1
|
Liu J, Zhang Y, Dou H, Tsai BK, Choudhury A, Wang H. Self-Assembled TiN-Metal Nanocomposites Integrated on Flexible Mica Substrates towards Flexible Devices. SENSORS (BASEL, SWITZERLAND) 2024; 24:4863. [PMID: 39123909 PMCID: PMC11314696 DOI: 10.3390/s24154863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024]
Abstract
The integration of nanocomposite thin films with combined multifunctionalities on flexible substrates is desired for flexible device design and applications. For example, combined plasmonic and magnetic properties could lead to unique optical switchable magnetic devices and sensors. In this work, a multiphase TiN-Au-Ni nanocomposite system with core-shell-like Au-Ni nanopillars embedded in a TiN matrix has been demonstrated on flexible mica substrates. The three-phase nanocomposite film has been compared with its single metal nanocomposite counterparts, i.e., TiN-Au and TiN-Ni. Magnetic measurement results suggest that both TiN-Au-Ni/mica and TiN-Ni/mica present room-temperature ferromagnetic property. Tunable plasmonic property has been achieved by varying the metallic component of the nanocomposite films. The cyclic bending test was performed to verify the property reliability of the flexible nanocomposite thin films upon bending. This work opens a new path for integrating complex nitride-based nanocomposite designs on mica towards multifunctional flexible nanodevice applications.
Collapse
Affiliation(s)
- Juncheng Liu
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA (B.K.T.); (A.C.)
| | - Yizhi Zhang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA (B.K.T.); (A.C.)
| | - Hongyi Dou
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA (B.K.T.); (A.C.)
| | - Benson Kunhung Tsai
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA (B.K.T.); (A.C.)
| | - Abhijeet Choudhury
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA (B.K.T.); (A.C.)
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA (B.K.T.); (A.C.)
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
2
|
Carvalho WOF, Oliveira ON, Mejía-Salazar JR. Magnetochiroptical nanocavities in hyperbolic metamaterials enable sensing down to the few-molecule level. J Chem Phys 2024; 160:071104. [PMID: 38380755 DOI: 10.1063/5.0183806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Accepted: 01/28/2024] [Indexed: 02/22/2024] Open
Abstract
In this work, we combine the concepts of magnetic circular dichroism, nanocavities, and magneto-optical hyperbolic metamaterials (MO-HMMs) to demonstrate an approach for sensing down to a few molecules. Our proposal comprises a multilayer MO-HMM with a square, two-dimensional arrangement of nanocavities. The magnetization of the system is considered in polar configuration, i.e., in the plane of polarization and perpendicular to the plane of the multilayer structure. This allows for magneto-optical chirality to be induced through the polar magneto-optical Kerr effect, which is exhibited by reflected light from the nanostructure. Numerical analyses under the magnetization saturation condition indicate that magnetic circular dichroism peaks can be used instead of reflectance dips to monitor refractive index changes in the analyte region. Significantly, we obtained a relatively high sensitivity value of S = 40 nm/RIU for the case where refractive index changes are limited to the volume inside nanocavities, i.e., in the limit of a few molecules (or ultralow concentrations), while a very large sensitivity of S = 532 nm/RIU is calculated for the analyte region distributed along the entire superstrate layer.
Collapse
Affiliation(s)
- William O F Carvalho
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - Osvaldo N Oliveira
- Sao Carlos Institute of Physics, University of Sao Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | - J R Mejía-Salazar
- National Institute of Telecommunications (Inatel), Santa Rita do Sapucaí, MG 37540-000, Brazil
| |
Collapse
|
3
|
Lobet M, Kinsey N, Liberal I, Caglayan H, Huidobro PA, Galiffi E, Mejía-Salazar JR, Palermo G, Jacob Z, Maccaferri N. New Horizons in Near-Zero Refractive Index Photonics and Hyperbolic Metamaterials. ACS PHOTONICS 2023; 10:3805-3820. [PMID: 38027250 PMCID: PMC10655250 DOI: 10.1021/acsphotonics.3c00747] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 10/03/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023]
Abstract
The engineering of the spatial and temporal properties of both the electric permittivity and the refractive index of materials is at the core of photonics. When vanishing to zero, those two variables provide efficient knobs to control light-matter interactions. This Perspective aims at providing an overview of the state of the art and the challenges in emerging research areas where the use of near-zero refractive index and hyperbolic metamaterials is pivotal, in particular, light and thermal emission, nonlinear optics, sensing applications, and time-varying photonics.
