities. In SD rat liver defect models, the sponges demonstrated excellent hemostatic performance by sealing the wound and expediting coagulation, reducing the hemostatic time from 825 to 297 s. Furthermore, HK sponges have excellent biosafety, positioning them as a promising absorbable sponge with the potential for the treatment of noncompressible hemostasis.
Collapse
Affiliation(s)
- Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Ziwei Yang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Hangbin Xia
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jiahui Hao
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Dongxue Yan
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Huili Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Ke Peng
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Jie Sun
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| | - Changcan Shi
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Huaqiong Li
- Zhejiang Engineering Research Center for Tissue Repair Materials, Wenzhou Institute, University of Chinese Academy of Sciences, 1 Yonglian Street, Wenzhou, Zhejiang 325000, China
| | - Wenzhong Li
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Engineering Research Center of Ophthalmology and Optometry, Eye Hospital Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
- National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University, 270 Xueyuan West Road, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
13
|
Deng M, Gao F, Liu T, Zhan W, Quan J, Zhao Z, Wu X, Zhong Z, Zheng H, Chu J. T. gondii excretory proteins promote the osteogenic differentiation of human bone mesenchymal stem cells via the BMP/Smad signaling pathway. J Orthop Surg Res 2024; 19:386. [PMID: 38951811 PMCID: PMC11218376 DOI: 10.1186/s13018-024-04839-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
BACKGROUND Bone defects, resulting from substantial bone loss that exceeds the natural self-healing capacity, pose significant challenges to current therapeutic approaches due to various limitations. In the quest for alternative therapeutic strategies, bone tissue engineering has emerged as a promising avenue. Notably, excretory proteins from Toxoplasma gondii (TgEP), recognized for their immunogenicity and broad spectrum of biological activities secreted or excreted during the parasite's lifecycle, have been identified as potential facilitators of osteogenic differentiation in human bone marrow mesenchymal stem cells (hBMSCs). Building on our previous findings that TgEP can enhance osteogenic differentiation, this study investigated the molecular mechanisms underlying this effect and assessed its therapeutic potential in vivo. METHODS We determined the optimum concentration of TgEP through cell cytotoxicity and cell proliferation assays. Subsequently, hBMSCs were treated with the appropriate concentration of TgEP. We assessed osteogenic protein markers, including alkaline phosphatase (ALP), Runx2, and Osx, as well as components of the BMP/Smad signaling pathway using quantitative real-time PCR (qRT-PCR), siRNA interference of hBMSCs, Western blot analysis, and other methods. Furthermore, we created a bone defect model in Sprague-Dawley (SD) male rats and filled the defect areas with the GelMa hydrogel, with or without TgEP. Microcomputed tomography (micro-CT) was employed to analyze the bone parameters of defect sites. H&E, Masson and immunohistochemical staining were used to assess the repair conditions of the defect area. RESULTS Our results indicate that TgEP promotes the expression of key osteogenic markers, including ALP, Runx2, and Osx, as well as the activation of Smad1, BMP2, and phosphorylated Smad1/5-crucial elements of the BMP/Smad signaling pathway. Furthermore, in vivo experiments using a bone defect model in rats demonstrated that TgEP markedly promoted bone defect repair. CONCLUSION Our results provide compelling evidence that TgEP facilitates hBMSC osteogenic differentiation through the BMP/Smad signaling pathway, highlighting its potential as a therapeutic approach for bone tissue engineering for bone defect healing.
Collapse
Affiliation(s)
- Mingzhu Deng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Feifei Gao
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Tianfeng Liu
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Weiqiang Zhan
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Juanhua Quan
- Laboratory of Gastroenterology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Ziquan Zhao
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuyang Wu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Zhuolan Zhong
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Hong Zheng
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| | - Jiaqi Chu
- Orthopaedic Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
- Stem Cell Research and Cellular Therapy Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.
| |
Collapse
|
14
|
Li X, Li L, Wang D, Zhang J, Yi K, Su Y, Luo J, Deng X, Deng F. Fabrication of polymeric microspheres for biomedical applications. MATERIALS HORIZONS 2024; 11:2820-2855. [PMID: 38567423 DOI: 10.1039/d3mh01641b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Polymeric microspheres (PMs) have attracted great attention in the field of biomedicine in the last several decades due to their small particle size, special functionalities shown on the surface and high surface-to-volume ratio. However, how to fabricate PMs which can meet the clinical needs and transform laboratory achievements to industrial scale-up still remains a challenge. Therefore, advanced fabrication technologies are pursued. In this review, we summarize the technologies used to fabricate PMs, including emulsion-based methods, microfluidics, spray drying, coacervation, supercritical fluid and superhydrophobic surface-mediated method and their advantages and disadvantages. We also review the different structures, properties and functions of the PMs and their applications in the fields of drug delivery, cell encapsulation and expansion, scaffolds in tissue engineering, transcatheter arterial embolization and artificial cells. Moreover, we discuss existing challenges and future perspectives for advancing fabrication technologies and biomedical applications of PMs.
Collapse
Affiliation(s)
- Xuebing Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases, Department of Oral and Maxillofacial Surgery, School of Stomatology, The Fourth Military Medical University, Xi'an, 710032, P. R. China
| | - Luohuizi Li
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Dehui Wang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Jun Zhang
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Kangfeng Yi
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Yucai Su
- Shandong Pharmaceutical Glass Co. Ltd, Zibo, 256100, P. R. China
| | - Jing Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
| | - Xu Deng
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 611731, P. R. China.
- Shenzhen Institute for Advanced Study, University of Electronic Science and Technology of China, Shenzhen, 518110, P. R. China
| | - Fei Deng
- Department of Nephrology, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610054, P. R. China
- Department of Nephrology, Sichuan Provincial People's Hospital Jinniu Hospital, Chengdu Jinniu District People's Hospital, Chengdu 610054, P. R. China.
| |
Collapse
|
15
|
Zhang W, Liu M, Wu D, Hao Y, Cong B, Wang L, Wang Y, Gao M, Xu Y, Wu Y. PSO/SDF-1 composite hydrogel promotes osteogenic differentiation of PDLSCs and bone regeneration in periodontitis rats. Heliyon 2024; 10:e32686. [PMID: 38961957 PMCID: PMC11220005 DOI: 10.1016/j.heliyon.2024.e32686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 06/05/2024] [Accepted: 06/06/2024] [Indexed: 07/05/2024] Open
Abstract
Periodontitis is an inflammatory disease characterized by the destruction of periodontal tissues, and the promotion of bone tissue regeneration is the key to curing periodontitis. Psoralen is the main component of Psoralea corylifolia Linn, and has multiple biological effects, including anti-osteoporosis and osteogenesis. We constructed a novel hydrogel loaded with psoralen (PSO) and stromal cell-derived factor-1 (SDF-1) for direct endogenous cell homing. This study aimed to evaluate the synergistic effects of PSO/SDF-1 on periodontal bone regeneration in patients with periodontitis. The results of CCK8, alkaline phosphatase (ALP) activity assay, and Alizarin Red staining showed that PSO/SDF-1 combination treatment promoted cell proliferation, chemotaxis ability, and ALP activity of PDLSCs. qRT-PCR and western blotting showed that the expression levels of alkaline phosphatase (ALP), dwarf-associated transcription factor 2 (RUNX2), and osteocalcin (OCN) gene were upregulated. Rat periodontal models were established to observe the effect of local application of the composite hydrogel on bone regeneration. These results proved that the PSO/SDF-1 combination treatment significantly promoted new bone formation. The immunohistochemical (IHC) results confirmed the elevated expression of ALP, RUNX2, and OCN osteogenic genes. PSO/SDF-1 composite hydrogel can synergistically regulate the biological function and promote periodontal bone formation. Thus, this study provides a novel strategy for periodontal bone regeneration.
Collapse
Affiliation(s)
- Wei Zhang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Minghong Liu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Di Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yuanping Hao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Beibei Cong
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Lihui Wang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Yujia Wang
- School of Stomatology, Shandong Second Medical University, Weifang, 261053, China
| | - Meihua Gao
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yingjie Xu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| | - Yingtao Wu
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, 266001, China
| |
Collapse
|
16
|
Wang S, Jia Z, Dai M, Feng X, Tang C, Liu L, Cao L. Advances in natural and synthetic macromolecules with stem cells and extracellular vesicles for orthopedic disease treatment. Int J Biol Macromol 2024; 268:131874. [PMID: 38692547 DOI: 10.1016/j.ijbiomac.2024.131874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Revised: 04/16/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
Serious orthopedic disorders resulting from myriad diseases and impairments continue to pose a considerable challenge to contemporary clinical care. Owing to its limited regenerative capacity, achieving complete bone tissue regeneration and complete functional restoration has proven challenging with existing treatments. By virtue of cellular regenerative and paracrine pathways, stem cells are extensively utilized in the restoration and regeneration of bone tissue; however, low survival and retention after transplantation severely limit their therapeutic effect. Meanwhile, biomolecule materials provide a delivery platform that improves stem cell survival, increases retention, and enhances therapeutic efficacy. In this review, we present the basic concepts of stem cells and extracellular vesicles from different sources, emphasizing the importance of using appropriate expansion methods and modification strategies. We then review different types of biomolecule materials, focusing on their design strategies. Moreover, we summarize several forms of biomaterial preparation and application strategies as well as current research on biomacromolecule materials loaded with stem cells and extracellular vesicles. Finally, we present the challenges currently impeding their clinical application for the treatment of orthopedic diseases. The article aims to provide researchers with new insights for subsequent investigations.
