1
|
Luo G, Liu H, Wang R, Duan C, Sun M, Lu Y, Ou Z, Hu Z. Construction of a red phosphorus-molybdenum dioxide electron-rich interface for efficient photocatalytic reduction of carbon dioxide. J Colloid Interface Sci 2025; 684:346-354. [PMID: 39798430 DOI: 10.1016/j.jcis.2024.12.244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/26/2024] [Accepted: 12/31/2024] [Indexed: 01/15/2025]
Abstract
Developing efficient catalysts to enhance photoreduction carbon dioxide (CO2) into hydrocarbon fuels is a great challenge. As metallic material, molybdenum dioxide (MoO2) has very high conductivity and charge density, which make it a promising candidate as photocatalyst. However, its photocatalytic activity is limited by the serious charge recombination. How to effectively make full use of the metallic MoO2 for photocatalytic CO2 reduction is still a critical issue. The potential effective way to solve this problem is to introduce appropriate auxiliary catalysts to construct electron-rich interfaces. In this study, red phosphorus (P) is dispersed on MoO2 nanoparticles to construct electron-rich interfaces which can serve as the active site for photocatalytic CO2 reduction. The results show that the reduction of CO2 by pure MoO2 only produces carbon monoxide (CO) and methane (CH4). However, with the aid of red P, the P-MoO2 photocatalyst can produce ethylene (C2H4) with the yield of 5.43 μmol h-1 g-1, and the CO and CH4 yields are also significantly improved. Experimental results and density functional theory (DFT) calculations indicate that photogenerated carriers can migrate from MoO2 to the interface, and the reduction of CO2 occurs at the interface. This study provides a significant insight for the design of efficient photocatalysts by using metallic photocatalysts.
Collapse
Affiliation(s)
- Guanghui Luo
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Huimin Liu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Chengyu Duan
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Mengdi Sun
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yinglong Lu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zheshun Ou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
2
|
He S, Liu D, Zhang G, Chu F, Xu G, Li G, Liu J, Yang Y, Zhang Y. Quasi-One-Dimensional Fibrous Phosphorus: An Air-Stable Low-Symmetry Semiconductor with High Anisotropy. ACS OMEGA 2024; 9:43368-43375. [PMID: 39493983 PMCID: PMC11525493 DOI: 10.1021/acsomega.4c02317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 07/13/2024] [Accepted: 07/18/2024] [Indexed: 11/05/2024]
Abstract
Due to their novel optical and optoelectronic properties, 2D materials have received increasing interest for optoelectronics applications. However, when the width of the channel layer decreases to the nanoscale, the properties of 2D materials can be seriously influenced due to the boundary defects and the approximation of physical dimensions and mean free path of the electron. That brings many challenges to developing novel electronics. Hence, researchers began to maintain their focus on 1D semiconductors without boundary defects and surfaces. Herein, fibrous phosphorus, another Quasi-1D layered semiconducting phosphorus allotrope with air-stable low symmetry, is reported. We found the in-plane anisotropic Raman response and excitation and exciton emission at room temperature. Moreover, the raw materials of fibrous phosphorus are nontoxic and abundant on the earth. These excellent properties will make it a highly competitive material for future applications in the optoelectronic area.