Collapse
Affiliation(s)
- Michaël Lobet
- Department
of Physics and Namur Institute of Structured Materials, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- John
A. Paulson School of Engineering and Applied Sciences, Harvard University, 9 Oxford Street, Cambridge, Massachusetts 02138, United States
| | - Nathaniel Kinsey
- Department
of Electrical and Computer Engineering, Virginia Commonwealth University, Richmond, Virginia 23284, United States
| | - Iñigo Liberal
- Department
of Electrical, Electronic and Communications Engineering, Institute
of Smart Cities (ISC), Public University
of Navarre (UPNA), Pamplona 31006, Spain
| | - Humeyra Caglayan
- Faculty
of Engineering and Natural Science, Photonics, Tampere University, 33720 Tampere, Finland
| | - Paloma A. Huidobro
- Departamento
de Física Téorica de la Materia Condensada and Condensed
Matter Physics Center (IFIMAC), Universidad
Autónoma de Madrid, E-28049 Madrid, Spain
- Instituto
de Telecomunicações, Instituto
Superior Técnico-University of Lisbon, Avenida Rovisco Pais 1, Lisboa, 1049-001, Portugal
| | - Emanuele Galiffi
- Photonics
Initiative, Advanced Science Research Center, City University of New York, New
York, New York 10027, United States
| | | | - Giovanna Palermo
- Department
of Physics, NLHT Lab, University of Calabria, 87036 Rende, Italy
- CNR NANOTEC-Institute
of Nanotechnology, Rende (CS), 87036 Rende, Italy
| | - Zubin Jacob
- Elmore
Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Birck
Nanotechnology Center, Purdue University, West Lafayette, Indiana 47907, United States
| | - Nicolò Maccaferri
- Department
of Physics, Umeå University, Linnaeus väg 24, 90187 Umeå, Sweden
- Department
of Physics and Materials Science, University
of Luxembourg, 162a avenue
de la Faïencerie, L-1511 Luxembourg, Luxembourg
| |
Collapse
|
4
|
Zhang X, Meng WJ, Meng AC. Chemical potential gradient induced formation of Kirkendall voids at the epitaxial TiN/MgO interface. NANOSCALE 2023; 15:13086-13093. [PMID: 37498524 DOI: 10.1039/d3nr01860a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
We report the observation of Kirkendall voids at the epitaxial titanium nitride (TiN)/magnesium oxide(MgO)(001) interface. While epitaxial growth of TiN on MgO has been known for years, many reports show a perfectly sharp epitaxial interface. Because TiN is a prototypical diffusion barrier material, observing the consequence of rapid diffusion at a TiN interface is interesting. Structural characterization of the interface using X-ray diffraction and electron microscopy confirms the diffuse nature of the interface. Rectangular voids that form at the TiN/MgO(001) interface and extend into both TiN and MgO result from a large chemical potential gradient at the interface, which contributes a strong chemical driving force for diffusion. The spatial localization of the observed voids is limited to within ∼10 nm from the interface, consistent with a chemical potential gradient driving force. A composition gradient on the nanometer scale is also observed. Observation of Kirkendall voids at this nitride/oxide interface suggests possibilities for engineering oxygen and nitrogen vacancies at thin film interfaces.
Collapse
Affiliation(s)
- Xiaoman Zhang
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - W J Meng
- Department of Mechanical and Industrial Engineering, Louisiana State University, Baton Rouge, LA 70803, USA.