Collapse
Affiliation(s)
- Supeng Wang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China; Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China; Ningxia Medical University, Ningxia 750004, China
| | - Zhiqiang Jia
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Minghai Dai
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Xujun Feng
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China
| | - Chengxuan Tang
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China
| | - Liangle Liu
- The Third Affiliated Hospital of Wenzhou Medical University, Wenzhou 325200, China.
| | - Lingling Cao
- Jiujiang City Key Laboratory of Cell Therapy, The First Hospital of Jiujiang City, Jiujiang 332000, China.
| |
Collapse
|
17
|
Castanheira EJ, Monteiro LPG, Gaspar VM, Correia TR, Rodrigues JMM, Mano JF. In-Bath 3D Printing of Anisotropic Shape-Memory Cryogels Functionalized with Bone-Bioactive Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2024; 16:18386-18399. [PMID: 38591243 DOI: 10.1021/acsami.3c18290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Cryogels exhibit unique shape memory with full recovery and structural stability features after multiple injections. These constructs also possess enhanced cell permeability and nutrient diffusion when compared to typical bulk hydrogels. Volumetric processing of cryogels functionalized with nanosized units has potential to widen their biomedical applications, however this has remained challenging and relatively underexplored. In this study, we report a novel methodology that combines suspension 3D printing with directional freezing for the fabrication of nanocomposite cryogels with configurable anisotropy. When compared to conventional bulk or freeze-dried hydrogels, nanocomposite cryogel formulations exhibit excellent shape recovery (>95%) and higher pore connectivity. Suspension printing, assisted with a prechilled metal grid, was optimized to induce anisotropy. The addition of calcium- and phosphate-doped mesoporous silica nanoparticles into the cryogel matrix enhanced bioactivity toward orthopedic applications without hindering the printing process. Notably, the nanocomposite 3D printed cryogels exhibit injectable shape memory while also featuring a lamellar topography. The fabrication of these constructs was highly reproducible and exhibited potential for a cell-delivery injectable cryogel with no cytotoxicity to human-derived adipose stem cells. Hence, in this work, it was possible to combine a gravity defying 3D printed methodology with injectable and controlled anisotropic macroporous structures containing bioactive nanoparticles. This methodology ameliorates highly tunable injectable 3D printed anisotropic nanocomposite cryogels with a user-programmable degree of structural complexity.
Collapse
Affiliation(s)
- Edgar J Castanheira
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Luís P G Monteiro
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Vítor M Gaspar
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - Tiago R Correia
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - João M M Rodrigues
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| | - João F Mano
- CICECO - Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, portugal
| |
Collapse
|
18
|
Gao LT, Chen YM, Aziz Y, Wei W, Zhao XY, He Y, Li J, Li H, Miyatake H, Ito Y. Tough, self-healing and injectable dynamic nanocomposite hydrogel based on gelatin and sodium alginate. Carbohydr Polym 2024; 330:121812. [PMID: 38368083 DOI: 10.1016/j.carbpol.2024.121812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/13/2023] [Accepted: 01/08/2024] [Indexed: 02/19/2024]
Abstract
Biomacromolecules based injectable and self-healing hydrogels possessing high mechanical properties have widespread potential in biomedical field. However, dynamic features are usually inversely proportional to toughness. It is challenging to simultaneously endow these properties to the dynamic hydrogels. Here, we fabricated an injectable nanocomposite hydrogel (CS-NPs@OSA-l-Gtn) stimultaneously possessing excellent autonomous self-healing performance and high mechanical strength by doping chitosan nanoparticles (CS-NPs) into dynamic polymer networks of oxidized sodium alginate (OSA) and gelatin (Gtn) in the presence of borax. The synergistic effect of the multiple reversible interactions combining dynamic covalent bonds (i.e., imine bond and borate ester bond) and noncovalent interactions (i.e., electrostatic interaction and hydrogen bond) provide effective energy dissipation to endure high fatigue resistance and cyclic loading. The dynamic hydrogel exhibited excellent mechanical properties like maximum 2.43 MPa compressive strength, 493.91 % fracture strain, and 89.54 kJ/m3 toughness. Moreover, the integrated hydrogel after injection and self-healing could withstand 150 successive compressive cycles. Besides, the bovine serum albumin embedded in CS-NPs could be sustainably released from the nanocomposite hydrogel for 12 days. This study proposes a novel strategy to synthesize an injectable and self-healing hydrogel combined with excellent mechanical properties for designing high-strength natural carriers with sustained protein delivery.
Collapse
Affiliation(s)
- Li Ting Gao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yong Mei Chen
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China.
| | - Yasir Aziz
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Wei Wei
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Xin Yi Zhao
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Yuan He
- College of Bioresources Chemical and Materials Engineering, National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science & Technology, Xi'an, Shaanxi 710021, China
| | - Jianhui Li
- Department of Surgical Oncology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi 710068, China.
| | - Haopeng Li
- Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an Jiaotong University, Xi'an. Shaanxi 710049, China
| | - Hideyuki Miyatake
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| | - Yoshihiro Ito
- Nano Medical Engineering Laboratory, RIKEN Cluster for Pioneering Research, Emergent Bioengineering Materials Research Team, RIKEN Center for Emergent Matter Science, 2-1 Hirosawa, Wako, Saitama 3510198, Japan
| |
Collapse
|
19
|
Mamidi N, Ijadi F, Norahan MH. Leveraging the Recent Advancements in GelMA Scaffolds for Bone Tissue Engineering: An Assessment of Challenges and Opportunities. Biomacromolecules 2024; 25:2075-2113. [PMID: 37406611 DOI: 10.1021/acs.biomac.3c00279] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
The field of bone tissue engineering has seen significant advancements in recent years. Each year, over two million bone transplants are performed globally, and conventional treatments, such as bone grafts and metallic implants, have their limitations. Tissue engineering offers a new level of treatment, allowing for the creation of living tissue within a biomaterial framework. Recent advances in biomaterials have provided innovative approaches to rebuilding bone tissue function after damage. Among them, gelatin methacryloyl (GelMA) hydrogel is emerging as a promising biomaterial for supporting cell proliferation and tissue regeneration, and GelMA has exhibited exceptional physicochemical and biological properties, making it a viable option for clinical translation. Various methods and classes of additives have been used in the application of GelMA for bone regeneration, with the incorporation of nanofillers or other polymers enhancing its resilience and functional performance. Despite promising results, the fabrication of complex structures that mimic the bone architecture and the provision of balanced physical properties for both cell and vasculature growth and proper stiffness for load bearing remain as challenges. In terms of utilizing osteogenic additives, the priority should be on versatile components that promote angiogenesis and osteogenesis while reinforcing the structure for bone tissue engineering applications. This review focuses on recent efforts and advantages of GelMA-based composite biomaterials for bone tissue engineering, covering the literature from the last five years.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
- Wisconsin Center for NanoBioSystems, School of Pharmacy, University of Wisconsin, Madison, Wisconsin 53705, United States
| | - Fatemeh Ijadi
- Department of Chemistry and Nanotechnology, School of Engineering and Science, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| | - Mohammad Hadi Norahan
- Centro de Biotecnología-FEMSA, Tecnológico de Monterrey, Monterrey, Nuevo León 64849, México
| |
Collapse
|
20
|
Pan S, Yin Z, Shi C, Xiu H, Wu G, Heng Y, Zhu Z, Zhang J, Gui J, Yu Z, Liang B. Multifunctional Injectable Hydrogel Microparticles Loaded with miR-29a Abundant BMSCs Derived Exosomes Enhanced Bone Regeneration by Regulating Osteogenesis and Angiogenesis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306721. [PMID: 38018340 DOI: 10.1002/smll.202306721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 10/28/2023] [Indexed: 11/30/2023]
Abstract
The study investigated whether both the osteogenic and angiogenic potential of Exos (Exosomes) can be enhanced by overexpression of exosomal miRNA (microRNA) and to confirm whether Exos loaded in HMPs (Hydrogel microparticles) exert long-term effects during new bone formation. BMSCs and Exos are successfully obtained. In vitro and in vivo experiments confirmed that HDAC4 (Histone deacetylase 4) is inhibited by miR-29a overexpression accompanied by the upregulation of RUNX2 (Runt-related transcription factor 2) and VEGF (Vascular Endothelial Growth Factor), thereby enhancing osteogenic and angiogenic capabilities. The HMP@Exo system is synthesized from HB-PEGDA (Hyperbranched Poly Ethylene Glycol Diacrylate)- and SH-HA (Sulfhydryl-Modified Hyaluronic Acid)-containing Exos using a microfluidic technique. The HMP surface is modified with RGD (Arg-Gly-Asp) peptides to enhance cell adhesion. The system demonstrated good injectability, remarkable compatibility, outstanding cell adhesion properties, and slow degradation capacity, and the sustained release of Agomir-29a-Exos (Exosomes derived from Agomir-29a transfected BMSCs) from HMPs enhanced the proliferation and migration of BMSCs and HUVECs (Human Umbilical Vein Endothelial Cells) while promoting osteogenesis and angiogenesis. Overall, the findings demonstrate that the HMP@Exo system can effectively maintain the activity and half-life of Exos, accompanied by overexpression of miR-29a (microRNA-29a). The injectable system provides an innovative approach for accelerating fracture healing by coupling osteogenesis and angiogenesis.
Collapse
Affiliation(s)
- Shaowei Pan
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Zhaowei Yin
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Chen Shi
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Haonan Xiu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Guanfu Wu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Yongyuan Heng
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Zhangyu Zhu
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| | - Jing Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Jianchao Gui
- Sports Medicine and Joint Surgery, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, P. R. China
| | - Ziyi Yu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical Engineering, Nanjing Tech University, 30 Puzhu South Road, Nanjing, 211816, P. R. China
| | - Bin Liang
- Department of Orthopaedics, Nanjing First Hospital, Nanjing Medical University, 68 Changle Road, Nanjing, 210006, P. R. China
| |
Collapse
|
21
|
De Maeseneer T, Van Damme L, Aktan MK, Braem A, Moldenaers P, Van Vlierberghe S, Cardinaels R. Powdered Cross-Linked Gelatin Methacryloyl as an Injectable Hydrogel for Adipose Tissue Engineering. Gels 2024; 10:167. [PMID: 38534585 DOI: 10.3390/gels10030167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/20/2024] [Indexed: 03/28/2024] Open
Abstract
The tissue engineering field is currently advancing towards minimally invasive procedures to reconstruct soft tissue defects. In this regard, injectable hydrogels are viewed as excellent scaffold candidates to support and promote the growth of encapsulated cells. Cross-linked gelatin methacryloyl (GelMA) gels have received substantial attention due to their extracellular matrix-mimicking properties. In particular, GelMA microgels were recently identified as interesting scaffold materials since the pores in between the microgel particles allow good cell movement and nutrient diffusion. The current work reports on a novel microgel preparation procedure in which a bulk GelMA hydrogel is ground into powder particles. These particles can be easily transformed into a microgel by swelling them in a suitable solvent. The rheological properties of the microgel are independent of the particle size and remain stable at body temperature, with only a minor reversible reduction in elastic modulus correlated to the unfolding of physical cross-links at elevated temperatures. Salts reduce the elastic modulus of the microgel network due to a deswelling of the particles, in addition to triple helix denaturation. The microgels are suited for clinical use, as proven by their excellent cytocompatibility. The latter is confirmed by the superior proliferation of encapsulated adipose tissue-derived stem cells in the microgel compared to the bulk hydrogel. Moreover, microgels made from the smallest particles are easily injected through a 20G needle, allowing a minimally invasive delivery. Hence, the current work reveals that powdered cross-linked GelMA is an excellent candidate to serve as an injectable hydrogel for adipose tissue engineering.
