1
|
Dai X, Yin Y, Wang C, Xu H. Hyaluronic acid regulated facile synthesis of size-tunable multifunctional nanomedicine for effective cancer therapy. Int J Biol Macromol 2025; 288:138668. [PMID: 39667478 DOI: 10.1016/j.ijbiomac.2024.138668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 12/14/2024]
Abstract
The complex and heterogeneous nature of cancer necessitates the development of innovative multifunctional nanomedicines (MN). Hyaluronic acid (HA) is a functional carbohydrate polysaccharide that is widely used in various biomedical fields. In this study, we employed HA as a stabilizer and regulator for the synthesis of a size-tunable nanomedicine comprising ferric ions, doxorubicin, and epigallocatechin gallate (EGCG), referred to as HDE-MN, for cancer therapy. A change in the HA ratio can yield HDE-MNs with sizes varying from ~20 nm to over 100 nm. Modified HA can respond to hyaluronidase (HAase) to provide controllable pH/HAase dual-responsive drug release for improved cancer therapy. Moreover, HA can mediate the targeted delivery of HDE-MNs both in vitro and in vivo to cancer cells. In addition, HDE-MNs reversed multidrug resistance owing to the incorporation of EGCG, inducing ferroptosis due to the involvement of ferric ions. More importantly, HDE-MNs have a photothermal conversion effect, enabling photothermal therapy, photothermally enhanced drug release, and ferroptosis, which collectively contribute to significantly improved cancer therapy. Therefore, the HDE-MNs with laser irradiation achieved full ablation of the in vivo tumors. Together with its good biocompatibility, HDE-MNs may be promising for effective cancer therapy.
Collapse
Affiliation(s)
- Xiuliang Dai
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Yina Yin
- Obstetrics and Gynecology Department, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Second People's Hospital of Changzhou, the Third Affiliated Hospital of Nanjing Medical University, Changzhou, China.
| |
Collapse
|
2
|
Yang Y, Zheng W, Zhang J, Guo J, Liu Q, Wang H, Xu F, Bao Z. Integrating Photothermal, Photodynamic, and Chemodynamic Therapies: The Innovative Design Based on Copper Sulfide Nanoparticles for Enhanced Tumor Therapy. ACS APPLIED BIO MATERIALS 2025; 8:676-687. [PMID: 39829270 DOI: 10.1021/acsabm.4c01538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
A multifunctional nanoplatform integrating multiple therapeutic functions may be an effective strategy to realize satisfactory therapeutic efficacy in the treatment of tumors. However, there is still a certain challenge in integrating multiple therapeutic agents into a single formulation using a simple method due to variations in their properties. In this work, multifunctional CuS-ICG@PDA-FA nanoparticles (CIPF NPs) with excellent ability to produce reactive oxygen species and photothermal conversion performance are fabricated by a simple and gentle method. Hollow mesoporous copper sulfide nanoparticles (HMCuS NPs) not only have excellent loading and photothermal conversion performance but also can cause a highly efficient Fenton-like reaction for chemodynamic therapy (CDT). The loaded photosensitizer indocyanine green (ICG) imparts excellent photodynamic properties to the NPs, which in turn enhances the stability of ICG. The polydopamine (PDA) coating improves the stability and biocompatibility of the NPs and creates the conditions for surface modification of folic acid. The FA-coated NPs show precise targeting of tumor cells. The results of the cellular uptake assay demonstrate that CIPF NPs enter tumor cells through an endocytic pathway. Lysosome colocalization and escape experiments prove that CIPF NPs possess good lysosomal escape ability under irradiation of NIR. Both in vitro and in vivo antitumor studies of CIPF NPs reveal excellent efficacy in photothermal/photodynamic/chemodynamic therapy. The construction of high-performance CIPF NPs offers valuable insights into the design of a multifunctional copper sulfide-based nanoplatform for combined cancer treatment and precise theranostics.
Collapse
Affiliation(s)
- Yue Yang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wen Zheng
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiabao Zhang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiangxue Guo
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Qian Liu
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Hanyang Wang
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Fanxing Xu
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Zhihong Bao
- School of Pharmacy, Shenyang Key Laboratory of Functional Drug Carrier Materials, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
3
|
Xu Y, Teng C, Wang Y, Chen D, Yin D, Yan L. Self-enhanced regulation of stable organic radicals with polypeptide nanoparticles for mild second near-infrared phototheranostics. J Colloid Interface Sci 2024; 669:578-589. [PMID: 38729006 DOI: 10.1016/j.jcis.2024.05.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/12/2024]
Abstract
Stable organic radicals have emerged as a promising option to enhance fluorescence quantum yield (QY), gaining traction in medical treatment due to their unique electronic transitions from the ground state (D0) to the doublet excited state (D1). We synthesized a stable dicyanomethyl radical with a NIR-II fluorescence QY of 0.86 %, surpassing many NIR-II organic dyes. Subsequently, amphiphilic polymer-encapsulated nanoparticles (NPs) containing the radical were created, achieving a NIR-II fluorescence QY of 0.32 %, facilitating high-contrast bio-imaging. These CNPPs exhibit self-enhanced photothermal properties, elevating photothermal conversion efficiency (PCE) from 43.5 % to 57.5 % under 915 nm laser irradiation. This advancement enables more efficient photothermal therapy (PTT) with lower dye concentrations and reduced laser power, enhancing both feasibility and safety. Through regular fractionated mild photothermal therapy, we observed the release of damage-associated molecular patterns (DAMPs) and an increase in cytokine expression, culminating in combined mild phototherapy (m-PTT)-mediated immunogenic cell death (ICD). Consequently, we developed an immunostimulatory tumor vaccine, showcasing a novel approach for refining photothermal agents (PTA) and optimizing the PTT process.
Collapse
Affiliation(s)
- Yixuan Xu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Changchang Teng
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Yating Wang
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dejia Chen
- Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Dalong Yin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China
| | - Lifeng Yan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China; Key Laboratory of Precision and Intelligent Chemistry, and Department of Chemical Physics, University of Science and Technology of China. Hefei, Jinzai road 96. 230026, Anhui, PR China.
| |
Collapse
|
4
|
Wang C, Ji L, Wang J, Zhang J, Qiu L, Chen S, Ni X. Amifostine loaded lipid-calcium carbonate nanoparticles as an oral drug delivery system for radiation protection. Biomed Pharmacother 2024; 177:117029. [PMID: 38991305 DOI: 10.1016/j.biopha.2024.117029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/19/2024] [Accepted: 06/21/2024] [Indexed: 07/13/2024] Open
Abstract
Amifostine (AMF) as the first-line radiation protection drug, usually suffered from low compliance and short half-life upon clinical applications. The development of oral drug delivery system (DDS) for AMF is a promising solution. However, the inherent shortages of AMF present significant challenges in the design of suitable oral DDS. Here in this study, we utilized the ability of calcium ions to bind with AMF and prepared AMF loaded calcium carbonate (CC) core, CC/AMF, using phase transferred coprecipitation method. We further modified the CC/AMF using phospholipids to prepare AMF loaded lipid-calcium carbonate (LCC) hybrid nanoparticles (LCC/AMF) via a thin-film dispersion method. LCC/AMF combines the oral advantages of lipid nanoparticles with the drug-loading capabilities of CC, which was shown as uniform nano-sized formulation with decent stability in aqueous solution. With favorable intestinal transport and absorption effects, it effectively enhances the in vivo radiation protection efficacy of AMF through oral administration. More importantly, we further investigated the cellular accumulation profile and intracellular transport mechanism of LCC/AMF using MDCK and Caco-2 cell lines as models. This research not only alters the current administration method of AMF to enhance its convenience and compliance, but also provides insights and guidance for the development of more suitable oral DDS for AMF in the future.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lihua Ji
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Jiaxing Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China.