| | - Andrew C Meng
- Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
5
|
Song J, Zhang D, Lu P, Zhang Y, Wang H, Dou H, Xu X, Deitz J, Zhang X, Wang H. Self-Assembled Complex Three-Phase Core-Shell Nanostructure of Au-CoFe 2-TiN with a Magneto-Optical Coupling Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37810-37817. [PMID: 37493477 DOI: 10.1021/acsami.3c06777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Nanostructured plasmonic-magnetic metamaterials have gained great research interest due to their enhanced magneto-optical coupling effects. Here, we report a complex three-phase nanocomposite design combining ferromagnetic CoFe2 with plasmonic TiN and Au as a multifunctional hybrid metamaterial using either a cogrowth or a templated method. Via the first method of cogrowing three phases, three different morphologies of Au-CoFe2 core-shell nanopillars were formed in the TiN matrix. Via the second method of sequential deposition of a TiN-Au seed layer and a TiN-CoFe2 layer, highly ordered and uniform single-type core-shell nanopillars (i.e., the CoFe2 shell with a Au core) form in the TiN matrix. Both cogrowth and templated growth TiN-CoFe2-Au hybrid systems exhibit excellent epitaxial quality, hyperbolic dispersion, magnetic anisotropy, and a magneto-optical coupling effect. This study provides an effective approach for achieving highly uniform multiphase vertically aligned nanocomposite structures with well-integrated optical, magnetic, and coupling properties.
Collapse
Affiliation(s)
- Jiawei Song
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Di Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- Center for Integrated Nanotechnologies (CINT), Los Alamos National Laboratory, Los Alamos, New Mexico 87545, United States
| | - Ping Lu
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Yizhi Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haohan Wang
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Hongyi Dou
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Xiaoshan Xu
- Department of Physics and Astronomy, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Julia Deitz
- Sandia National Laboratories, Albuquerque, New Mexico 87185, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, United States
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
6
|
Liu J, Long L, Yang Y. Modeling of Enhanced Polar Magneto-Optic Kerr Effect by Surface Plasmons in Au Bowtie Arrays. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:253. [PMID: 36678005 PMCID: PMC9863591 DOI: 10.3390/nano13020253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 12/31/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
The weak magneto-optical (MO) signal of traditional MO materials is indeed an important issue for their further practical applications. Although many strategies have been proposed to improve the MO effect, hybridization with noble metal nanostructures is a promising route in recent years due to the high localized-surface plasmon resonances (LSPR) effect. A new magneto-optical surface plasmon resonance (MOSPR) structure hybrid with Au bowtie arrays is proposed to increase the measuring range of the polar magneto-optical Kerr effect (PMOKE) and the quality factor through the LSPR effect. It is verified by a numerical simulation of the finite element method (FEM). The optimized parameters were found by modulating the shape and geometric dimensions. Owing to the significant LSPR from the Au bowties, a PMOKE amplification signal spectrum with narrow linewidth, and a high amplitude with high-sensing performance was achieved. Compared with the bare magnetic film alone, by optimizing the relevant parameters of the LSPR structure, the maximum signal increases 3255 times, and the quality factor can be greatly improved, which would provide important guidance and help for the practical application of MO devices.
Collapse
Affiliation(s)
- Jingyi Liu
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Lianchun Long
- Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China
| | - Yang Yang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
7
|
Chen S, Niu R, Gao Y, Zhou W, Liu K, Wang Y, Song Y, Zhang X. Ultrafast nonlinear absorption with multiple transformations and transient dynamics of gold nanobipyramids. OPTICS EXPRESS 2022; 30:47485-47496. [PMID: 36558676 DOI: 10.1364/oe.468299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
The process and condition of saturable absorption (SA) and reverse saturable absorption (RSA) of ultrafast nonlinear optics in metal nanoparticles are essential for applications including light generation, amplification, modulation, and switching. Here, we first discover and explore the multiple transformations (SA-RSA-SA) of ultrafast nonlinear absorption behavior of metal nanoparticles in femtosecond pulses. Correspondingly, the energy level model and fitting formula of multiple transformations are established to illustrate the process of optical response. The femtosecond transient absorption spectra provide information about their ultrafast dynamics process and vibrational mode, which further reveals the multiple transformation mechanisms of nonlinear absorption in gold nanobipyramids (Au-NBPs). Furthermore, Au-NBPs exhibit a significantly higher SA modulation depth up to 42% in the femtosecond, which is much higher than the reported values of other nanomaterials. Our results indicate that Au-NBPs can be used as broadband ultrafast Q-switching and mode-locking, and the conversion offers new opportunities for metal nanostructures in applications of optical switching.