Collapse
Affiliation(s)
- Tess De Maeseneer
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J Box 2424, 3001 Leuven, Belgium
| | - Lana Van Damme
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University (UGent), Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Merve Kübra Aktan
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium
| | - Annabel Braem
- Biomaterials and Tissue Engineering Research Group, Department of Materials Engineering, KU Leuven, Kasteelpark Arenberg 44 Box 2450, 3001 Leuven, Belgium
| | - Paula Moldenaers
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J Box 2424, 3001 Leuven, Belgium
| | - Sandra Van Vlierberghe
- Polymer Chemistry & Biomaterials Group, Centre of Macromolecular Chemistry, Department of Organic and Macromolecular Chemistry, Ghent University (UGent), Krijgslaan 281, S4-Bis, 9000 Ghent, Belgium
| | - Ruth Cardinaels
- Soft Matter, Rheology and Technology, Department of Chemical Engineering, KU Leuven, Celestijnenlaan 200J Box 2424, 3001 Leuven, Belgium
- Processing and Performance of Materials, Department of Mechanical Engineering, TU Eindhoven, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
| |
Collapse
|
22
|
Jia X, Fan X, Chen C, Lu Q, Zhou H, Zhao Y, Wang X, Han S, Ouyang L, Yan H, Dai H, Geng H. Chemical and Structural Engineering of Gelatin-Based Delivery Systems for Therapeutic Applications: A Review. Biomacromolecules 2024; 25:564-589. [PMID: 38174643 DOI: 10.1021/acs.biomac.3c01021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
As a biodegradable and biocompatible protein derived from collagen, gelatin has been extensively exploited as a fundamental component of biological scaffolds and drug delivery systems for precise medicine. The easily engineered gelatin holds great promise in formulating various delivery systems to protect and enhance the efficacy of drugs for improving the safety and effectiveness of numerous pharmaceuticals. The remarkable biocompatibility and adjustable mechanical properties of gelatin permit the construction of active 3D scaffolds to accelerate the regeneration of injured tissues and organs. In this Review, we delve into diverse strategies for fabricating and functionalizing gelatin-based structures, which are applicable to gene and drug delivery as well as tissue engineering. We emphasized the advantages of various gelatin derivatives, including methacryloyl gelatin, polyethylene glycol-modified gelatin, thiolated gelatin, and alendronate-modified gelatin. These derivatives exhibit excellent physicochemical and biological properties, allowing the fabrication of tailor-made structures for biomedical applications. Additionally, we explored the latest developments in the modulation of their physicochemical properties by combining additive materials and manufacturing platforms, outlining the design of multifunctional gelatin-based micro-, nano-, and macrostructures. While discussing the current limitations, we also addressed the challenges that need to be overcome for clinical translation, including high manufacturing costs, limited application scenarios, and potential immunogenicity. This Review provides insight into how the structural and chemical engineering of gelatin can be leveraged to pave the way for significant advancements in biomedical applications and the improvement of patient outcomes.
Collapse
Affiliation(s)
- Xiaoyu Jia
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Xin Fan
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Cheng Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Qianyun Lu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongfeng Zhou
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Yanming Zhao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Sanyang Han
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Hongji Yan
- Department of Medical Cell Biology (MCB), Uppsala University (UU), 751 05 Uppsala, Sweden
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212018, China
| | - Hongya Geng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518075, China
| |
Collapse
|
23
|
Guo A, Zhang S, Yang R, Sui C. Enhancing the mechanical strength of 3D printed GelMA for soft tissue engineering applications. Mater Today Bio 2024; 24:100939. [PMID: 38249436 PMCID: PMC10797197 DOI: 10.1016/j.mtbio.2023.100939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024] Open
Abstract
Gelatin methacrylate (GelMA) hydrogels have gained significant traction in diverse tissue engineering applications through the utilization of 3D printing technology. As an artificial hydrogel possessing remarkable processability, GelMA has emerged as a pioneering material in the advancement of tissue engineering due to its exceptional biocompatibility and degradability. The integration of 3D printing technology facilitates the precise arrangement of cells and hydrogel materials, thereby enabling the creation of in vitro models that simulate artificial tissues suitable for transplantation. Consequently, the potential applications of GelMA in tissue engineering are further expanded. In tissue engineering applications, the mechanical properties of GelMA are often modified to overcome the hydrogel material's inherent mechanical strength limitations. This review provides a comprehensive overview of recent advancements in enhancing the mechanical properties of GelMA at the monomer, micron, and nano scales. Additionally, the diverse applications of GelMA in soft tissue engineering via 3D printing are emphasized. Furthermore, the potential opportunities and obstacles that GelMA may encounter in the field of tissue engineering are discussed. It is our contention that through ongoing technological progress, GelMA hydrogels with enhanced mechanical strength can be successfully fabricated, leading to the production of superior biological scaffolds with increased efficacy for tissue engineering purposes.
Collapse
Affiliation(s)
- Ao Guo
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Shengting Zhang
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Cong Sui
- Department of Trauma and Pediatric Orthopedics, The First Affiliated Hospital of Anhui Medical University, Hefei, 231200, China
| |
Collapse
|
24
|
Huang X, Niu X, Ma Y, Wang X, Su T, He Y, Lu F, Gao J, Chang Q. Hierarchical double-layer microneedles accomplish multicenter skin regeneration in diabetic full-thickness wounds. J Adv Res 2024:S2090-1232(24)00002-X. [PMID: 38218581 DOI: 10.1016/j.jare.2024.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 12/12/2023] [Accepted: 01/03/2024] [Indexed: 01/15/2024] Open
Abstract
INTRODUCTION Managing large chronic wounds presents significant challenges because of inadequate donor sites, infection, and lack of structural support from dermal substitutes. Hydrogels are extensively used in various forms to promote chronic wound healing and provide a three-dimensional spatial structure, through growth factors or cell transport. OBJECTIVES We present a novel multicenter regenerative model that is capable of regenerating and merging simultaneously to form a complete layer of skin. This method significantly reduces wound healing time compared to the traditional centripetal healing model. We believe that our model can improve clinical outcomes and pave the way for further research into regenerative medicine. METHODS We prepared a novel multi-island double-layer microneedle (MDMN) using gelatin-methacryloylchitosan (GelMA-CS). The MDMN was loaded with keratinocytes (KCs) and dermal fibroblasts (FBs). Our aim in this study was to explore the therapeutic potential of MDMN in a total skin excision model. RESULTS The MDMN model replicated the layered structure of full-thickness skin and facilitated tissue regeneration and healing via dual omni-bearing. Multi-island regeneration centres accomplished horizontal multicentric regeneration, while epidermal and dermal cells migrated synchronously from each location. This produced a healing area approximately 4.7 times greater than that of the conventional scratch tests. The MDMN model exhibited excellent antibacterial properties, attributed to the chitosan layer. During wound healing in diabetic mice, the MDMN achieved earlier epidermal coverage and faster wound healing through multi-island regeneration centres and the omnidirectional regeneration mode. The MDMN group displayed an accelerated wound healing rate upon arrival at the destination (0.96 % ± 0.58 % vs. 4.61 % ± 0.32 %). Additionally, the MDMN group exhibited superior vascularization and orderly collagen deposition. CONCLUSION The present study presents a novel skin regeneration model using microneedles as carriers of autologous keratinocytes and dermal fibroblasts, which allows for omni-directional, multi-center, and full-thickness skin regeneration.
Collapse
Affiliation(s)
- Xiaoqi Huang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Xingtang Niu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yuan Ma
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Xinhui Wang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Ting Su
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Yu He
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Feng Lu
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Jianhua Gao
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China
| | - Qiang Chang
- Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou 510515, Guangdong, China.