| | - Shaoqing Chen
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| | - Xinye Ni
- The Affiliated Changzhou No.2 People's Hospital, Nanjing Medical University, Changzhou, Jiangsu, China; Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China.
| |
Collapse
|
5
|
Lalebeigi F, Alimohamadi A, Afarin S, Aliabadi HAM, Mahdavi M, Farahbakhshpour F, Hashemiaval N, Khandani KK, Eivazzadeh-Keihan R, Maleki A. Recent advances on biomedical applications of gellan gum: A review. Carbohydr Polym 2024; 334:122008. [PMID: 38553201 DOI: 10.1016/j.carbpol.2024.122008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/12/2024] [Accepted: 02/27/2024] [Indexed: 04/02/2024]
Abstract
Gellan gum (GG) has attracted considerable attention as a versatile biopolymer with numerous potential biological applications, especially in the fields of tissue engineering, wound healing, and cargo delivery. Due to its distinctive characteristics like biocompatibility, biodegradability, nontoxicity, and gel-forming ability, GG is well-suited for these applications. This review focuses on recent research on GG-based hydrogels and biocomposites and their biomedical applications. It discusses the incorporation of GG into hydrogels for controlled drug release, its role in promoting wound healing processes, and its potential in tissue engineering for various tissues including bone, retina, cartilage, vascular, adipose, and cardiac tissue. It provides an in-depth analysis of the latest findings and advancements in these areas, making it a valuable resource for researchers and professionals in these fields.
Collapse
Affiliation(s)
- Farnaz Lalebeigi
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | | | - Shahin Afarin
- School of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | | | - Mohammad Mahdavi
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Farahbakhshpour
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Neginsadat Hashemiaval
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Kimia Kalantari Khandani
- Medical Biotechnology Department, Biotechnology Research Center (BRC), Pasteur Institute of Iran (IPI), Tehran, Iran
| | - Reza Eivazzadeh-Keihan
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| | - Ali Maleki
- Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
6
|
Wang C, Pan J, Chen S, Qiu L, Hu H, Ji L, Wang J, Liu W, Ni X. Polyvinylpyrrolidone Assisted One-Pot Synthesis of Size-Tunable Cocktail Nanodrug for Multifunctional Combat of Cancer. Int J Nanomedicine 2024; 19:4339-4356. [PMID: 38774026 PMCID: PMC11107942 DOI: 10.2147/ijn.s459428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/30/2024] [Indexed: 05/24/2024] Open
Abstract
Background The in vivo barriers and multidrug resistance (MDR) are well recognized as great challenges for the fulfillment of antitumor effects of current drugs, which calls for the development of novel therapeutic agents and innovative drug delivery strategies. Nanodrug (ND) combining multiple drugs with distinct modes of action holes the potential to circumvent these challenges, while the introduction of photothermal therapy (PTT) can give further significantly enhanced efficacy in cancer therapy. However, facile preparation of ND which contains dual drugs and photothermal capability with effective cancer treatment ability has rarely been reported. Methods In this study, we selected curcumin (Cur) and doxorubicin (Dox) as two model drugs for the creation of a cocktail ND (Cur-Dox ND). We utilized polyvinylpyrrolidone (PVP) as a stabilizer and regulator to prepare Cur-Dox ND in a straightforward one-pot method. Results The size of the resulting Cur-Dox ND can be easily adjusted by tuning the charged ratios. It was noted that both loaded drugs in Cur-Dox ND can realize their functions in the same target cell. Especially, the P-glycoprotein inhibition effect of Cur can synergistically cooperate with Dox, leading to enhanced inhibition of 4T1 cancer cells. Furthermore, Cur-Dox ND exhibited pH-responsive dissociation of loaded drugs and a robust photothermal translation capacity to realize multifunctional combat of cancer for photothermal enhanced anticancer performance. We further demonstrated that this effect can also be realized in 3D multicellular model, which possibly attributed to its superior drug penetration as well as photothermal-enhanced cellular uptake and drug release. Conclusion In summary, Cur-Dox ND might be a promising ND for better cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Jiaoyang Pan
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Shaoqing Chen
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Li Ji
- Department of Otorhinolaryngology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Nanjing, Jiangsu Province, People’s Republic of China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Wenjia Liu
- Department of Gastroenterology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| | - Xinye Ni
- Department of Radiology, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu Province, People’s Republic of China
| |
Collapse
|
7
|
Lin C, Akhtar M, Li Y, Ji M, Huang R. Recent Developments in CaCO 3 Nano-Drug Delivery Systems: Advancing Biomedicine in Tumor Diagnosis and Treatment. Pharmaceutics 2024; 16:275. [PMID: 38399329 PMCID: PMC10893456 DOI: 10.3390/pharmaceutics16020275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/06/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
Calcium carbonate (CaCO3), a natural common inorganic material with good biocompatibility, low toxicity, pH sensitivity, and low cost, has a widespread use in the pharmaceutical and chemical industries. In recent years, an increasing number of CaCO3-based nano-drug delivery systems have been developed. CaCO3 as a drug carrier and the utilization of CaCO3 as an efficient Ca2+ and CO2 donor have played a critical role in tumor diagnosis and treatment and have been explored in increasing depth and breadth. Starting from the CaCO3-based nano-drug delivery system, this paper systematically reviews the preparation of CaCO3 nanoparticles and the mechanisms of CaCO3-based therapeutic effects in the internal and external tumor environments and summarizes the latest advances in the application of CaCO3-based nano-drug delivery systems in tumor therapy. In view of the good biocompatibility and in vivo therapeutic mechanisms, they are expected to become an advancing biomedicine in the field of tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Chenteng Lin
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| | - Muhammad Akhtar
- Department of Pharmaceutics, Faculty of Pharmacy, The Islamia University of Bahawalpur, Bahawalpur 63100, Pakistan;
| | - Yingjie Li
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Min Ji
- Shanghai Yangpu District Mental Health Center, Shanghai 200090, China;
| | - Rongqin Huang
- School of Pharmacy, Key Laboratory of Smart Drug Delivery (Ministry of Education), Huashan Hospital, Minhang Hospital, Fudan University, Shanghai 201203, China;
| |
Collapse
|
8
|
Wang C, Xiao R, Yang Q, Pan J, Cui P, Zhou S, Qiu L, Zhang Y, Wang J. Green synthesis of epigallocatechin gallate-ferric complex nanoparticles for photothermal enhanced antibacterial and wound healing. Biomed Pharmacother 2024; 171:116175. [PMID: 38266620 DOI: 10.1016/j.biopha.2024.116175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 01/11/2024] [Accepted: 01/13/2024] [Indexed: 01/26/2024] Open
Abstract
Bacterial infections are a significant global health concern, particularly in the context of skin infections and chronic wounds, which was further exacerbated by the emerging of antibiotic resistance. Therefore, there are urgent needs to develop alternative antibacterial strategies without inducing significant resistance. Photothermal therapy (PTT) is a promising alternative approach but usually faces limitations such as the need for stable and environmental-friendly PTT agents and ensuring biocompatibility with living tissues, necessitating ongoing research for its clinical advancement. Herein, in this study, with the aim to develop a green synthesized PTT agent for photothermal enhanced antibacterial and wound healing, we proposed a facile one-pot method to prepare epigallocatechin gallate-ferric (EGCG-Fe) complex nanoparticles. The obtained nanoparticles showed improved good size distribution and stability with high reproducibility. More importantly, EGCG-Fe complex nanoparticles have additional photothermal conversion ability which can give photothermal enhanced antibacterial effect on various pathogens, including Gram-positive Staphylococcus aureus (S. aureus) and Gram-negative Escherichia coli (E. coli) strains. EGCG-Fe complex nanoparticles also showed powerful biofilm prevention and destruction effects with promoted antibacterial and wound healing on mice model. In conclusion, EGCG-Fe complex nanoparticles can be a robust green material with effective and novel light controllable antibacterial properties for photothermal enhanced antibacterial and wound healing applications.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China.