Collapse
Affiliation(s)
- Shuang He
- Key
Laboratory of Advanced Functional Materials, Ministry of Education,
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Danmin Liu
- Key
Laboratory of Advanced Functional Materials, Ministry of Education,
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guoqing Zhang
- Chinese
Academy of Sciences Aerospace Information Research Institute, Beijing Institute of Aerospace Standardization, Beijing 100166, China
| | - Feihong Chu
- Key
Laboratory of Advanced Functional Materials, Ministry of Education,
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guoliang Xu
- Key
Laboratory of Advanced Functional Materials, Ministry of Education,
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Guoliang Li
- Key
Laboratory of Advanced Functional Materials, Ministry of Education,
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Junfeng Liu
- Key
Laboratory of Advanced Functional Materials, Ministry of Education,
College of Materials Science and Engineering, Beijing University of Technology, Beijing 100124, China
| | - Yanhan Yang
- School
of Science, Xi’an University of Posts
and Telecommunications, Xi’an 710121, China
| | - Yongzhe Zhang
- Key
Laboratory of Optoelectronics Technology, Ministry of Education, Faculty
of Information Technology, Beijing University
of Technology, Beijing 100124, China
| |
Collapse
|
3
|
Jia G, Zhang Y, Yu JC, Guo Z. Asymmetric Atomic Dual-Sites for Photocatalytic CO 2 Reduction. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403153. [PMID: 39039977 DOI: 10.1002/adma.202403153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 06/25/2024] [Indexed: 07/24/2024]
Abstract
Atomically dispersed active sites in a photocatalyst offer unique advantages such as locally tuned electronic structures, quantum size effects, and maximum utilization of atomic species. Among these, asymmetric atomic dual-sites are of particular interest because their asymmetric charge distribution generates a local built-in electric potential to enhance charge separation and transfer. Moreover, the dual sites provide flexibility for tuning complex multielectron and multireaction pathways, such as CO2 reduction reactions. The coordination of dual sites opens new possibilities for engineering the structure-activity-selectivity relationship. This comprehensive overview discusses efficient and sustainable photocatalysis processes in photocatalytic CO2 reduction, focusing on strategic active-site design and future challenges. It serves as a timely reference for the design and development of photocatalytic conversion processes, specifically exploring the utilization of asymmetric atomic dual-sites for complex photocatalytic conversion pathways, here exemplified by the conversion of CO2 into valuable chemicals.
Collapse
Affiliation(s)
- Guangri Jia
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Yingchuan Zhang
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, 999077, P. R. China
| | - Zhengxiao Guo
- Department of Chemistry and HKU-CAS Joint Laboratory on New Materials, The University of Hong Kong, Hong Kong SAR, 999077, P. R. China
| |
Collapse
|
4
|
Yun Q, Ge Y, Shi Z, Liu J, Wang X, Zhang A, Huang B, Yao Y, Luo Q, Zhai L, Ge J, Peng Y, Gong C, Zhao M, Qin Y, Ma C, Wang G, Wa Q, Zhou X, Li Z, Li S, Zhai W, Yang H, Ren Y, Wang Y, Li L, Ruan X, Wu Y, Chen B, Lu Q, Lai Z, He Q, Huang X, Chen Y, Zhang H. Recent Progress on Phase Engineering of Nanomaterials. Chem Rev 2023. [PMID: 37962496 DOI: 10.1021/acs.chemrev.3c00459] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
As a key structural parameter, phase depicts the arrangement of atoms in materials. Normally, a nanomaterial exists in its thermodynamically stable crystal phase. With the development of nanotechnology, nanomaterials with unconventional crystal phases, which rarely exist in their bulk counterparts, or amorphous phase have been prepared using carefully controlled reaction conditions. Together these methods are beginning to enable phase engineering of nanomaterials (PEN), i.e., the synthesis of nanomaterials with unconventional phases and the transformation between different phases, to obtain desired properties and functions. This Review summarizes the research progress in the field of PEN. First, we present representative strategies for the direct synthesis of unconventional phases and modulation of phase transformation in diverse kinds of nanomaterials. We cover the synthesis of nanomaterials ranging from metal nanostructures such as Au, Ag, Cu, Pd, and Ru, and their alloys; metal oxides, borides, and carbides; to transition metal dichalcogenides (TMDs) and 2D layered materials. We review synthesis and growth methods ranging from wet-chemical reduction and seed-mediated epitaxial growth to chemical vapor deposition (CVD), high pressure phase transformation, and electron and ion-beam irradiation. After that, we summarize the significant influence of phase on the various properties of unconventional-phase nanomaterials. We also discuss the potential applications of the developed unconventional-phase nanomaterials in different areas including catalysis, electrochemical energy storage (batteries and supercapacitors), solar cells, optoelectronics, and sensing. Finally, we discuss existing challenges and future research directions in PEN.