| |
Collapse
|
25
|
Miao Y, Liu X, Luo J, Yang Q, Chen Y, Wang Y. Double-Network DNA Macroporous Hydrogel Enables Aptamer-Directed Cell Recruitment to Accelerate Bone Healing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2303637. [PMID: 37949678 PMCID: PMC10767401 DOI: 10.1002/advs.202303637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 09/20/2023] [Indexed: 11/12/2023]
Abstract
Recruiting endogenous bone marrow mesenchymal stem cells (BMSCs) in vivo to bone defect sites shows great promise in cell therapies for bone tissue engineering, which tackles the shortcomings of delivering exogenous stem cells, including limited sources, low retention, stemness loss, and immunogenicity. However, it remains challenging to efficiently recruit stem cells while simultaneously directing cell differentiation in the dynamic microenvironment and promoting neo-regenerated tissue ingrowth to achieve augmented bone regeneration. Herein, a synthetic macroporous double-network hydrogel presenting nucleic acid aptamer and nano-inducer enhances BMSCs recruitment, and osteogenic differentiation is demonstrated. An air-in-water template enables the rapid construction of highly interconnective macroporous structures, and the physical self-assembly of DNA strands and chemical cross-linking of gelatin chains synergistically generate a resilient double network. The aptamer Apt19S and black phosphorus nanosheets-specific macroporous hydrogel demonstrate highly efficient endogenous BMSCs recruitment, cell differentiation, and extracellular matrix mineralization. Notably, the enhanced calvarial bone healing with promising matrix mineralization and new bone formation is accompanied by adapting this engineered hydrogel to the bone defects. The findings suggest an appealing material approach overcoming the traditional limitations of cell-delivery therapy that can inspire the future design of next-generation hydrogel for enhanced bone tissue regeneration.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Department of OrthopedicsGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
- Guangdong Cardiovascular InstituteGuangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhou510080China
| | - Xiao Liu
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Jinshui Luo
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Qian Yang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
| | - Yunhua Chen
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006China
| | - Yingjun Wang
- School of Materials Science and EngineeringSouth China University of TechnologyGuangzhou510641China
- National Engineering Research Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Engineering of Guangdong Province and Innovation Center for Tissue Restoration and ReconstructionSouth China University of TechnologyGuangzhou510006China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of EducationSouth China University of TechnologyGuangzhou510006China
| |
Collapse
|
26
|
Huang YH, Chen HA, Chen CH, Liao HT, Kuo CY, Chen JP. Injectable gelatin/glucosamine cryogel microbeads as scaffolds for chondrocyte delivery in cartilage tissue engineering. Int J Biol Macromol 2023; 253:126528. [PMID: 37633562 DOI: 10.1016/j.ijbiomac.2023.126528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/23/2023] [Indexed: 08/28/2023]
Abstract
In this study, we fabricate squeezable cryogel microbeads as injectable scaffolds for minimum invasive delivery of chondrocytes for cartilage tissue engineering applications. The microbeads with different glucosamine concentrations were prepared by combining the water-in-oil emulsion and cryogelation through crosslinking of gelatin with glutaraldehyde in the presence of glucosamine. The physicochemical characterization results show the successful preparation of cryogel microbeads with uniform shape and size, high porosity, large pore size, high water uptake capacity, and good injectability. In vitro analysis indicates proliferation, migration, and differentiated phenotype of rabbit chondrocytes in the cryogel scaffolds. The seeded chondrocytes in the cryogel scaffold can be delivered by injecting through an 18G needle to fully retain the cell viability. Furthermore, the incorporation of glucosamine in the cryogel promoted the differentiated phenotype of chondrocytes in a dose-dependent manner, from cartilage-specific gene expression and protein production. The in vivo study by injecting the cryogel microbeads into the subcutaneous pockets of nude mice indicates good retention ability as well as good biocompatibility and suitable biodegradability of the cryogel scaffold. Furthermore, the injected chondrocyte/cryogel microbead constructs can form ectopic functional neocartilage tissues following subcutaneous implantation in 21 days, as evidenced by histological and immunohistochemical analysis.
Collapse
Affiliation(s)
- Yen-Hsiang Huang
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Huai-An Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Chih-Hao Chen
- Department of Plastic and Reconstructive Surgery, Chang Gung Memorial Hospital at Keelung, Keelung 20401, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Han-Tsung Liao
- Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan
| | - Chang-Yi Kuo
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan
| | - Jyh-Ping Chen
- Department of Chemical and Materials Engineering, Chang Gung University, Kwei-San, Taoyuan 33302, Taiwan; Department of Plastic and Reconstructive Surgery and Craniofacial Research Center, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Department of Neurosurgery, Chang Gung Memorial Hospital at Linkou, Chang Gung University School of Medicine, Kwei-San, Taoyuan 33305, Taiwan; Research Center for Food and Cosmetic Safety, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33305, Taiwan; Department of Materials Engineering, Ming Chi University of Technology, Tai-Shan, New Taipei City 24301, Taiwan.
| |
Collapse
|
27
|
Liu J, Du C, Huang W, Lei Y. Injectable smart stimuli-responsive hydrogels: pioneering advancements in biomedical applications. Biomater Sci 2023; 12:8-56. [PMID: 37969066 DOI: 10.1039/d3bm01352a] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogels have established their significance as prominent biomaterials within the realm of biomedical research. However, injectable hydrogels have garnered greater attention compared with their conventional counterparts due to their excellent minimally invasive nature and adaptive behavior post-injection. With the rapid advancement of emerging chemistry and deepened understanding of biological processes, contemporary injectable hydrogels have been endowed with an "intelligent" capacity to respond to various endogenous/exogenous stimuli (such as temperature, pH, light and magnetic field). This innovation has spearheaded revolutionary transformations across fields such as tissue engineering repair, controlled drug delivery, disease-responsive therapies, and beyond. In this review, we comprehensively expound upon the raw materials (including natural and synthetic materials) and injectable principles of these advanced hydrogels, concurrently providing a detailed discussion of the prevalent strategies for conferring stimulus responsiveness. Finally, we elucidate the latest applications of these injectable "smart" stimuli-responsive hydrogels in the biomedical domain, offering insights into their prospects.
Collapse
Affiliation(s)
- Jiacheng Liu
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Chengcheng Du
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Wei Huang
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| | - Yiting Lei
- Department of Orthopedics, Orthopedic Laboratory of Chongqing Medical University, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
28
|
Carriero VC, Di Muzio L, Petralito S, Casadei MA, Paolicelli P. Cryogel Scaffolds for Tissue-Engineering: Advances and Challenges for Effective Bone and Cartilage Regeneration. Gels 2023; 9:979. [PMID: 38131965 PMCID: PMC10742915 DOI: 10.3390/gels9120979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/07/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
Critical-sized bone defects and articular cartilage injuries resulting from trauma, osteonecrosis, or age-related degeneration can be often non-healed by physiological repairing mechanisms, thus representing a relevant clinical issue due to a high epidemiological incidence rate. Novel tissue-engineering approaches have been proposed as an alternative to common clinical practices. This cutting-edge technology is based on the combination of three fundamental components, generally referred to as the tissue-engineering triad: autologous or allogenic cells, growth-stimulating factors, and a scaffold. Three-dimensional polymer networks are frequently used as scaffolds to allow cell proliferation and tissue regeneration. In particular, cryogels give promising results for this purpose, thanks to their peculiar properties. Cryogels are indeed characterized by an interconnected porous structure and a typical sponge-like behavior, which facilitate cellular infiltration and ingrowth. Their composition and the fabrication procedure can be appropriately tuned to obtain scaffolds that match the requirements of a specific tissue or organ to be regenerated. These features make cryogels interesting and promising scaffolds for the regeneration of different tissues, including those characterized by very complex mechanical and physical properties, such as bones and joints. In this review, state-of-the-art fabrication and employment of cryogels for supporting effective osteogenic or chondrogenic differentiation to allow for the regeneration of functional tissues is reported. Current progress and challenges for the implementation of this technology in clinical practice are also highlighted.
Collapse
Affiliation(s)
| | | | | | | | - Patrizia Paolicelli
- Department of Drug Chemistry and Technologies, Sapienza University of Rome, 00185 Rome, Italy; (V.C.C.); (L.D.M.); (S.P.); (M.A.C.)
| |
Collapse
|
29
|
Yuan S, Yang X, Wang X, Chen J, Tian W, Yang B. Injectable Xenogeneic Dental Pulp Decellularized Extracellular Matrix Hydrogel Promotes Functional Dental Pulp Regeneration. Int J Mol Sci 2023; 24:17483. [PMID: 38139310 PMCID: PMC10743504 DOI: 10.3390/ijms242417483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/09/2023] [Accepted: 12/12/2023] [Indexed: 12/24/2023] Open
Abstract
The present challenge in dental pulp tissue engineering scaffold materials lies in the development of tissue-specific scaffolds that are conducive to an optimal regenerative microenvironment and capable of accommodating intricate root canal systems. This study utilized porcine dental pulp to derive the decellularized extracellular matrix (dECM) via appropriate decellularization protocols. The resultant dECM was dissolved in an acid pepsin solution to form dECM hydrogels. The analysis encompassed evaluating the microstructure and rheological properties of dECM hydrogels and evaluated their biological properties, including in vitro cell viability, proliferation, migration, tube formation, odontogenic, and neurogenic differentiation. Gelatin methacrylate (GelMA) hydrogel served as the control. Subsequently, hydrogels were injected into treated dentin matrix tubes and transplanted subcutaneously into nude mice to regenerate dental pulp tissue in vivo. The results showed that dECM hydrogels exhibited exceptional injectability and responsiveness to physiological temperature. It supported the survival, odontogenic, and neurogenic differentiation of dental pulp stem cells in a 3D culture setting. Moreover, it exhibited a superior ability to promote cell migration and angiogenesis compared to GelMA hydrogel in vitro. Additionally, the dECM hydrogel demonstrated the capability to regenerate pulp-like tissue with abundant blood vessels and a fully formed odontoblast-like cell layer in vivo. These findings highlight the potential of porcine dental pulp dECM hydrogel as a specialized scaffold material for dental pulp regeneration.
Collapse
Affiliation(s)
- Shengmeng Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xueting Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Xiuting Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Jinlong Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Weidong Tian
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - Bo Yang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (S.Y.); (X.W.); (J.C.)
- National Engineering Laboratory for Oral Regenerative Medicine, Engineering Research Center of Oral Translational Medicine, Ministry of Education, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
30
|
Zhao C, Pan B, Wang T, Yang H, Vance D, Li X, Zhao H, Hu X, Yang T, Chen Z, Hao L, Liu T, Wang Y. Advances in NIR-Responsive Natural Macromolecular Hydrogel Assembly Drugs for Cancer Treatment. Pharmaceutics 2023; 15:2729. [PMID: 38140070 PMCID: PMC10747500 DOI: 10.3390/pharmaceutics15122729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/28/2023] [Accepted: 12/01/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer is a serious disease with an abnormal proliferation of organ tissues; it is characterized by malignant infiltration and growth that affects human life. Traditional cancer therapies such as resection, radiotherapy and chemotherapy have a low cure rate and often cause irreversible damage to the body. In recent years, since the traditional treatment of cancer is still very far from perfect, researchers have begun to focus on non-invasive near-infrared (NIR)-responsive natural macromolecular hydrogel assembly drugs (NIR-NMHADs). Due to their unique biocompatibility and extremely high drug encapsulation, coupling with the spatiotemporal controllability of NIR, synergistic photothermal therapy (PTT), photothermal therapy (PDT), chemotherapy (CT) and immunotherapy (IT) has created excellent effects and good prospects for cancer treatment. In addition, some emerging bioengineering technologies can also improve the effectiveness of drug delivery systems. This review will discuss the properties of NIR light, the NIR-functional hydrogels commonly used in current research, the cancer therapy corresponding to the materials encapsulated in them and the bioengineering technology that can assist drug delivery systems. The review provides a constructive reference for the optimization of NIR-NMHAD experimental ideas and its application to human body.