| | - Ru Xiao
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Qingbo Yang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Jiaoyang Pan
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Pengfei Cui
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Shuwen Zhou
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Lin Qiu
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China; Hebei Higher Education Applied Technology Research Center of TCM Development and Industrialization, Hebei University of Chinese Medicine, Shijiazhuang 050200, PR China.
| | - Jianhao Wang
- School of Pharmacy Changzhou University, Changzhou, Jiangsu 213164, PR China.
| |
Collapse
|
9
|
Chen S, Nie ZQ, Zhu FD, Yang CT, Yang JM, He JN, Liu XQ, Zhang J, Zhao Y. Facile Fabrication of Dual-Activatable Gastrointestinal-Based Nanocarriers for Safe Delivery and Controlled Release of Methotrexate. Chempluschem 2023; 88:e202300387. [PMID: 37728035 DOI: 10.1002/cplu.202300387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/11/2023] [Accepted: 09/18/2023] [Indexed: 09/21/2023]
Abstract
Colon cancer is emerging as one of the most common cancers worldwide, ranking in the top three in morbidity and mortality. Oral methotrexate (MTX) has been employed as a first-line treatment for various cancers, such as colon, breast, and lung cancer. However, the complexity and particularity of the gastrointestinal microenvironment and the limitations of MTX itself, including severe adverse effects and instability, are the main obstacles to the safe delivery of MTX to colon tumor sites. Herein, an innovative oral administrated anticancer therapeutic MTX@Am7CD/SDS NPs equipped with both pH and temperature sensitivity, which could effectively prevent MTX@Am7CD/SDS NPs from being degraded in the acidic environment mimicking the stomach and small intestine, thus harboring the potential to accumulate at the site of colon lesions and further release intestinal drug under mild conditions. In cellular assays, compared with free MTX, MTX@Am7CD/SDS NPs showed a favorable tumor inhibition effect on three tumor cell lines, as well as excellent cell uptake and apoptosis-inducing effect on SW480 cells. Therefore, this work provides a feasible solution for the safe use of MTX in the treatment of colon cancer and even other intestinal diseases.
Collapse
Affiliation(s)
- Shuai Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Zheng-Quan Nie
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Fang-Dao Zhu
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Cui-Ting Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Jian-Mei Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Jun-Nan He
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Xiao-Qing Liu
- Shenzhen Kewode Technology Co., Ltd, Shenzhen, 518028, P. R. China
| | - Jin Zhang
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| | - Yan Zhao
- College of Chemistry and Chemical Engineering, Yunnan Normal University, Kunming, 650500, P. R. China
| |
Collapse
|
10
|
Guo S, Gu D, Yang Y, Tian J, Chen X. Near-infrared photodynamic and photothermal co-therapy based on organic small molecular dyes. J Nanobiotechnology 2023; 21:348. [PMID: 37759287 PMCID: PMC10523653 DOI: 10.1186/s12951-023-02111-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/15/2023] [Indexed: 09/29/2023] Open
Abstract
Near-infrared (NIR) organic small molecule dyes (OSMDs) are effective photothermal agents for photothermal therapy (PTT) due to their advantages of low cost and toxicity, good biodegradation, and strong NIR absorption over a wide wavelength range. Nevertheless, OSMDs have limited applicability in PTT due to their low photothermal conversion efficiency and inadequate destruction of tumor regions that are nonirradiated by NIR light. However, they can also act as photosensitizers (PSs) to produce reactive oxygen species (ROS), which can be further eradicated by using ROS-related therapies to address the above limitations of PTT. In this review, the synergistic mechanism, composition, and properties of photodynamic therapy (PDT)-PTT nanoplatforms were comprehensively discussed. In addition, some specific strategies for further improving the combined PTT and PDT based on OSMDs for cancer to completely eradicate cancer cells were outlined. These strategies include performing image-guided co-therapy, enhancing tumor infiltration, increasing H2O2 or O2 in the tumor microenvironment, and loading anticancer drugs onto nanoplatforms to enable combined therapy with phototherapy and chemotherapy. Meanwhile, the intriguing prospects and challenges of this treatment modality were also summarized with a focus on the future trends of its clinical application.
Collapse
Affiliation(s)
- Shuang Guo
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China
| | - Dongyu Gu
- College of Marine Science and Environment, Dalian Ocean University, Dalian, 116023, China
| | - Yi Yang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Jing Tian
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, China.
| | - Xiaoyuan Chen
- Yong Loo Lin School of Medicine, Faculty of Engineering, National University of Singapore, Singapore, 117597, Singapore.
| |
Collapse
|
11
|
Dai X, Li L, Li M, Yan X, Li J, Mao H, Wang C, Xu H. One pot preparation of muti-mode nanoplatform to combat ovarian cancer. Biomed Pharmacother 2023; 165:115172. [PMID: 37473681 DOI: 10.1016/j.biopha.2023.115172] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 07/10/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023] Open
Abstract
Ovarian cancer is one of the most common gynecological cancers with high mortality rate. The battle against ovarian cancer usually impaired by the evolved multidrug resistance (MDR) phenotype as well as metastasis in cancers, which urgently call for the development of multi-mode strategies to overcome the MDR and reduce metastasis. Considering the good benefits of ferroptosis and photothermal therapy (PTT) in cancer management, we herein proposed a facile way to construct nanoparticle platform (Fe-Dox/PVP) composed of ferric chloride, doxorubicin (Dox) and polyvinyl pyrrolidone (PVP) for the multi-mode therapy of ovarian cancer using chemotherapy, ferroptosis and mild hypothermia PTT. Our results demonstrated that Fe-Dox/PVP with mild hypothermia was shown to have improved endosomal escape/drug delivery, enhanced ferroptosis induction and good tumor targeting effects. Most importantly, the integration of all three effects into one platform provided increased anti-metastasis effect and promising in vitro/in vivo anticancer performance with high biocompatibility. In this study, we offer a facile and robust way to prepare a multi-mode nanoplatform to combat ovarian cancer, which can be further extended for the management of many other cancers.