Collapse
Affiliation(s)
- Qinbai Yun
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Department of Chemical and Biological Engineering & Energy Institute, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yiyao Ge
- School of Materials Science and Engineering, Peking University, Beijing 100871, China
| | - Zhenyu Shi
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Jiawei Liu
- Institute of Sustainability for Chemicals, Energy and Environment, Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xixi Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - An Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Biao Huang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Yao Yao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Qinxin Luo
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Li Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
| | - Jingjie Ge
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong SAR
| | - Yongwu Peng
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Chengtao Gong
- College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meiting Zhao
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Yutian Qin
- Institute of Molecular Aggregation Science, Department of Chemistry, Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Tianjin University, Tianjin 300072, China
| | - Chen Ma
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Gang Wang
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Qingbo Wa
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xichen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Zijian Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Siyuan Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Wei Zhai
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Hua Yang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yi Ren
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yongji Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Lujing Li
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Xinyang Ruan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Yuxuan Wu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Bo Chen
- State Key Laboratory of Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials, School of Chemistry and Life Sciences, Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Qipeng Lu
- School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
| | - Zhuangchai Lai
- Department of Applied Physics, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Qiyuan He
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong SAR, China
| | - Xiao Huang
- Institute of Advanced Materials (IAM), School of Flexible Electronics (SoFE), Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing Tech University (NanjingTech), Nanjing 211816, China
| | - Ye Chen
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Hua Zhang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong, China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Hong Kong, China
- Shenzhen Research Institute, City University of Hong Kong, Shenzhen 518057, China
| |
Collapse
|
5
|
Tian H, Wang J, Lai G, Dou Y, Gao J, Duan Z, Feng X, Wu Q, He X, Yao L, Zeng L, Liu Y, Yang X, Zhao J, Zhuang S, Shi J, Qu G, Yu XF, Chu PK, Jiang G. Renaissance of elemental phosphorus materials: properties, synthesis, and applications in sustainable energy and environment. Chem Soc Rev 2023; 52:5388-5484. [PMID: 37455613 DOI: 10.1039/d2cs01018f] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The polymorphism of phosphorus-based materials has garnered much research interest, and the variable chemical bonding structures give rise to a variety of micro and nanostructures. Among the different types of materials containing phosphorus, elemental phosphorus materials (EPMs) constitute the foundation for the synthesis of related compounds. EPMs are experiencing a renaissance in the post-graphene era, thanks to recent advancements in the scaling-down of black phosphorus, amorphous red phosphorus, violet phosphorus, and fibrous phosphorus and consequently, diverse classes of low-dimensional sheets, ribbons, and dots of EPMs with intriguing properties have been produced. The nanostructured EPMs featuring tunable bandgaps, moderate carrier mobility, and excellent optical absorption have shown great potential in energy conversion, energy storage, and environmental remediation. It is thus important to have a good understanding of the differences and interrelationships among diverse EPMs, their intrinsic physical and chemical properties, the synthesis of specific structures, and the selection of suitable nanostructures of EPMs for particular applications. In this comprehensive review, we aim to provide an in-depth analysis and discussion of the fundamental physicochemical properties, synthesis, and applications of EPMs in the areas of energy conversion, energy storage, and environmental remediation. Our evaluations are based on recent literature on well-established phosphorus allotropes and theoretical predictions of new EPMs. The objective of this review is to enhance our comprehension of the characteristics of EPMs, keep abreast of recent advances, and provide guidance for future research of EPMs in the fields of chemistry and materials science.
Collapse
Affiliation(s)
- Haijiang Tian
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jiahong Wang
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Gengchang Lai
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yanpeng Dou
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Jie Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Zunbin Duan
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Xiaoxiao Feng
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
| | - Qi Wu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Xingchen He
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
| | - Linlin Yao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Li Zeng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Yanna Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Xiaoxi Yang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
| | - Jing Zhao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianbo Shi
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xue-Feng Yu
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, P. R. China.