Collapse
Affiliation(s)
- Chenyu Zhao
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Boyue Pan
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Tianlin Wang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - Huazhe Yang
- Department of Biophysics, School of Intelligent Medicine, China Medical University, Shenyang 110122, China; (T.W.); (H.Y.)
| | - David Vance
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- School of Pharmacy, Queen’s University Belfast, Belfast BT7 1NN, UK
| | - Xiaojia Li
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Haiyang Zhao
- Teaching Center for Basic Medical Experiment, China Medical University, Shenyang 110122, China; (X.L.); (H.Z.)
| | - Xinru Hu
- The 1st Clinical Department, China Medical University, Shenyang 110122, China;
| | - Tianchang Yang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Zihao Chen
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Liang Hao
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| | - Ting Liu
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
| | - Yang Wang
- China Medical University—The Queen’s University Belfast Joint College, China Medical University, Shenyang 110122, China; (C.Z.); (B.P.); (D.V.); (T.Y.); (Z.C.)
- Department of Chemistry, School of Forensic Medicine, China Medical University, Shenyang 110122, China;
- Liaoning Province Key Laboratory of Forensic Bio-Evidence Sciences, Shenyang 110122, China
- Center of Forensic Investigation, China Medical University, Shenyang 110122, China
| |
Collapse
|
31
|
Ai Y, Dai F, Li W, Xu F, Yang H, Wu J, Yang K, Li L, Ai F, Song L. Photo-crosslinked bioactive BG/BMSCs@GelMA hydrogels for bone-defect repairs. Mater Today Bio 2023; 23:100882. [PMID: 38161508 PMCID: PMC10755535 DOI: 10.1016/j.mtbio.2023.100882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 01/03/2024] Open
Abstract
The clinical treatments of bone defects remain a challenge. Hydrogels containing bone marrow mesenchymal stem cells (BMSCs) are extensively used to bone regeneration because of excellent biocompatibility and hydrophilicity. However, the insufficient osteo-induction capacity of the BMSC-loaded hydrogels limits their clinical applications. In this study, bio-active glass (BG) and BMSCs were combined with gelatin methacryloyl (GelMA) to fabricate composite hydrogels via photo-crosslinking, and the regulation of bone regeneration was investigated. In vitro experiments showed that the BG/BMSCs@GelMA hydrogel had excellent cytocompatibility and promoted osteogenic differentiation in BMSCs. Furthermore, the BG/BMSCs@GelMA hydrogel was injected into critical-sized calvarial defects, and the results further confirmed its excellent angiogenetic and bone regeneration capacity. In addition, BG/BMSCs@GelMA promoted the polarization of macrophages towards the M2 phenotype. In summary, this novel composite hydrogel demonstrated remarkable potential for application in bone regeneration due to its immunomodulatory, excellent angiogenetic as well as osteo-induction capacity.
Collapse
Affiliation(s)
- Yufeng Ai
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Fang Dai
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Wenfeng Li
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| | - Fancheng Xu
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Hanwen Yang
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Jianxin Wu
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Kaiqiang Yang
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Li Li
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
- The Second Clinical Medical School, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, Jiangxi, 33006, China
| | - Li Song
- Center of Stomatology, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, 33006, China
- The Institute of Periodontal Disease, Nanchang University, Nanchang, Jiangxi, 33006, China
- JXHC Key Laboratory of Periodontology (The Second Affiliated Hospital of Nanchang University), Nanchang, Jiangxi, 33006, China
| |
Collapse
|
32
|
Walsh CM, Wychowaniec JK, Costello L, Brougham DF, Dooley D. An In Vitro and Ex Vivo Analysis of the Potential of GelMA Hydrogels as a Therapeutic Platform for Preclinical Spinal Cord Injury. Adv Healthc Mater 2023; 12:e2300951. [PMID: 37114899 PMCID: PMC11468190 DOI: 10.1002/adhm.202300951] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Indexed: 04/29/2023]
Abstract
Spinal cord injury (SCI) is a devastating condition with no curative therapy currently available. Immunomodulation can be applied as a therapeutic strategy to drive alternative immune cell activation and promote a proregenerative injury microenvironment. Locally injected hydrogels carrying immunotherapeutic cargo directly to injured tissue offer an encouraging treatment approach from an immunopharmacological perspective. Gelatin methacrylate (GelMA) hydrogels are promising in this regard, however, detailed analysis on the immunogenicity of GelMA in the specific context of the SCI microenvironment is lacking. Here, the immunogenicity of GelMA hydrogels formulated with a translationally relevant photoinitiator is analyzed in vitro and ex vivo. 3% (w/v) GelMA, synthesized from gelatin type-A, is first identified as the optimal hydrogel formulation based on mechanical properties and cytocompatibility. Additionally, 3% GelMA-A does not alter the expression profile of key polarization markers in BV2 microglia or RAW264.7 macrophages after 48 h. Finally, it is shown for the first time that 3% GelMA-A can support the ex vivo culture of primary murine organotypic spinal cord slices for 14 days with no direct effect on glial fibrillary acidic protein (GFAP+ ) astrocyte or ionized calcium-binding adaptor molecule 1 (Iba-1+ ) microglia reactivity. This provides evidence that GelMA hydrogels can act as an immunotherapeutic hydrogel-based platform for preclinical SCI.
Collapse
Affiliation(s)
- Ciara M. Walsh
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
- UCD Conway Institute of Biomolecular & Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Jacek K. Wychowaniec
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
- AO Research Institute DavosClavadelerstrasse 8Davos7270Switzerland
| | - Louise Costello
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Dermot F. Brougham
- School of ChemistryUniversity College DublinBelfieldDublinD04 V1W8Ireland
| | - Dearbhaile Dooley
- School of MedicineHealth Sciences CentreUniversity College DublinBelfieldDublinD04 V1W8Ireland
- UCD Conway Institute of Biomolecular & Biomedical ResearchUniversity College DublinBelfieldDublinD04 V1W8Ireland
| |
Collapse
|
33
|
Lukin I, Erezuma I, Garcia-Garcia P, Reyes R, Evora C, Kadumudi FB, Dolatshahi-Pirouz A, Orive G. Sumecton reinforced gelatin-based scaffolds for cell-free bone regeneration. Int J Biol Macromol 2023; 249:126023. [PMID: 37506785 DOI: 10.1016/j.ijbiomac.2023.126023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/30/2023]
Abstract
Bone tissue engineering has risen to tackle the challenges of the current clinical need concerning bone fractures that is already considered a healthcare system problem. Scaffold systems for the repair of this tissue have yielded different combinations including biomaterials with nanotechnology or biological agents. Herein, three-dimensional porous hydrogels were engineered based on gelatin as a natural biomaterial and reinforced with synthetic saponite nanoclays. Scaffolds were biocompatible and shown to enhance the inherent properties of pristine ones, in particular, proved to withstand pressures similar to load-bearing tissues. Studies with murine mesenchymal stem cells found that scaffolds had the potential to proliferate and promote cell differentiation. In vivo experiments were conducted to gain insight about the ability of these cell-free scaffolds to regenerate bone, as well as to determine the role that these nanoparticles in the scaffold could play as a drug delivery system. SDF-1 loaded scaffolds showed the highest percentage of bone formation, which was corroborated by osteogenic markers and new blood vessels. Albeit a first attempt in the field of synthetic nanosilicates, these results suggest that the designed constructs may serve as delivery platforms for biomimetic agents to mend bony defects, circumventing high doses of therapeutics and cell-loading systems.
Collapse
Affiliation(s)
- Izeia Lukin
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Itsasne Erezuma
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Patricia Garcia-Garcia
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Ricardo Reyes
- Department of Biochemistry, Microbiology, Cell Biology and Genetics, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Carmen Evora
- Department of Chemical Engineering and Pharmaceutical Technology, Universidad de La Laguna, 38200 La Laguna, Spain
| | - Firoz Babu Kadumudi
- Department of Health Technology, Technical University of Denmark (DTU), 2800 Kgs. Lyngby, Denmark
| | | | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain; Biomedical Research Networking Centre in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Vitoria-Gasteiz, Spain; BTI-Biotechnology Institute, Vitoria, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain.
| |
Collapse
|
34
|
Dutta SD, Ganguly K, Hexiu J, Randhawa A, Moniruzzaman M, Lim KT. A 3D Bioprinted Nanoengineered Hydrogel with Photoactivated Drug Delivery for Tumor Apoptosis and Simultaneous Bone Regeneration via Macrophage Immunomodulation. Macromol Biosci 2023; 23:e2300096. [PMID: 37087681 DOI: 10.1002/mabi.202300096] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/12/2023] [Indexed: 04/24/2023]
Abstract
One of the significant challenges in bone tissue engineering (BTE) is the healing of traumatic tissue defects owing to the recruitment of local infection and delayed angiogenesis. Herein, a 3D printable multi-functional hydrogel composing polyphenolic carbon quantum dots (CQDs, 100 µg mL-1 ) and gelatin methacryloyl (GelMA, 12 wt%) is reported for robust angiogenesis, bone regeneration and anti-tumor therapy. The CQDs are synthesized from a plant-inspired bioactive molecule, 1, 3, 5-trihydroxybenzene. The 3D printed GelMA-CQDs hydrogels display typical shear-thinning behavior with excellent printability. The fabricated hydrogel displayed M2 polarization of macrophage (Raw 264.7) cells via enhancing anti-inflammatory genes (e.g., IL-4 and IL10), and induced angiogenesis and osteogenesis of human bone mesenchymal stem cells (hBMSCs). The bioprinted hBMSCs are able to produce vessel-like structures after 14 d of incubation. Furthermore, the 3D printed hydrogel scaffolds also show remarkable near infra-red (NIR) responsive properties under 808 nm NIR light (1.0 W cm-2 ) irradiation with controlled release of antitumor drugs (≈49%) at pH 6.5, and thereby killing the osteosarcoma cells. Therefore, it is anticipated that the tissue regeneration and healing ability with therapeutic potential of the GelMA-CQDs scaffolds may provide a promising alternative for traumatic tissue regeneration via augmenting angiogenesis and accelerated immunomodulation.