Collapse
Affiliation(s)
- Xiuliang Dai
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Lingjun Li
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Minhui Li
- Changzhou Maternal and Child Health Care Hospital, Changzhou Medical Center, Nanjing Medical University, China
| | - Xiaomeng Yan
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jinhang Li
- Dalian Medical University, Dalian, China
| | - Hao Mao
- Dalian Medical University, Dalian, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Hongbin Xu
- Obstetrics and Gynecology Department, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, China; School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| |
Collapse
|
12
|
Li Z, Li Z, Yang Y, Yao S, Liu C, Xu J. Original and liposome-modified indocyanine green-assisted fluorescence study with animal models. Lasers Med Sci 2023; 38:140. [PMID: 37328689 DOI: 10.1007/s10103-023-03802-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Medical diagnosis heavily relies on the use of bio-imaging techniques. One such technique is the use of ICG-based biological sensors for fluorescence imaging. In this study, we aimed to improve the fluorescence signals of ICG-based biological sensors by incorporating liposome-modified ICG. The results from dynamic light scattering and transmission electron microscopy showed that MLM-ICG was successfully fabricated with a liposome diameter of 100-300 nm. Fluorescence spectroscopy showed that MLM-ICG had the best properties among the three samples (Blank ICG, LM-ICG, and MLM-ICG), as samples immersed in MLM-ICG solution achieved the highest fluorescence intensity. The NIR camera imaging also showed a similar result. For the rat model, the best period for fluorescence tests was between 10 min and 4 h, where most organs reached their maximum fluorescence intensity except for the liver, which continued to rise. After 24 h, ICG was excreted from the rat's body. The study also analyzed the spectra properties of different rat organs, including peak intensity, peak wavelength, and FWHM. In conclusion, the use of liposome-modified ICG provides a safe and optimized optical agent, which is more stable and efficient than non-modified ICG. Incorporating liposome-modified ICG in fluorescence spectroscopy could be an effective way to develop novel biosensors for disease diagnosis.
Collapse
Affiliation(s)
- Zheng Li
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, LA70803, Baton Rouge, USA
| | - Zhongqiang Li
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, LA70803, Baton Rouge, USA
| | - Yuting Yang
- Khoury College of Computer Sciences, Northeastern University, MA02115, Boston, USA
| | - Shaomian Yao
- Department of Comparative Biomedical Science, School of Veterinary Medicine, Louisiana State University, LA70803, Baton Rouge, USA
| | - Chaozheng Liu
- School of Renewable Natural Resources, Louisiana State University AgCenter, Baton Rouge, LA, 70803, USA
| | - Jian Xu
- Division of Electrical and Computer Engineering, College of Engineering, Louisiana State University, LA70803, Baton Rouge, USA.
| |
Collapse
|
13
|
Zou L, Zhang Y, Cheraga N, Abodunrin OD, Qu KY, Qiao L, Ma YQ, Chen LJ, Huang NP. Chlorin e6 (Ce6)-loaded plaque-specific liposome with enhanced photodynamic therapy effect for atherosclerosis treatment. Talanta 2023; 265:124772. [PMID: 37327664 DOI: 10.1016/j.talanta.2023.124772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023]
Abstract
Recently, photodynamic therapy (PDT) has been considered as a new strategy for atherosclerosis treatment. Targeted delivery of photosensitizer could significantly reduce its toxicity and enhance its phototherapeutic efficiency. CD68 is an antibody that can be conjugated to nano-drug delivery systems to actively target plaque sites, owing to its specific binding to CD68 receptors that are highly expressed on the surfaces of macrophage-derived foam cells. Liposomes are very popular nanocarriers due to their ability to encapsulate a wide range of therapeutic compounds including drugs, microRNAs and photosensitizers, and their ability to be surface-modified with targeting moieties leading to the development of nanocarriers with an improved targeted ability. Hence, we designed a Ce6-loaded liposomes using the film dispersion method, followed by the conjugation of CD68 antibody on the liposomal surface through a covalent crosslinking reaction, forming CD68-modified Ce6-loaded liposomes (CD68-Ce6-mediated liposomes). Flow cytometry results indicated that Ce6-containing liposomes were more effective in promoting intracellular uptake after laser irradiation. Furthermore, CD68-modified liposomes significantly strengthened the cellular recognization and thus internalization. Different cell lines have been incubated with the liposomes, and the results showed that CD68-Ce6-mediated liposomes had no significant cytotoxicity to coronary artery endothelial cells (HCAEC) under selected conditions. Interestingly, they promoted autophagy in foam cells through the increase in LC3-Ⅰ, LC3-Ⅱ expression and the decrease in p62 expression, and restrained the migration of mouse aortic vascular smooth muscle cells (MOVAS) in vitro. Moreover, the enhancement of atherosclerotic plaque stability and the reduction in the cholesterol content by CD68-Ce6-mediated liposomes were dependent on transient reactive oxygen species (ROS) generated under laser irradiation. In summary, we demonstrated that CD68-Ce6-mediated liposomes, as a photosensitizer nano-drug delivery system, have an inhibitory effect on MOVAS migration and a promotion of cholesterol efflux in foam cells, and thereby, represent promising nanocarriers for atherosclerosis photodynamic therapy.
Collapse
Affiliation(s)
- Lin Zou
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yao Zhang
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China
| | - Nihad Cheraga
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Oluwatosin David Abodunrin
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Kai-Yun Qu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li Qiao
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Yu-Qing Ma
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China
| | - Li-Juan Chen
- Department of Cardiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, China; Department of Cardiology, Nanjing Lishui People's Hospital, Zhongda Hospital Lishui Branch, Nanjing, 211200, China.
| | - Ning-Ping Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China.
| |
Collapse
|
14
|
Duan S, Hu Y, Zhao Y, Tang K, Zhang Z, Liu Z, Wang Y, Guo H, Miao Y, Du H, Yang D, Li S, Zhang J. Nanomaterials for photothermal cancer therapy. RSC Adv 2023; 13:14443-14460. [PMID: 37180014 PMCID: PMC10172882 DOI: 10.1039/d3ra02620e] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/15/2023] Open
Abstract
Cancer has emerged as a pressing global public health issue, and improving the effectiveness of cancer treatment remains one of the foremost challenges of modern medicine. The primary clinical methods of treating cancer, including surgery, chemotherapy and radiotherapy, inevitably result in some adverse effects on the body. However, the advent of photothermal therapy offers an alternative route for cancer treatment. Photothermal therapy relies on photothermal agents with photothermal conversion capability to eliminate tumors at high temperatures, which offers advantages of high precision and low toxicity. As nanomaterials increasingly play a pivotal role in tumor prevention and treatment, nanomaterial-based photothermal therapy has gained significant attention owing to its superior photothermal properties and tumor-killing abilities. In this review, we briefly summarize and introduce the applications of common organic photothermal conversion materials (e.g., cyanine-based nanomaterials, porphyrin-based nanomaterials, polymer-based nanomaterials, etc.) and inorganic photothermal conversion materials (e.g., noble metal nanomaterials, carbon-based nanomaterials, etc.) in tumor photothermal therapy in recent years. Finally, the problems of photothermal nanomaterials in antitumour therapy applications are discussed. It is believed that nanomaterial-based photothermal therapy will have good application prospects in tumor treatment in the future.