- Hubei Three Gorges Laboratory, Yichang, Hubei 443007, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Paul K Chu
- Department of Physics, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Materials Science and Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
- Department of Biomedical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China.
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, P. R. China
- School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
6
|
Zhai R, Zhang L, Gu M, Zhao X, Zhang B, Cheng Y, Zhang J. A Review of Phosphorus Structures as CO 2 Reduction Photocatalysts. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207840. [PMID: 36775943 DOI: 10.1002/smll.202207840] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/29/2023] [Indexed: 05/11/2023]
Abstract
Effective photocatalytic carbon dioxide (CO2 ) reduction into high-value-added chemicals is promising to mitigate current energy crisis and global warming issues. Finding effective photocatalysts is crucial for photocatalytic CO2 reduction. Currently, metal-based semiconductors for photocatalytic CO2 reduction have been well reviewed, while review of nonmetal-based semiconductors is almost limited to carbon nitrides. Phosphorus is a promising nonmetal photocatalysts with various allotropes and tunable band gaps, which has been demonstrated to be promising non-metallic photocatalysts. However, no systematic review about phosphorus structures for photocatalytic CO2 reduction reactions has been reported. Herein, the progresses of phosphorus structures as photocatalysts for CO2 reduction are reviewed. The fundamentals of photocatalytic CO2 reduction, corresponding properties of phosphorus allotropes, photocatalysts with phosphorus doping or phosphorus-containing ligands, research progress of phosphorus allotropes as photocatalysts for CO2 reduction have been reviewed in this paper. The future research and perspective of phosphorus structures for photocatalytic CO2 reduction are also presented.
Collapse
Affiliation(s)
- Rui Zhai
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Lihui Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuewen Zhao
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Bo Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yonghong Cheng
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
7
|
Zheng N, Li L, Tang X, Xie W, Zhu Q, Wang X, Lian Y, Yu JC, Hu Z. Spontaneous Formation of Low Valence Copper on Red Phosphorus to Effectively Activate Molecular Oxygen for Advanced Oxidation Process. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:5024-5033. [PMID: 36892275 DOI: 10.1021/acs.est.2c09645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Efficient spontaneous molecular oxygen (O2) activation is an important technology in advanced oxidation processes. Its activation under ambient conditions without using solar energy or electricity is a very interesting topic. Low valence copper (LVC) exhibits theoretical ultrahigh activity toward O2. However, LVC is difficult to prepare and suffers from poor stability. Here, we first report a novel method for the fabrication of LVC material (P-Cu) via the spontaneous reaction of red phosphorus (P) and Cu2+. Red P, a material with excellent electron donating ability and can directly reduce Cu2+ in solution to LVC via forming Cu-P bonds. With the aid of the Cu-P bond, LVC maintains an electron-rich state and can rapidly activate O2 to produce ·OH. By using air, the ·OH yield reaches a high value of 423 μmol g-1 h-1, which is higher than traditional photocatalytic and Fenton-like systems. Moreover, the property of P-Cu is superior to that of classical nano-zero-valent copper. This work first reports the concept of spontaneous formation of LVC and develops a novel avenue for efficient O2 activation under ambient conditions.