Collapse
Affiliation(s)
- Sayan Deb Dutta
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Keya Ganguly
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
| | - Jin Hexiu
- Department of Oral and Maxillofacial Surgery, Capital Medical University, Beijing, China
| | - Aayushi Randhawa
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069, Republic of Korea
| | - Md Moniruzzaman
- Department of Chemical and Biological Engineering, Gachon University, Seongnam, 1342, Republic of Korea
| | - Ki-Taek Lim
- Department of Biosystems Engineering, College of Agriculture and Life Sciences, Kangwon National University, Chuncheon, 24341, Republic of Korea
- Interdisciplinary Program in Smart Agriculture, Kangwon National University, Chuncheon, 100069, Republic of Korea
| |
Collapse
|
35
|
Lin X, Fan L, Wang L, Filppula AM, Yu Y, Zhang H. Fabricating biomimetic materials with ice-templating for biomedical applications. SMART MEDICINE 2023; 2:e20230017. [PMID: 39188345 PMCID: PMC11236069 DOI: 10.1002/smmd.20230017] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 05/29/2023] [Indexed: 08/28/2024]
Abstract
The proper organization of cells and tissues is essential for their functionalization in living organisms. To create materials that mimic natural structures, researchers have developed techniques such as patterning, templating, and printing. Although these techniques own several advantages, these processes still involve complexity, are time-consuming, and have high cost. To better simulate natural materials with micro/nanostructures that have evolved for millions of years, the use of ice templates has emerged as a promising method for producing biomimetic materials more efficiently. This article explores the historical approaches taken to produce traditional biomimetic structural biomaterials and delves into the principles underlying the ice-template method and their various applications in the creation of biomimetic materials. It also discusses the most recent biomedical uses of biomimetic materials created via ice templates, including porous microcarriers, tissue engineering scaffolds, and smart materials. Finally, the challenges and potential of current ice-template technology are analyzed.
Collapse
Affiliation(s)
- Xiang Lin
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Lu Fan
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Li Wang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
| | - Anne M. Filppula
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Yunru Yu
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| | - Hongbo Zhang
- Pharmaceutical Sciences LaboratoryÅbo Akademi UniversityTurkuFinland
- Turku Bioscience CentreUniversity of Turku and Åbo Akademi UniversityTurkuFinland
| |
Collapse
|
36
|
Chi H, Qiu Y, Ye X, Shi J, Li Z. Preparation strategy of hydrogel microsphere and its application in skin repair. Front Bioeng Biotechnol 2023; 11:1239183. [PMID: 37555079 PMCID: PMC10405935 DOI: 10.3389/fbioe.2023.1239183] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/12/2023] [Indexed: 08/10/2023] Open
Abstract
In recent years, hydrogel microsphere has attracted much attention due to its great potential in the field of skin repair. This paper reviewed the recent progress in the preparation strategy of hydrogel microsphere and its application in skin repair. In this review, several preparation methods of hydrogel microsphere were summarized in detail. In addition, the related research progress of hydrogel microspheres for skin repair was reviewed, and focused on the application of bioactive microspheres, antibacterial microspheres, hemostatic microspheres, and hydrogel microspheres as delivery platforms (hydrogel microspheres as a microcarrier of drugs, bioactive factors, or cells) in the field of skin repair. Finally, the limitations and future prospects of the development of hydrogel microspheres and its application in the field of skin repair were presented. It is hoped that this review can provide a valuable reference for the development of the preparation strategy of hydrogel microspheres and promote the application of hydrogel microspheres in skin repair.
Collapse
Affiliation(s)
- Honggang Chi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| | - Yunqi Qiu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Xiaoqing Ye
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Jielin Shi
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
| | - Ziyi Li
- The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, China
| |
Collapse
|
37
|
Li C, Wang J, Yang W, Yu K, Hong J, Ji X, Yao M, Li S, Lu J, Chen Y, Yan S, Wu H, Ma C, Yu X, Jiang G, Liu A. 3D-printed hydrogel particles containing PRP laden with TDSCs promote tendon repair in a rat model of tendinopathy. J Nanobiotechnology 2023; 21:177. [PMID: 37268942 DOI: 10.1186/s12951-023-01892-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 04/11/2023] [Indexed: 06/04/2023] Open
Abstract
Long-term chronic inflammation after Achilles tendon injury is critical for tendinopathy. Platelet-rich plasma (PRP) injection, which is a common method for treating tendinopathy, has positive effects on tendon repair. In addition, tendon-derived stem cells (TDSCs), which are stem cells located in tendons, play a major role in maintaining tissue homeostasis and postinjury repair. In this study, injectable gelatine methacryloyl (GelMA) microparticles containing PRP laden with TDSCs (PRP-TDSC-GM) were prepared by a projection-based 3D bioprinting technique. Our results showed that PRP-TDSC-GM could promote tendon differentiation in TDSCs and reduce the inflammatory response by downregulating the PI3K-AKT pathway, thus promoting the structural and functional repair of tendons in vivo.
Collapse
Affiliation(s)
- Congsun Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Jie Wang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Weinan Yang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Kang Yu
- State Key Laboratory of Fluid Power and Mechatronic Systems, School of Mechanical Engineering, Hangzhou, Zhejiang, PR China
| | - Jianqiao Hong
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Xiaoxiao Ji
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
| | - Minjun Yao
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Sihao Li
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Jinwei Lu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Yazhou Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Shigui Yan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Haobo Wu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Chiyuan Ma
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China
| | - Xiaohua Yu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| | - Guangyao Jiang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| | - An Liu
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou City, Zhejiang Province, PR China.
- Orthopedics Research Institute of Zhejiang University, Hangzhou City, Zhejiang Province, PR China.
- Key Laboratory of Motor System Disease Research and Precision Therapy of Zhejiang Province, Hangzhou City, Zhejiang Province, PR China.
- Clinical Research Center of Motor System Disease of Zhejiang Province, Hangzhou, PR China.
| |
Collapse
|
38
|
Guo C, Zhang T, Tang J, Gao C, Zhou Z, Li C. Construction of PLGA Porous Microsphere-Based Artificial Pancreatic Islets Assisted by the Cell Centrifugation Perfusion Technique. ACS OMEGA 2023; 8:15288-15297. [PMID: 37151553 PMCID: PMC10157690 DOI: 10.1021/acsomega.3c00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 04/06/2023] [Indexed: 05/09/2023]
Abstract
Pancreatic islet transplantation is a promising treatment that could potentially reverse diabetes, but its clinical applicability is severely limited by a shortage of organ donors. Various cell loading approaches using polymeric porous microspheres (PMs) have been developed for tissue regeneration; however, PM-based multicellular artificial pancreatic islets' construction has been scarcely reported. In this study, MIN6 (a mouse insulinoma cell line) and MS1 (a mouse pancreatic islet endothelial cell line) cells were seeded into poly(lactic-co-glycolic acid) (PLGA) PMs via an upgraded centrifugation-based cell perfusion seeding technique invented and patented by our group. Cell morphology, distribution, viability, migration, and proliferation were all evaluated. Results from glucose-stimulated insulin secretion (GSIS) assay and RNA-seq analysis suggested that MIN6 and MS1-loaded PLGA PMs exhibited better glucose responsiveness, which is partly attributable to vascular formation during PM-dependent islet construction. The present study suggests that the PLGA PM-based artificial pancreatic islets may provide an alternative strategy for the potential treatment of diabetes in the future.
Collapse
Affiliation(s)
- Chuanjia Guo
- Biomedical
Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union
Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
| | - Tong Zhang
- Clinical
Laboratory, Tianjin Hospital, Tianjin 300211, China
| | - Jianghai Tang
- Biomedical
Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union
Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
| | - Chang Gao
- Biomedical
Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union
Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
| | - Zhimin Zhou
- Biomedical
Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union
Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
- ,
| | - Chen Li
- Biomedical
Barriers Research Center, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences & Peking Union
Medical College, Tianjin Key Laboratory of Biomedical Materials, Tianjin 300192, China
| |
Collapse
|
39
|
Jin S, Wang Y, Wu X, Li Z, Zhu L, Niu Y, Zhou Y, Liu Y. Young Exosome Bio-Nanoparticles Restore Aging-Impaired Tendon Stem/Progenitor Cell Function and Reparative Capacity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211602. [PMID: 36779444 DOI: 10.1002/adma.202211602] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/19/2023] [Indexed: 05/05/2023]
Abstract
Aging impairs tendon stem/progenitor cell function and tendon homeostasis, however, effective treatments for aging-induced tendon diseases are lacking. Exosomes are naturally derived nanoparticles that contain bioactive molecules, and therefore, have attracted great interest in tissue engineering and regenerative medicine. In this study, it is shown that young exosomes secreted by stem cells from human exfoliated deciduous teeth (SHED-Exos) possess abundant anti-aging signals. These young bio-nanoparticles can alleviate the aging phenotypes of aged tendon stem/progenitor cells (AT-SCs) and maintain their tenogenic capacity. Mechanistically, SHED-Exos modulate histone methylation and inhibit nuclear factor-κB to reverse AT-SC aging. In a naturally aging mouse model, systemic administration of SHED-Exo bio-nanoparticles retards tendon degeneration. Interestingly, local delivery of SHED-Exos-loaded microspheres confers anti-aging phenotypes, including reduced senescent cells and decreased ectopic bone formation, thereby functionally and structurally rescuing endogenous tendon regeneration and repair capacity in aged rats. Overall, SHED-Exos, as natural bioactive nanoparticles, have promising translational and therapeutic potential for aging-related diseases.