Collapse
Affiliation(s)
- Shufan Duan
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Yanling Hu
- Nanjing Polytechnic Institute Nanjing 210048 China
| | - Ying Zhao
- Department of Radiology, Nanjing First Hospital, Nanjing Medical University Nanjing 210006 China
| | - Kaiyuan Tang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Zhijing Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Zilu Liu
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Ying Wang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Haiyang Guo
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Yuchen Miao
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Hengda Du
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| | - Dongliang Yang
- Key Laboratory of Flexible Electronics (KLOFE) and Institute of Advanced Materials (IAM), School of Physical and Mathematical Sciences, Nanjing Tech University (NanjingTech) Nanjing 211816 China
| | - Shengke Li
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau Taipa Macau SAR China
| | - Junjie Zhang
- Anhui Province Key Laboratory of Translational Cancer Research, School of Fundamental Sciences, Bengbu Medical College Bengbu 233030 China
| |
Collapse
|
15
|
Huis in ‘t Veld RV, Heuts J, Ma S, Cruz LJ, Ossendorp FA, Jager MJ. Current Challenges and Opportunities of Photodynamic Therapy against Cancer. Pharmaceutics 2023; 15:pharmaceutics15020330. [PMID: 36839652 PMCID: PMC9965442 DOI: 10.3390/pharmaceutics15020330] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/06/2023] [Accepted: 01/12/2023] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is an established, minimally invasive treatment for specific types of cancer. During PDT, reactive oxygen species (ROS) are generated that ultimately induce cell death and disruption of the tumor area. Moreover, PDT can result in damage to the tumor vasculature and induce the release and/or exposure of damage-associated molecular patterns (DAMPs) that may initiate an antitumor immune response. However, there are currently several challenges of PDT that limit its widespread application for certain indications in the clinic. METHODS A literature study was conducted to comprehensively discuss these challenges and to identify opportunities for improvement. RESULTS The most notable challenges of PDT and opportunities to improve them have been identified and discussed. CONCLUSIONS The recent efforts to improve the current challenges of PDT are promising, most notably those that focus on enhancing immune responses initiated by the treatment. The application of these improvements has the potential to enhance the antitumor efficacy of PDT, thereby broadening its potential application in the clinic.
Collapse
Affiliation(s)
- Ruben V. Huis in ‘t Veld
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
- Correspondence:
| | - Jeroen Heuts
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Sen Ma
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Luis J. Cruz
- Department of Radiology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Ferry A. Ossendorp
- Department of Immunology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| | - Martine J. Jager
- Department of Ophthalmology, Leiden University Medical Centre (LUMC), 2333 ZA Leiden, Zuid-Holland, The Netherlands
| |
Collapse
|
16
|
Ran J, Liu T, Song C, Wei Z, Tang C, Cao Z, Zou H, Zhang X, Cai Y, Han W. Rhythm Mild-Temperature Photothermal Therapy Enhancing Immunogenic Cell Death Response in Oral Squamous Cell Carcinoma. Adv Healthc Mater 2023; 12:e2202360. [PMID: 36401600 DOI: 10.1002/adhm.202202360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 11/09/2022] [Indexed: 11/20/2022]
Abstract
The low antitumor efficiency and unexpected thermo-tolerance activation of mild-temperature photothermal therapy (mPTT) severely impede the therapeutic efficacy, thereby the implementation of reasonable mPTT procedure to improve antitumor efficiency is of great significance for clinical transformation. Herein, a rhythm mPTT with organic photothermal nanoparticles (PBDB-T NPs) is demonstrated, synergistically increasing tumor elimination and intense immunogenic cancer cell death (ICD) to elicit tumor-specific immune responses for tumor treatment. Specifically, PBDB-T NPs are characterized by favorable biocompatibility, excellent and controllable photothermal properties, exhibit the properties of noninvasive diagnostic imaging, and effective mPTT against oral squamous cell carcinoma (OSCC). Encouragingly, a temperature-dependent release of damage-associated molecular patterns (DAMPs) is discovered during the mPTT-induced ICD. Meanwhile, orchestrated rhythm mPTT referring to radiotherapy procedure amplifies and balances antitumor efficiency and abundant DAMPs generation to gain optimal immune activation within clinical-recommended hyperthermia temperature compared with conventional PTT. The in vitro and in vivo results show that the rhythm mPTT unites the killing effect and ICD induction, generating strong mPTT efficacy and active tumor-specific adaptive immune responses. The study offers a promising strategy and a new opportunity for the clinical application of mPTT.
Collapse
Affiliation(s)
- Jianchuan Ran
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Tao Liu
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanhui Song
- Institute of Translational Medicine, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing, 210008, China
| | - Zheng Wei
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Chuanchao Tang
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Zichen Cao
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Huihui Zou
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xinyu Zhang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Yu Cai
- Department of Rehabilitation Medicine, Zhejiang Provincial People's Hospital (Affiliated People's Hospital, Hangzhou Medical College), Hangzhou, Zhejiang, 310014, China
| | - Wei Han
- Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| |
Collapse
|
17
|
Chen S, Wang Z, Liu L, Li Y, Ni X, Yuan H, Wang C. Redox homeostasis modulation using theranostic AIE nanoparticles results in positive-feedback drug accumulation and enhanced drug penetration to combat drug-resistant cancer. Mater Today Bio 2022; 16:100396. [PMID: 36060105 PMCID: PMC9434132 DOI: 10.1016/j.mtbio.2022.100396] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/07/2022] [Accepted: 08/08/2022] [Indexed: 11/17/2022] Open
Abstract
Drug-resistant cancers usually have multiple barriers to compromise the effect of therapies, of which multidrug-resistance (MDR) phenotype as the intracellular barrier and dense tumor matrix as the extracellular barrier, significantly contribute to the poor anticancer performance of current drug delivery systems (DDS). Here in this study, we fabricated a novel aggregation-induced emission (AIE)-active polymer capable of self-assembling into ultrasmall nanoparticles (∼20 nm) with D-alpha Tocopheryl Polyethylene Glycol Succinate (TPGS), for dual-encapsulating of doxorubicin (Dox) and sulforaphane (SFN) (AT/Dox/SFN). It revealed that redox homeostasis modulation of MDR cells (MCF-7/Adr) using AT/Dox/SFN can trigger mitochondria damage and ATP deficiency, which reverse the MDR phenotype of MCF-7/Adr cells to afford enhanced cellular uptake of both drug and DDS in a positive-feedback manner. The enhanced cellular drug accumulation further initiates the “neighboring effect” for improved drug penetration. Using this strategy, the growth of in vivo MCF-7/Adr tumors can be effectively inhibited at a low dosage (1/5) of doxorubicin (Dox) as compared to free Dox. In summary, we offer a new approach to overcome both the intracellular and extracellular barriers of drug-resistant cancers and elucidate the potential action mechanisms, which are beneficial for better cancer management. Redox homeostasis modulation in MDR cancer cell results in positive-feedback drug accumulation and enhanced drug penetration. Mitochondria damage and neighboring effect is responsible for MDR reversal and enhanced drug penetration, respectively. AT/Dox/SFN effectively inhibits in vivo MCF-7/Adr tumors at a low dosage (1/5) of doxorubicin (Dox) as compared to free Dox.
Collapse
Affiliation(s)
- Shaoqing Chen
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Ren'ai Road, Suzhou, Jiangsu, China
| | - Li Liu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Yuting Li
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
| | - Xinye Ni
- Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China
- Jiangsu Province Engineering Research Center of Medical Physics, Changzhou, Jiangsu 213003, China
- Corresponding author. Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, Jiangsu, China.
| | - Hong Yuan
- College of Pharmaceutical Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou, Zhejiang, China
- Corresponding author.