Collapse
Affiliation(s)
- Ningchao Zheng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Lejing Li
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, Shatin, China
| | - Xinhui Tang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Weiqiao Xie
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Qing Zhu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Xiaoli Wang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Yekai Lian
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| | - Jimmy C Yu
- Department of Chemistry, The Chinese University of Hong Kong, New Territories, Hong Kong 999077, Shatin, China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, P. R. China
| |
Collapse
|
8
|
Zhang S, Ma S, Cao B, Zhuang Q, Xu Y, Wang J, Zhang X, Nan X, Hao X, Xu B. Synthesis of Fibrous Phosphorus Micropillar Arrays with Pyro-Phototronic Effects. Angew Chem Int Ed Engl 2023; 62:e202217127. [PMID: 36458422 DOI: 10.1002/anie.202217127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 12/01/2022] [Accepted: 12/01/2022] [Indexed: 12/05/2022]
Abstract
The bottom-up preparation of two-dimensional material micro-nano structures at scale facilitates the realisation of integrated applications in optoelectronic devices. Fibrous Phosphorus (FP), an allotrope of black phosphorus (BP), is one of the most promising candidate materials in the field of optoelectronics with its unique crystal structure and properties.[1] However, to date, there are no bottom-up micro-nano structure preparation methods for crystalline phosphorus allotropes.[1c, 2] Herein, we present the bottom-up preparation of fibrous phosphorus micropillar (FP-MP) arrays via a low-pressure gas-phase transport (LP-CVT) method that controls the directional phase transition from amorphous red phosphorus (ARP) to FP. In addition, self-powered photodetectors (PD) of FP-MP arrays with pyro-phototronic effects achieved detection beyond the band gap limit. Our results provide a new approach for bottom-up preparation of other crystalline allotropes of phosphorus.
Collapse
Affiliation(s)
- Shuai Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.,School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Shufang Ma
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Ben Cao
- State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology, Guangzhou, 510640, China
| | - Qiandong Zhuang
- Semiconductor Physics & Nanostrucutres Physics Department, Lancaster University, Lancaster, LA1 4YB, UK
| | - Yang Xu
- Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| | - Jiahui Wang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.,School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Xishuo Zhang
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.,School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaoye Nan
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Xiaodong Hao
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China
| | - Bingshe Xu
- Materials Institute of Atomic and Molecular Science, Shaanxi University of Science and Technology, Xi'an, Shaanxi, 710021, China.,Key Laboratory of Interface Science and Engineering in Advanced Materials of Ministry of Education, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China
| |
Collapse
|
9
|
Ou H, Li G, Ren W, Pan B, Luo G, Hu Z, Wang D, Li Y. Atomically Dispersed Au-Assisted C–C Coupling on Red Phosphorus for CO 2 Photoreduction to C 2H 6. J Am Chem Soc 2022; 144:22075-22082. [DOI: 10.1021/jacs.2c09424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Affiliation(s)
- Honghui Ou
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Guosheng Li
- College of Environmental and Chemical Engineering, Zhaoqing University, Zhaoqing526061, China
| | - Wei Ren
- School of Food and Bioengineering, Fujian Polytechnic Normal University, Fuzhou350300, China
| | - Boju Pan
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Guanghui Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Zhuofeng Hu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou510006, P. R. China
| | - Dingsheng Wang
- Department of Chemistry, Tsinghua University, Beijing100084, China
| | - Yadong Li
- Department of Chemistry, Tsinghua University, Beijing100084, China
- College of Chemistry, Beijing Normal University, Beijing100875, P. R. China
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu241002P. R. China
| |
Collapse
|
10
|
Jiang S, Jia X, Cao J, Lin H, Li F, Sun Y, Chen S. Efficient Charge Carrier Transfer Route Induced by an S-Scheme α-Fe 2O 3/RP Heterojunction with Enhanced Photocatalytic Activity of Overall Water Splitting. Inorg Chem 2022; 61:18201-18212. [DOI: 10.1021/acs.inorgchem.2c02985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shan Jiang
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Xuemei Jia
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Jing Cao
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Haili Lin
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Fang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Yue Sun
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| | - Shifu Chen
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications, Ministry of Education; College of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
11
|
Tsai HS. Polymorphic Phosphorus Applied to Alkali-Ion Battery Electrodes. SMALL METHODS 2022; 6:e2200735. [PMID: 35948499 DOI: 10.1002/smtd.202200735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/13/2022] [Indexed: 06/15/2023]
Abstract
The polymorphic phosphorus materials such as amorphous red and black ones have been used as the anodes for alkali-ion batteries. As the research field of 2D materials is pioneered, the fibrous red and violet phosphorus begin to be investigated and predicted for various devices. Meanwhile, they are not only applied to the active materials of electrodes but also the formation of protective layers for battery application. This article briefly introduces the primary allotropes of phosphorus, their research progress, and their potential for the application of alkali-ion batteries. Next, the recent studies concerning their applications of electrodes and protective layers for alkali-ion batteries are discussed in detail. Finally, the merits and drawbacks of preparation approaches, the strategies for improvement of battery performance, and the urgent challenges as well as possible solutions for future development of alkali-ion batteries using the electrodes or protective layers made from phosphorus materials, are summarized.