Collapse
|
8
|
Rutherford BX, Dou H, Zhang B, He Z, Barnard JP, Paldi RL, Wang H. Single-Step Fabrication of Au-Fe-BaTiO 3 Nanocomposite Thin Films Embedded with Non-Equilibrium Au-Fe Alloyed Nanostructures. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3460. [PMID: 36234589 PMCID: PMC9565752 DOI: 10.3390/nano12193460] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Nanocomposite thin film materials present great opportunities in coupling materials and functionalities in unique nanostructures including nanoparticles-in-matrix, vertically aligned nanocomposites (VANs), and nanolayers. Interestingly the nanocomposites processed through a non-equilibrium processing method, e.g., pulsed laser deposition (PLD), often possess unique metastable phases and microstructures that could not achieve using equilibrium techniques, and thus lead to novel physical properties. In this work, a unique three-phase system composed of BaTiO3 (BTO), with two immiscible metals, Au and Fe, is demonstrated. By adjusting the deposition laser frequency from 2 Hz to 10 Hz, the phase and morphology of Au and Fe nanoparticles in BTO matrix vary from separated Au and Fe nanoparticles to well-mixed Au-Fe alloy pillars. This is attributed to the non-equilibrium process of PLD and the limited diffusion under high laser frequency (e.g., 10 Hz). The magnetic and optical properties are effectively tuned based on the morphology variation. This work demonstrates the stabilization of non-equilibrium alloy structures in the VAN form and allows for the exploration of new non-equilibrium materials systems and their properties that could not be easily achieved through traditional equilibrium methods.
Collapse
Affiliation(s)
| | - Hongyi Dou
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Bruce Zhang
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Zihao He
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - James P. Barnard
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Robynne L. Paldi
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, IN 47907, USA
- School of Electrical and Computer Engineering, Purdue University, West Lafayette, IN 47907, USA
| |
Collapse
|
9
|
Díaz-Valencia BF, Moncada-Villa E, Gómez FR, Porras-Montenegro N, Mejía-Salazar JR. Bulk Plasmon Polariton Modes in Hyperbolic Metamaterials for Giant Enhancement of the Transverse Magneto-Optical Kerr Effect. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27165312. [PMID: 36014552 PMCID: PMC9414386 DOI: 10.3390/molecules27165312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 12/03/2022]
Abstract
We demonstrate a concept for the giant enhancement of the transverse magneto-optical Kerr effect (TMOKE) using bulk plasmon polariton (BPP) modes in non-magnetic multilayer hyperbolic metamaterials (HMMs). Since the BPP modes are excited through the attenuated total reflection (ATR) mechanism, using a Si-based prism-coupler, we considered a single dielectric magneto-optical (MO) spacer between the prism and the HMM. The working wavelength was estimated, using the effective medium approach for a semi-infinite dielectric-plasmonic multilayer, considering the region where the system exhibits type II HMM dispersion relations. Analytical results, by means of the scattering matrix method (SMM), were used to explain the physical principle behind our concept. Numerical results for giant TMOKE values (close to their maximum theoretical values, ±1) were obtained using the finite element method (FEM), applying the commercial software COMSOL Multiphysics. Our proposal comprises a simple and experimentally feasible structure that enables the study of MO phenomena in HMMs, which may find application in future nanostructured magnetoplasmonic metamaterials for active nanophotonic devices.
Collapse
Affiliation(s)
| | - Edwin Moncada-Villa
- Escuela de Física, Universidad Pedagógica y Tecnológica de Colombia, Avenida Central del Norte, Tunja 39115, Colombia
| | - Faustino Reyes Gómez
- Instituto de Física de São Carlos, Universidade de São Paulo, P.O. Box 369, São Carlos 13566-590, Brazil
| | | | | |
Collapse
|
10
|
TiN–Fe Vertically Aligned Nanocomposites Integrated on Silicon as a Multifunctional Platform toward Device Applications. CRYSTALS 2022. [DOI: 10.3390/cryst12060849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Transition metal nitrides such as titanium nitride (TiN) possess exceptional mechanical-, chemical-, and thermal-stability and have been utilized in a wide variety of applications ranging from super-hard, corrosion-resistive, and decorative coatings to nanoscale diffusion barriers in semiconductor devices. Despite the ongoing interest in these robust materials, there have been limited reports focused on engineering high-aspect ratio TiN-based nanocomposites with anisotropic magnetic and optical properties. To this end, we explored TiN–Fe thin films with self-assembled vertical structures integrated on Si substrates. We showed that the key physical properties of the individual components (e.g., ferromagnetism from Fe) are preserved, that vertical nanostructures promote anisotropic behavior, and interactions between TiN and Fe enable a special magneto-optical response. This TiN–Fe nanocomposite system presents a new group of complex multifunctional hybrid materials that can be integrated on Si for future Si-based memory, optical, and biocompatible devices.