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, China
- Corresponding author.
| |
Collapse
|
18
|
Deng X, Zhao R, Song Q, Zhang Y, Zhao H, Hu H, Zhang Z, Liu W, Lin W, Wang G. Synthesis of dual-stimuli responsive metal organic framework-coated iridium oxide nanocomposite functionalized with tumor targeting albumin-folate for synergistic photodynamic/photothermal cancer therapy. Drug Deliv 2022; 29:3142-3154. [PMID: 36164704 PMCID: PMC9542428 DOI: 10.1080/10717544.2022.2127973] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
The synergistic effects of photothermal therapy (PTT) and photodynamic therapy (PDT) has attracted considerable attention in the field of cancer therapy because of its excellent anti-tumor effect. This work provides a novel pH/NIR responsive therapeutic nanoplatform, IrO2@ZIF-8/BSA-FA (Ce6), producing a synergistic effect of PTT-PDT in the treatment of osteosarcoma. Iridium dioxide nanoparticles (IrO2 NPs) with exceptional catalase-like activity and PTT effects were synthesized by a hydrolysis method and decorated with zeolitic imidazolate framework-8 (ZIF-8) shell layer to promote the physical absorption of Chlorin e6 (Ce6), and further functionalized with bovine serum albumin-folate acid (BSA-FA) for targeting tumor cells. The IrO2@ZIF-8/BSA-FA nanocomposite indicated an outstanding photothermal heating conversion efficiency of 62.1% upon laser irradiation. In addition, the Ce6 loading endows nanoplatform with the capability to induce cell apoptosis under 660 nm near-infrared (NIR) laser irradiation through a reactive oxygen species (ROS)-mediated mechanism. It was further testified that IrO2@ZIF-8/BSA-FA can function as a catalase and convert the endogenous hydrogen peroxide (H2O2) into oxygen (O2) to improve the local oxygen pressure under the acidic tumor microenvironment (TME), which could subsequently amplified PDT-mediated ROS cell-killing performance via relieving hypoxia microenvironment of tumor. Both in vitro and in vivo experimental results indicated that the nanomaterials were good biocompatibility, and could remarkably achieve tumor-specific and enhanced combination therapy outcomes as compared with the corresponding PTT or PDT monotherapy. Taken together, this work holds great potential to design an intelligent multifunctional therapeutic nanoplatform for cancer therapy.
Collapse
Affiliation(s)
- Xiangtian Deng
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Renliang Zhao
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Qingcheng Song
- Department of Orthopaedic Surgery, The Third Hospital of Hebei Medical University, Shijazhuang, China
| | - Yiran Zhang
- School of Medicine, Nankai University, Tianjin, China
| | - Haiyue Zhao
- School of Medicine, Nankai University, Tianjin, China
| | - Hongzhi Hu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhen Zhang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| | - Weijian Liu
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wei Lin
- Department of Gynecology, West China Second Hospital, Sichuan University, Chengdu, China
| | - Guanglin Wang
- Trauma Medical Center, Department of Orthopedics Surgery, West China Hospital, Sichuan University, Chengdu, China.,Orthopedics Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
19
|
Tian Q, Guo Y, Li D, Dong L. Hybrid Gastric Cancer Exosome as Potential Drug Carrier for Targeted Gastric Cancer Therapy. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Gastric cancer is among the leading lethal cancer types in the world. However, its five year survival rate is far from satisfactory. Therefore, the development of targeted cancer gastric cancer therapy is a promising way to cure gastric cancer. Gastric cancer exosome is reported to
have high caner targeting efficacy, but its yield is relatively low. Herein, we proposed a facile way to construct hybrid gastric cancer exosome (HGCE) with high yield as potential drug carrier for targeted gastric cancer therapy. The doxorubicin (Dox) loaded HGCE (Dox/HGCE) was developed
as drug delivery system (DDS) to treat gastric cancer. In vitro and in vivo results demonstrated that Dox/HGCE showed not only high and specific homing ability to the gastric cancer cells (SGC7901) but also good anticancer performance which can be a promising DDS for gastric
cancer therapy.
Collapse
Affiliation(s)
- Qing Tian
- Department of Thoracic Surgery, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
| | - Ying Guo
- Department of Oncology, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
| | - Dan Li
- Department of Thoracic Surgery, Jingxing County Hospital, Shijiazhuang City, Hebei Province, 050030, China
| | - Liang Dong
- Department of Medical, The First Hospital of Hebei Medical University, Shijiazhuang City, Hebei Province, 050031, China
| |
Collapse
|
20
|
Wang C, Liu L, Chen S, Cui P, Zhou S, Qiu L, Jiang P, Wang J, Ni X. Hemoglobin assisted one-pot synthesis of MnO2 nanozyme for radiation protection. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
21
|
Temperature-Ion-pH Triple Responsive Gellan Gum as In Situ Hydrogel for Long-Acting Cancer Treatment. Gels 2022; 8:gels8080508. [PMID: 36005109 PMCID: PMC9407511 DOI: 10.3390/gels8080508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Background: Promising cancer chemotherapy requires the development of suitable drug delivery systems (DDSs). Previous research has indicated that a hydrogel is a powerful DDS for tumor therapy and holds great potential to offer a feasible method for cancer management. Methods: In this study, glutathione-gellan gum conjugate (GSH-GG) was synthesized through chemical reaction. Doxorubicin hydrochloride (DOX) was loaded into GSH-GG to accomplish DOX-loaded GSH-GG. The properties, injectability, drug release, and in vitro and in vivo anticancer effects of DOX-loaded GSH-GG were tested. Results: DOX-loaded GSH-GG showed a temperature-ion dual responsive gelling property with good viscosity, strength, and injectability at an optimized gel concentration of 1.5%. In addition, lower drug release was found under acidic conditions, offering beneficial long-acting drug release in the tumor microenvironment. DOX-loaded GSH-GG presented selective action by exerting substantially higher cytotoxicity on cancer cells (4T1) than on normal epithelial cells (L929), signifying the potential of complete inhibition of tumor progression, without affecting the health quality of the subjects. Conclusions: GSH-GG can be applied as a responsive gelling material for delivering DOX for promising cancer therapy.
Collapse
|
22
|
Upconversion Nanostructures Applied in Theranostic Systems. Int J Mol Sci 2022; 23:ijms23169003. [PMID: 36012269 PMCID: PMC9409402 DOI: 10.3390/ijms23169003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Upconversion (UC) nanostructures, which can upconvert near-infrared (NIR) light with low energy to visible or UV light with higher energy, are investigated for theranostic applications. The surface of lanthanide (Ln)-doped UC nanostructures can be modified with different functional groups and bioconjugated with biomolecules for therapeutic systems. On the other hand, organic molecular-based UC nanostructures, by using the triplet-triplet annihilation (TTA) UC mechanism, have high UC quantum yields and do not require high excitation power. In this review, the major UC mechanisms in different nanostructures have been introduced, including the Ln-doped UC mechanism and the TTA UC mechanism. The design and fabrication of Ln-doped UC nanostructures and TTA UC-based UC nanostructures for theranostic applications have been reviewed and discussed. In addition, the current progress in the application of UC nanostructures for diagnosis and therapy has been summarized, including tumor-targeted bioimaging and chemotherapy, image-guided diagnosis and phototherapy, NIR-triggered controlled drug releasing and bioimaging. We also provide insight into the development of emerging UC nanostructures in the field of theranostics.