Collapse
Affiliation(s)
- Shanshan Jin
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yu Wang
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Xiaolan Wu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Zixin Li
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Lisha Zhu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yuting Niu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yongsheng Zhou
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| | - Yan Liu
- Laboratory of Biomimetic Nanomaterials, Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center for Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing Key Laboratory of Digital Stomatology, Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health, NMPA Key Laboratory for Dental Materials, Beijing, 100081, P. R. China
| |
Collapse
|
40
|
Wang Y, Yuan Z, Pang Y, Zhang D, Li G, Zhang X, Yu Y, Yang X, Cai Q. Injectable, High Specific Surface Area Cryogel Microscaffolds Integrated with Osteoinductive Bioceramic Fibers for Enhanced Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2023; 15:20661-20676. [PMID: 37083252 DOI: 10.1021/acsami.3c00192] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic-inorganic composites with high specific surface area and osteoinductivity provide a suitable microenvironment for cell ingrowth and effective ossification, which could greatly promote bone regeneration. Here, we report gelatin methacryloyl (GelMA) cryogel microspheres that are reinforced with hydroxyapatite (HA) nanowires and calcium silicate (CS) nanofibers to achieve the goal. The prepared composite cryogel microspheres with open porous structure and rough surface greatly facilitate cell anchoring, simultaneously exhibiting excellent injectability. Compared to the only HA- or CS-containing counterparts, the GelMA cryogel microspheres composited with HA:CS (termed as GMHC) achieve sustained release of bioactive Ca, P, and Si elements, which are conducive to osteogenic differentiation of bone marrow mesenchymal stromal cells (BMSCs). These composite microspheres can prevent from forming peralkalic conditions, which is beneficial for cell growth. After injection of cryogel microspheres into rat calvarial defects, neo-bone tissue grows into their pores, showing tight integration. The embedded bioceramic components significantly promote bone regeneration, with the GMHC achieving the best regenerative outcomes. Promisingly, porous organic-inorganic composite cryogel microspheres, with high specific surface area, biodegradability, and osteoinductivity, can act as injectable microscaffolds to repair bone defects with enhanced efficiency, which may widen the scaffold strategy for bone tissue engineering.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Zuoying Yuan
- Department of Mechanics and Engineering Science, College of Engineering, Peking University, Beijing 100871, China
| | - Yanyun Pang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Daixing Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Guangyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xu Zhang
- School of Stomatology, Hospital of Stomatology, Tianjin Medical University, Tianjin 300070, China
| | - Yingjie Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaoping Yang
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| | - Qing Cai
- State Key Laboratory of Organic-Inorganic Composites, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China
| |
Collapse
|
41
|
Yu F, Pan J, ur Rehman Khan A, Zhao B, Yuan Z, Cai P, Li XL, EL-Newehy M, EL-Hamshary H, Morsi Y, Sun B, Cong R, Mo X. Evaluation of Natural Protein-based Nanofiber Composite Photocrosslinking Hydrogel for skin wound regeneration. Colloids Surf B Biointerfaces 2023; 226:113292. [PMID: 37028231 DOI: 10.1016/j.colsurfb.2023.113292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023]
Abstract
Protein based photocrosslinking hydrogels with nanofiber dispersions were reported to be an effective wound dressing. In this study, two kinds of protein (gelatin and decellularized dermal matrix) were modified to obtain GelMA and ddECMMA, respectively. Poly(ε-caprolactone) nanofiber dispersions (PCLPBA) and thioglycolic acid-modified chitosan (TCS) were added into GelMA solution and ddECMMA solution, respectively. After photocrosslinking, four kinds of hydrogel (GelMA, GTP4, DP and DTP4) were fabricated. The hydrogels showed excellent physico-chemical property, biocompatibility and negligible cytotoxicity. When applied on the full-thickness cutaneous deficiency of SD rats, hydrogel treated groups exhibited an enhanced wound healing effect than Blank group. Besides, the histological staining of H&E and Masson's showed that hydrogels groups with PCLPBA and TCS (GTP4 and DTP4) improved wound healing. Furthermore, GTP4 group performed better healing effect than other groups, which had great potential in skin wound regeneration.
Collapse
|
42
|
Zheng Y, Chen H, Lin X, Li M, Zhao Y, Shang L. Scalable Production of Biomedical Microparticles via High-Throughput Microfluidic Step Emulsification. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206007. [PMID: 36725312 DOI: 10.1002/smll.202206007] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 12/24/2022] [Indexed: 06/18/2023]
Abstract
Drug microcarriers are widely used in disease treatment, and microfluidics is well established in the preparation of microcarrier particles. A proper design of the microfluidic platform toward scalable production of drug microcarriers can extend its application values in wound healing, where large numbers of microcarriers are required. Here, a microfluidic step emulsification method for the preparation of monodisperse droplets is presented. The droplet size depends primarily on the microchannel depth rather than flow rate, making the system robust for high-throughput production of droplets and hydrogel microparticles. Based on this platform, basic fibroblast growth factor (bFGF) is uniformly encapsulated in the microparticles, and black phosphorus (BP) is incorporated for controllable release via near-infrared (NIR) stimulation. The microparticles serve as drug carriers to be applied to the wound site, inducing angiogenesis and collagen deposition, thereby accelerating wound repair. These results indicate that the step emulsification technique provides a promising solution to scalable production of drug microcarriers for wound healing as well as tissue regeneration.
Collapse
Affiliation(s)
- Yazhi Zheng
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Hanxu Chen
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Xiang Lin
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Minli Li
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yuanjin Zhao
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210023, China
| | - Luoran Shang
- Department of Rheumatology and Immunology, Institute of Translational Medicine, Nanjing Drum Tower Hospital, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, and the Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology, Institutes of Biomedical Sciences), Fudan University, Shanghai, China
| |
Collapse
|
43
|
Rana D, Colombani T, Saleh B, Mohammed HS, Annabi N, Bencherif SA. Engineering injectable, biocompatible, and highly elastic bioadhesive cryogels. Mater Today Bio 2023; 19:100572. [PMID: 36880083 PMCID: PMC9984686 DOI: 10.1016/j.mtbio.2023.100572] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 01/29/2023] [Accepted: 01/31/2023] [Indexed: 02/04/2023] Open
Abstract
The extracellular matrix (ECM), an integral component of all organs, is inherently tissue adhesive and plays a pivotal role in tissue regeneration and remodeling. However, man-made three-dimensional (3D) biomaterials that are designed to mimic ECMs do not intrinsically adhere to moisture-rich environments and often lack an open macroporous architecture required for facilitating cellularization and integration with the host tissue post-implantation. Furthermore, most of these constructs usually entail invasive surgeries and potentially a risk of infection. To address these challenges, we recently engineered biomimetic and macroporous cryogel scaffolds that are syringe injectable while exhibiting unique physical properties, including strong bioadhesive properties to tissues and organs. These biomimetic catechol-containing cryogels were prepared from naturally-derived polymers such as gelatin and hyaluronic acid and were functionalized with mussel-inspired dopamine (DOPA) to impart bioadhesive properties. We found that using glutathione as an antioxidant and incorporating DOPA into cryogels via a PEG spacer arm led to the highest tissue adhesion and improved physical properties overall, whereas DOPA-free cryogels were weakly tissue adhesive. As shown by qualitative and quantitative adhesion tests, DOPA-containing cryogels were able to adhere strongly to several animal tissues and organs such as the heart, small intestine, lung, kidney, and skin. Furthermore, these unoxidized (i.e., browning-free) and bioadhesive cryogels showed negligible cytotoxicity toward murine fibroblasts and prevented the ex vivo activation of primary bone marrow-derived dendritic cells. Finally, in vivo data suggested good tissue integration and a minimal host inflammatory response when subcutaneously injected in rats. Collectively, these minimally invasive, browning-free, and strongly bioadhesive mussel-inspired cryogels show great promise for various biomedical applications, potentially in wound healing, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Devyesh Rana
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Thibault Colombani
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Bahram Saleh
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Nasim Annabi
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sidi A. Bencherif
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
- Department of Bioengineering, Northeastern University, Boston, MA, USA
- Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, USA
- Sorbonne University, UTC CNRS UMR 7338, Biomechanics and Bioengineering (BMBI), University of Technology of Compiègne, Compiègne, France
| |
Collapse
|
44
|
Li X, Li X, Yang J, Lin J, Zhu Y, Xu X, Cui W. Living and Injectable Porous Hydrogel Microsphere with Paracrine Activity for Cartilage Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207211. [PMID: 36651038 DOI: 10.1002/smll.202207211] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 12/31/2022] [Indexed: 06/17/2023]
Abstract
Paracrine is an important mechanism in mesenchymal stem cells (MSCs) that promotes tissue regeneration. However, anoikis is attributed to unsuitable adhesion microenvironment hindered this paracrine effect. In this study, a living and injectable porous hydrogel microsphere with long-term paracrine activity is constructed via the freeze-drying microfluidic technology and the incorporation of platelet-derived growth factor-BB (PDGF-BB) and exogenous MSCs. Benefiting from the porous structure and superior mechanical property of methacrylate gelatin (GelMA) hydrogel microspheres (GMs), exogenous stem cells are able to adhere and proliferate on GMs, thereby facilitating cell-to-extracellular matrix (ECM) and cell-to-cell interactions and enhancing paracrine effect. Furthermore, the sustained release of PDGF-BB can recruit endogenous MSCs to prolong the paracrine activity of the living GMs. In vitro and in vivo experiments validated that the living GMs exhibit superior secretion properties and anti-inflammatory efficacy and can attenuate osteoarthritis (OA) progression by favoring the adherent microenvironment and utilizing the synergistic effect of exogenous and endogenous MSCs. Overall, a living injectable porous hydrogel microsphere that can enhance the paracrine activity of stem cells is fabricated and anticipated to hold the potential of future clinical translation in OA and other diseases.