Collapse
|
11
|
Carvalho WOF, Mejía-Salazar JR. All-dielectric magnetophotonic gratings for maximum TMOKE enhancement. Phys Chem Chem Phys 2022; 24:5431-5436. [PMID: 35171161 DOI: 10.1039/d1cp05232b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
All-dielectric nanophotonic devices are promising candidates for future lossless (bio)sensing and telecommunication applications. Active all-dielectric magnetophotonic devices, where the optical properties can be controlled by an externally applied magnetic field, have triggered great research interest. However, magneto-optical (MO) effects are still low for applications. Here, we demonstrate a concept for the enhancement of the transverse MO Kerr effect (TMOKE), with amplitudes of up to 1.85, i.e., close to the maximum theoretical values of ±2 (in transmission). Our concept exploits the lateral leaky Bloch-modes to enhance the TMOKE, under near-zero transmittance conditions. Potential applications in (bio)sensing structures are numerically demonstrated. The effects of optical losses were studied using different combinations of materials. Significantly, we demonstrate TMOKE enhancements of two orders of magnitude in relation to recent experimental studies, using the same building materials.
Collapse
Affiliation(s)
- William O F Carvalho
- National Institute of Telecommunications (Inatel), 37540-000, Santa Rita do Sapucaí, MG, Brazil.
| | - J R Mejía-Salazar
- National Institute of Telecommunications (Inatel), 37540-000, Santa Rita do Sapucaí, MG, Brazil.
| |
Collapse
|
12
|
Pfaffenbach ES, Carvalho WOF, Oliveira ON, Mejía-Salazar JR. Design of Nanoarchitectures for Magnetoplasmonic Biosensing with Near-Zero-Transmittance Conditions. ACS APPLIED MATERIALS & INTERFACES 2021; 13:60672-60677. [PMID: 34882403 DOI: 10.1021/acsami.1c19194] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Nanostructures exhibiting large transverse magneto-optical Kerr effect (TMOKE) are required for magnetoplasmonic biosensing if the aim is the minituarization and integration into microfluidic devices. In this work, we present a general strategy to design nanoarchitectures with enhanced TMOKE, which consist of an arrangement of gold ribs deposited on an magneto-optical (MO) dielectric slab of Bi:YIG (bismuth-substituted yttrium iron garnet) with a SiO2 substrate surrounded by water. Using the finite element method (FEM), we demonstrate numerically that the near-zero-transmittance condition is the most important requirement for high TMOKE values. This can be reached through geometric optimization of the nanoarchitecture by tuning the period, height, and width of the grating, thus leading to resonances at wavelengths where the MO dielectric slab has high MO activity. We also show that the TMOKE amplitude can be further increased if losses in metal ribs are reduced. For a magnetoplasmonic grating with optimized geometry, we demonstrated the potential detection of biologically relevant analytes with sensitivity in the order of 102 nm/RIU (refractive index unit). Since the nanoarchitecture proposed is experimentally feasible with, e.g., nanolithography techniques, one may expect that the design strategy may inspire the development of efficient magnetoplasmonic sensing platforms.
Collapse
Affiliation(s)
- Erich S Pfaffenbach
- National Institute of Telecommunications (Inatel), 37540-000 Santa Rita do Sapucaí, MG, Brazil
| | - William O F Carvalho
- National Institute of Telecommunications (Inatel), 37540-000 Santa Rita do Sapucaí, MG, Brazil
| | - Osvaldo N Oliveira
- Instituto de Física de São Carlos, Universidade de São Paulo, CP 369, 13560-970 São Carlos, SP, Brazil
| | | |
Collapse
|