Collapse
|
23
|
Wang J, Tian C, Cao Z. One-Pot Synthesis Bodipy Nano-Precipitations for Prostate Cancer Treatment. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.3070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Here in this study, we proposed a polystyrene maleic anhydride (PSMA) stabilized Bodipy nanoparticles (PB NPs) in a one-pot approach for the photodynamic therapy (PDT) of prostate cancer. The nanoparticle formed by precipitation method was then employed to treat PC-3 cells and PC-3
tumor bearing nude mice model. It was shown that this platform showed promising anticancer performance than free bodipy with reduced side effects.
Collapse
Affiliation(s)
- Jianan Wang
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| | - Chao Tian
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| | - Zhengguo Cao
- Department of Urology, Yuebei People’s Hospital, Wujiang District, 512000, Shaoguan, Guangdong Province, 51200, China
| |
Collapse
|
24
|
Li Y, Zhu Y, Wang C, Shen Y, Liu L, Zhou S, Cui PF, Hu H, Jiang P, Ni X, Qiu L, Wang J. Mild Hyperthermia Induced by Hollow Mesoporous Prussian Blue Nanoparticles in Alliance with a Low Concentration of Hydrogen Peroxide Shows Powerful Antibacterial Effect. Mol Pharm 2022; 19:819-830. [PMID: 35170976 DOI: 10.1021/acs.molpharmaceut.1c00765] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The emergence of superbacteria as well as the drug resistance of the current bacteria gives rise to worry regarding a bacterial pandemic and also calls for the development of novel ways to combat the bacteria. Here in this article, we demonstrate that mild hyperthermia induced by hollow mesoporous Prussian blue nanoparticles (HMPBNPs) in alliance with a low concentration of hydrogen peroxide (H2O2) shows a powerful inhibition effect on bacteria. Our results demonstrate that this therapeutic regime could realize almost full growth inhibition of both Gram-positive (Staphylococcus aureus, S. aureus) and -negative bacteria (Escherichia coli, E. coli), as well as potent inhibition/elimination of the S. aureus biofilm. The wound healing results indicate that combination regime of the antibacterial system could be conveniently used for wound disinfection in vivo and could promote wound healing. To our limited knowledge, this is one of the few pioneer works to apply mild hyperthermia for the combat of bacteria, which provides a novel strategy to inspire future studies.
Collapse
Affiliation(s)
- Yuting Li
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Yun Zhu
- Department of Pharmacy, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing 210008, Jiangsu, China
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China.,The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou 213004, Jiangsu, China
| | - Yue Shen
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Li Liu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Peng-Fei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Xinye Ni
- The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou 213004, Jiangsu, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, Jiangsu, China
| |
Collapse
|
25
|
Pei Y, Wang Z, Wang C. Recent Progress in Polymeric AIE-Active Drug Delivery Systems: Design and Application. Mol Pharm 2021; 18:3951-3965. [PMID: 34585933 DOI: 10.1021/acs.molpharmaceut.1c00601] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Aggregation-induced emission (AIE) provides a new opportunity to overcome the drawbacks of traditional aggregation-induced quenching of chromophores. The applications of AIE-active fluorophores have spread across various fields. In particular, the employment of AIEgens in drug delivery systems (DDSs) can achieve imaging-guided therapy and pharmacodynamic monitoring. As a result, polymeric AIE-active DDSs are attracting increasing attention due to their obvious advantages, including easy fabrication and tunable optical properties by molecular design. Additionally, the design of polymeric AIE-active DDSs is a promising method for cancer therapy, antibacterial treatment, and pharmacodynamic monitoring, which indeed helps improve the effectiveness of related disease treatments and confirms its potential social importance. Here, we summarize the current available polymeric AIE-active DDSs from design to applications. In the design section, we introduce synthetic strategies and structures of AIE-active polymers, as well as responsive strategies for specific drug delivery. In the application section, typical polymeric AIE-active DDSs used for cancer therapy, bacterial treatment, and drug delivery monitoring are summarized with selected examples to elaborate on their wide applications.
Collapse
Affiliation(s)
- Yang Pei
- School of History, Nanjing University, Nanjing, Jiangsu 210023, People's Republic of China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, Suzhou, Jiangsu 215123, People's Republic of China
| | - Cheng Wang
- The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, Jiangsu 213000, People's Republic of China.,School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, People's Republic of China
| |
Collapse
|
26
|
Jiang Z, Li T, Cheng H, Zhang F, Yang X, Wang S, Zhou J, Ding Y. Nanomedicine potentiates mild photothermal therapy for tumor ablation. Asian J Pharm Sci 2021; 16:738-761. [PMID: 35027951 PMCID: PMC8739255 DOI: 10.1016/j.ajps.2021.10.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/03/2021] [Accepted: 10/05/2021] [Indexed: 12/17/2022] Open
Abstract
The booming photothermal therapy (PTT) has achieved great progress in non-invasive oncotherapy, and paves a novel way for clinical oncotherapy. Of note, mild temperature PTT (mPTT) of 42–45 °C could avoid treatment bottleneck of the traditional PTT, including nonspecific injury to normal tissues, vasculature and host antitumor immunity. However, cancer cells can resist mPTT via heat shock response and autophagy, thus leading to insufficient mPTT monotherapy to ablate tumor. To overcome the deficient antitumor efficacy caused by thermo-resistance of cancer cells and mono mPTT, synergistic therapies towards cancer cells have been conducted with mPTT. This review summarizes the recent advances in nanomedicine-potentiated mPTT for cancer treatment, including strategies for enhanced single-mode mPTT and mPTT plus synergistic therapies. Moreover, challenges and prospects for clinical translation of nanomedicine-potentiated mPTT are discussed.
Collapse
|
27
|
Zheng X, Bian S, Liu W, Zhang C, Wu J, Ren H, Zhang W, Lee CS, Wang P. Amphiphilic Diketopyrrolopyrrole Derivatives for Efficient Near-Infrared Fluorescence Imaging and Photothermal Therapy. ACS OMEGA 2021; 6:26575-26582. [PMID: 34661012 PMCID: PMC8515603 DOI: 10.1021/acsomega.1c03947] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Indexed: 05/25/2023]
Abstract
The design and synthesis of single-molecule amphiphilic and multifunctional phototherapeutic agents are important to cancer diagnosis and therapy. In this work, we developed three amphiphilic diketopyrrolopyrrole derivatives (TPADPP, DTPADPP, and TPADDPP) with different donor-acceptor structures and poly(ethylene glycol) side chains. The corresponding nanoparticles (NPs) were obtained via a self-assembly from three amphiphilic DPP derivatives and used as smart phototherapeutic agents for tumor diagnosis and treatment. The three amphiphilic DPP NPs exhibited near-infrared (NIR) emissions and good biocompatibility. Thus, they could be used as fluorescence (FL) imaging agents for guided therapy. DTPADPP NPs and TPADDPP NPs also displayed excellent photothermal performance and high accumulation in the tumor. Owing to these beneficial features, the DTPADPP NPs and TPADDPP NPs synthesized herein are suitable for NIR FL imaging and effective photothermal therapy against the tumor in vivo.