Collapse
Affiliation(s)
- Xingchen Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiaoxiao Li
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jielai Yang
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Jiawei Lin
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Yuan Zhu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Xiangyang Xu
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases, Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai, 200025, P. R. China
| |
Collapse
|
45
|
Chen W, Zhang H, Zhou Q, Zhou F, Zhang Q, Su J. Smart Hydrogels for Bone Reconstruction via Modulating the Microenvironment. RESEARCH (WASHINGTON, D.C.) 2023; 6:0089. [PMID: 36996343 PMCID: PMC10042443 DOI: 10.34133/research.0089] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 02/14/2023] [Indexed: 02/18/2023]
Abstract
Rapid and effective repair of injured or diseased bone defects remains a major challenge due to shortages of implants. Smart hydrogels that respond to internal and external stimuli to achieve therapeutic actions in a spatially and temporally controlled manner have recently attracted much attention for bone therapy and regeneration. These hydrogels can be modified by introducing responsive moieties or embedding nanoparticles to increase their capacity for bone repair. Under specific stimuli, smart hydrogels can achieve variable, programmable, and controllable changes on demand to modulate the microenvironment for promoting bone healing. In this review, we highlight the advantages of smart hydrogels and summarize their materials, gelation methods, and properties. Then, we overview the recent advances in developing hydrogels that respond to biochemical signals, electromagnetic energy, and physical stimuli, including single, dual, and multiple types of stimuli, to enable physiological and pathological bone repair by modulating the microenvironment. Then, we discuss the current challenges and future perspectives regarding the clinical translation of smart hydrogels.
Collapse
Affiliation(s)
- Weikai Chen
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- School of Medicine, Shanghai University, Shanghai 200444, P. R. China
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, P. R. China
| | - Hao Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Qirong Zhou
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
- Department of Orthopedics Trauma, Changhai Hospital, Naval Medical University, Shanghai 200433, P. R. China
| | - Fengjin Zhou
- Department of Orthopaedics, Honghui Hospital, Xi’an Jiao Tong University, Xi’an 710000, P. R. China
| | - Qin Zhang
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| | - Jiacan Su
- Institute of Translational Medicine, Shanghai University, Shanghai 200444, P. R. China
- Organoid Research Center, Shanghai University, Shanghai 200444, P. R. China
- National Center for Translational Medicine (Shanghai), Shanghai University Branch, Shanghai 200444, P. R. China
| |
Collapse
|
46
|
Tang L, Zhao C, Liu Y, Zhou J, Dong Y, Huang J, Yang T, Xiao H, Liu D, Wang S, Cai H. GelMA Hydrogel Loaded with Extracellular Vesicles Derived from Umbilical Cord Mesenchymal Stem Cells for Promoting Cutaneous Diabetic Wound Healing. ACS OMEGA 2023; 8:10030-10039. [PMID: 36969465 PMCID: PMC10034996 DOI: 10.1021/acsomega.2c07291] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Chronic diabetic wounds have become a significant cause of disability worldwide. It is highly desired to develop effective therapies that can promote the rapid healing of diabetic wounds. Owing to the outstanding hydrophilic and water-retaining properties, hydrogels could accelerate the healing process. Extracellular vesicles (EVs) have shown the ability to promote cell regeneration and angiogenesis. In this study, we chose a gelatin methacryloyl (GelMA) hydrogel, a kind of biomaterial characteristic of good biocompatibility, to load the EVs derived from umbilical cord mesenchymal stem cells (UCMSCs) in order to have a long-lasting effect by consistent release of EVs. Then, the hydrogel with EVs was used to treat diabetic wounds in rat models. Nuclear magnetic resonance spectroscopy and scanning electron microscopy were used to characterize the synthesis of the hydrogel; cell experiments, animal experiments, and histological staining were used to evaluate the function of the hydrogel with EVs. The results show that the GelMA hydrogel incorporated with the UCMSC-derived EVs exhibits unique physicochemical properties, excellent biocompatibility, and much enhanced therapeutic effects for diabetic wounds.
Collapse
Affiliation(s)
- Lizong Tang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Congrui Zhao
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yufei Liu
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jie Zhou
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Yunsheng Dong
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Jiaxing Huang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Tingting Yang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hui Xiao
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Dingbin Liu
- Key
Laboratory of Medicinal Chemical Biology, Research Center for Analytical
Sciences, Tianjin Key Laboratory of Molecular Recognition and Biosensing,
and Institute of Polymer Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Shufang Wang
- Key
Laboratory of Bioactive Materials for Ministry of Education, College
of Life Sciences, Nankai University, Tianjin 300071, China
| | - Hong Cai
- Department
of Dermatology, Air Force Medical Center,
PLA, Beijing 100142, P. R. China
| |
Collapse
|
47
|
Four-Dimensional Printing and Shape Memory Materials in Bone Tissue Engineering. Int J Mol Sci 2023; 24:ijms24010814. [PMID: 36614258 PMCID: PMC9821376 DOI: 10.3390/ijms24010814] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/24/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The repair of severe bone defects is still a formidable clinical challenge, requiring the implantation of bone grafts or bone substitute materials. The development of three-dimensional (3D) bioprinting has received considerable attention in bone tissue engineering over the past decade. However, 3D printing has a limitation. It only takes into account the original form of the printed scaffold, which is inanimate and static, and is not suitable for dynamic organisms. With the emergence of stimuli-responsive materials, four-dimensional (4D) printing has become the next-generation solution for biological tissue engineering. It combines the concept of time with three-dimensional printing. Over time, 4D-printed scaffolds change their appearance or function in response to environmental stimuli (physical, chemical, and biological). In conclusion, 4D printing is the change of the fourth dimension (time) in 3D printing, which provides unprecedented potential for bone tissue repair. In this review, we will discuss the latest research on shape memory materials and 4D printing in bone tissue repair.
Collapse
|
48
|
Wang C, Wang J, Zhang Z, Wang Q, Shang L. DNA-Polyelectrolyte Composite Responsive Microparticles for Versatile Chemotherapeutics Cleaning. RESEARCH (WASHINGTON, D.C.) 2023; 6:0083. [PMID: 36939415 PMCID: PMC10017331 DOI: 10.34133/research.0083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/12/2023] [Indexed: 02/16/2023]
Abstract
Drug therapy is among the most widely used methods in disease treatment. However, there remains a trade-off problem between drug dosage and toxicity. Blood purification by adsorption of excessive drugs during clinical treatment could be a solution for enhancing therapeutic efficacy while maintaining normal body function. Here, inspired by the intrinsic action mechanism of chemotherapeutic agents in targeting DNA in the cell nucleus, we present DNA-polyelectrolyte composite responsive microparticles for chemotherapeutics cleaning. The presence of DNA in the microparticles enabled the adsorption of multiple common chemotherapy drugs. Moreover, the microparticles are endowed with a porous structure and a photothermal-responsive ability, both of which contribute to improved adsorption by enhancing the contact of the microparticles with the drug solution. On the basis of that, the microparticles are integrated into a herringbone-structured microfluidic chip. The fluid mixing capacity and the enhanced drug cleaning efficiency of the microfluidic platform are validated on-chip. These results indicate the value of the DNA-polyelectrolyte composite responsive microparticles for drug capture and blood purification. We believe the microparticle-integrated microfluidic platform could provide a solution for settling the dosage-toxicity trade-off problems in chemotherapy.
Collapse
|
49
|
Hydrogel-Based Tissue-Mimics for Vascular Regeneration and Tumor Angiogenesis. Regen Med 2023. [DOI: 10.1007/978-981-19-6008-6_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
50
|
Jiao Y, Niu Y, Chen X, Luo M, Huang S, Cao T, Shi G, Wei A, Huang J. Gelatin Microspheres Loaded with Wharton's Jelly Mesenchymal Stem Cells Promote Acute Full-Thickness Skin Wound Healing and Regeneration in Mice. Adv Wound Care (New Rochelle) 2022; 12:371-386. [PMID: 36245193 DOI: 10.1089/wound.2022.0034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Objective: At present, there is an urgent need to develop a novel and practical therapeutic approach to accelerate the healing of acute wounds. Mesenchymal stem cell (MSC)-based therapy is emerging as a promising therapeutic approach for acute skin wounds. However, there are still challenges in clinical application of this strategy, such as low survivability, low retention time, and less engraftment in skin wounds. Approach: Wharton's jelly mesenchymal stem cells (WJMSCs) were seeded into three-dimensional (3D) gelatin microspheres (GMs) to identify the biocompatibility of GMs. WJMSCs were embedded in GMs and then encapsulated with Pluronic F-127 (PF-127) and sodium ascorbyl phosphate (SAP) combination to transplant onto acute full-thickness skin wound in mice. Histology, immunohistochemistry, and immunofluorescence assay were used to investigate the skin wound healing, dermis regeneration, collagen deposition, cell proliferation, and neovascularization. Results: Three-dimensional GM had strong biocompatibility, compared with two-dimensional adherent culturing, GM loading increased the cell viability and proliferation ability of WJMSCs. WJMSCs+GM+PF-127+SAP transplantation increased skin wound healing rate, dermis regeneration, and type III collagen deposition through improving macrophage polarization, cell proliferation, neovascularization, cell retention, and engraftment at skin wound site. Innovation: The effective 3D encapsulation technology for WJMSCs solved the main problems of cell activity and residence time during MSC transplantation. WJMSCs+GM+PF-127+SAP transplantation will be a new and effective MSC biomaterials-based therapeutic strategy for acute skin traumatic wounds. Conclusion: WJMSCs+GM+PF-127+SAP transplantation facilitated acute full-thickness skin wound healing and regeneration and might be a new and effective therapy for acute skin traumatic wounds.
Collapse
Affiliation(s)
- Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Tianqi Cao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Guang Shi
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Aisheng Wei
- Foshan Hospital of Traditional Chinese Medicine, Guangzhou University of Chinese Medicine, Foshan, China
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China.,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|