Collapse
Affiliation(s)
- Xiuli Zheng
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Shuaishuai Bian
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Weimin Liu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Chuangli Zhang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Jiasheng Wu
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Haohui Ren
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenjun Zhang
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Chun-Sing Lee
- Center
of Super-Diamond and Advanced Films (COSDAF) & Department of Materials
Science and Engineering, City University
of Hong Kong, Hong Kong SAR 999077, China
| | - Pengfei Wang
- Key
Laboratory of Photochemical Conversion and Optoelectronic Materials
and CityU-CAS Joint Laboratory of Functional Materials and Devices,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
28
|
Miao Z, Wang Y, Li S, Zhang M, Xu M. One-pot synthesis chlorin e6 nano-precipitation for colorectal cancer treatment Ce6 NPs for colorectal cancer treatment. IET Nanobiotechnol 2021; 15:680-685. [PMID: 34694720 PMCID: PMC8675780 DOI: 10.1049/nbt2.12065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 06/14/2021] [Accepted: 06/17/2021] [Indexed: 12/24/2022] Open
Abstract
The drug nanoparticles free of additional carriers hold great promise in drug delivery and are suitable for the therapy of cancers. Herein, we developed a one-pot method to prepare chlorin e6 (Ce6) nano-precipitations (Ce6 NPs) for effective photodynamic therapy of colorectal cancer. The drug loading of Ce6 NPs was around 81% and showed acceptable stability, high biocompatibility as well as effective reactive oxygen species (ROS) generation capability. As a result, the Ce6 NPs can produce significantly elevated ROS upon laser irradiations and achieved better anticancer benefits than free Ce6.
Collapse
Affiliation(s)
- Zhongxing Miao
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Yujie Wang
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Shengjie Li
- Department of Gastroenterology SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Min Zhang
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| | - Meng Xu
- Department of Department of Anorectal SurgeryDalian Municipal Central HospitalDalianLiaoningChina
| |
Collapse
|
29
|
Wang C, Wang Z, Chen S, Cui P, Qiu L, Zhou S, Jiang H, Jiang P, Wang J. Modulation of Aggregation-Caused Quenching to Aggregation-Induced Emission: Finding a Biocompatible Polymeric Theranostics Platform for Cancer Therapy. Macromol Rapid Commun 2021; 42:e2100264. [PMID: 34347315 DOI: 10.1002/marc.202100264] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Revised: 07/05/2021] [Indexed: 01/18/2023]
Abstract
Dual intramolecular FRET polymers are synthesized via Suzuki coupling and their luminescence characteristics from aggregation-caused quenching (ACQ) to aggregation-induced emission (AIE) is modulated conveniently by adjusting the charged ratios. The finally obtained AIE polymer is further employed to construct doxorubicin loaded nanoparticles as a promising theranostics platform for cancer therapy.
Collapse
Affiliation(s)
- Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Ziyu Wang
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X), Soochow University, 199 Ren'ai Road, Suzhou, 215123, P. R. China
| | - Shaoqing Chen
- College of Pharmaceutical Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou, 310058, P. R. China
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Lin Qiu
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Hua Jiang
- Department of Oncology, Second People's Hospital of Changzhou, Nanjing Medical University, Changzhou, 213003, P. R. China
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu, 213164, China
| |
Collapse
|
30
|
Zhao ZQ, Song W, Yan XQ, Tang JH, Hou JC, Wang DD, Yang SJ, Zhang Q, Zhang J. Autophagy Modulation and Synergistic Therapy to Combat Multidrug Resistance Breast Cancer Using Hybrid Cell Membrane Nanoparticles. J Biomed Nanotechnol 2021; 17:1404-1416. [PMID: 34446143 DOI: 10.1166/jbn.2021.3116] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The development of multidrug resistance (MDR) is a commonly observed phenomenon in many cancer types. It contributed significantly to the poor outcome of many currently available chemotherapies. Considering autophagy as one of the most important physiological process in cancer progression, we thereby proposed an anti-autophagy siRNA and doxorubicin (Dox) co-delivery system (MC/D-siR) to combat MDR breast cancer using sequential construction. Our results demonstrated the potential of MC/D-siR to effectively transfect the loaded siRNA to result in significant downregulation of intracellular autophagy level in MCF-7/Adr (Dox resistance MCF-7 cell line) cells, which in turn cut off the ATP supply and to reverse the MDR and potentiated accumulated drug retention in cells. As a result, MC/D-siR showed much elevated anticancer benefits than single loaded platforms (MC/Dox or MC/siRNA), indicating the ability for effective MDR cancer treatment through the combination of autophagy regulation and chemotherapy.
Collapse
Affiliation(s)
- Zhi-Qiang Zhao
- The Affiliated Huai'an Hospital of Xuzhou Medical University and The Second People's Hospital of Huai'an, Huai'an, 223002, P. R. China
| | - Wei Song
- Department of General Surgery, Huai'an First People's Hospital, Nanjing Medical University, Huai'an, Jiangsu 223300, China
| | - Xue-Qin Yan
- Department of General Surgery, Huai'an People's Hospital of Hongze District, Huai'an, 223002, P. R. China
| | - Jin-Hai Tang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jun-Chen Hou
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Dan-Dan Wang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Su-Jin Yang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Qian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| | - Jian Zhang
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, P. R. China
| |
Collapse
|
31
|
Qiu L, Wang C, Lei X, Du X, Guo Q, Zhou S, Cui P, Hong T, Jiang P, Wang J, Li YQ, Xia J. Gelatinase-responsive release of an antibacterial photodynamic peptide against Staphylococcus aureus. Biomater Sci 2021; 9:3433-3444. [PMID: 33949360 DOI: 10.1039/d0bm02201b] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Staphylococcus aureus (S. aureus) related staphylococcal infection is one of the most common types of hospital-acquired infections, which requires selective and effective treatment in clinical practice. Considering gelatinase as a characteristic feature of S. aureus, gelatinase-responsive release of the antibiotic reagent thereby can target the pathogenic S. aureus while sparing beneficial bacteria in the microflora. In this work, we design a hybrid antibacterial photodynamic peptide (APP, Ce6-GKRWWKWWRRPLGVRGC) based on the polycationic antimicrobial peptide GKRWWKWWRR by introducing a photosensitizer chlorin e6 (Ce6) at the N-terminus, a cysteine residue at the C-terminus, and a gelatinase cleavage site (PLGVRG) inserted between the C-terminal cysteine and the polycationic peptide. This multi-motif peptide assembles with gold nanoclusters (AuNc) via Au-thiol bonding and affords a gelatinase-responsive antibacterial photodynamic nanocomposite (GRAPN). In vitro results show that the gelatinase secreted by S. aureus can cleave and release APP from AuNc, thereby resulting in preferential killing of S. aureus over E. coli. In a mouse model of staphylococcal skin wound infection, by integrating gelatinase-responsive drug release and the synergistic effect of a photodynamic agent and APP, GRAPN exhibits a marked photodynamic antibacterial activity, effectively eradicates S. aureus infection, and promotes rapid healing of the infected wounds.
Collapse
Affiliation(s)
- Lin Qiu
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Cheng Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xiaoling Lei
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Xuancheng Du
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Qianqian Guo
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Shuwen Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Pengfei Cui
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Tingting Hong
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Pengju Jiang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China.
| | - Jianhao Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology, School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China. and Jiangsu Traumark Medical Instrument Co., Ltd, Changzhou, Jiangsu 213149, China
| | - Yong-Qiang Li
- Institute of Advanced Interdisciplinary Science, School of Physics, Shandong University, Jinan 250100, China.
| | - Jiang Xia
- Department of Chemistry, the Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| |
Collapse
|