Collapse
Affiliation(s)
- Hsu-Sheng Tsai
- Laboratory for Space Environment and Physical Sciences, Harbin Institute of Technology, Harbin, 150001, China
- School of Physics, Harbin Institute of Technology, Harbin, 150001, China
| |
Collapse
|
12
|
Zheng N, Zhou Q, Wang R, Lian Y, He X, Hu R, Hu Z. Rust triggers rapid reduction of Cr 6+ by red phosphorus: The importance of electronic transfer medium of Fe 3. CHEMOSPHERE 2022; 303:134971. [PMID: 35588886 DOI: 10.1016/j.chemosphere.2022.134971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/18/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Red phosphorus (P) is one of the metalloid materials, with five external electrons, it should be an excellent electron donor. However, the activity of red P to reduce Cr6+ is limited. Due to electrostatic repulsion, it is difficult for the electrons on the red P to transfer to the chromate anion (Cr6+). Interestingly, we found that Fe3+ derived from rust, waste iron or Fe3+ reagents can be used as the electron transport medium to solve the electron transport obstacles between red P and Cr6+. As a result, the reduction of Cr6+ by red P/rust system takes only 20 min, which is far lower than the 140 min of red P. The reduction rate of Cr6+ in the red P/rust system is about 12.3 times that of red P. The reaction mechanism is that red P is not easy to access chromate anions but can easily adsorb Fe3+. The adsorbed Fe3+ will be reduced to Fe2+ by red P, and the regenerated Fe2+ will diffuse into the solution to rapidly reduce Cr6+. Therefore, this work provides an alternative waste iron reuse pathway and also sheds light on the important role of electron medium in reduction reaction.
Collapse
Affiliation(s)
- Ningchao Zheng
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Quan Zhou
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruilin Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yekai Lian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xi He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ruiting Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China
| | - Zhuofeng Hu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
13
|
Smera R, Roshith M, Ramasubramanian S, Kumar DVR. Dip to Drink: Solar Photocatalytic Reduction of Cr(VI) Using Fibrous Red Phosphorus Immobilized Quartz Sand as “Dip-Catalyst”. J Inorg Organomet Polym Mater 2022. [DOI: 10.1007/s10904-022-02281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
14
|
Zhao Y, Sun Z, Zhang B, Yan Q. Unveiling the Degradation Chemistry of Fibrous Red Phosphorus under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:9925-9932. [PMID: 35138816 DOI: 10.1021/acsami.1c24883] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The practical applications of fibrous red phosphorus (FRP), an emerging quasi-one-dimensional material, might be hindered by its environmental instability. Although other phosphorus allotropes such as white phosphorus, violet phosphorus, and black phosphorus are reported unstable under ambient conditions, the chemical stability of FRP remains unexplored. Herein, we investigate the degradation chemistry of FRP by combining experimental study and density functional theory calculations. The results reveal that both oxygen and water can react with FRP, while light illumination may accelerate these reactions. Furthermore, the degradation behavior of FRP shows a pseudo-first-order reaction in oxygenated water, while it follows a pseudo-zero-order reaction in deoxygenated water. Such different reaction kinetics originates from the preferable dissociative adsorption behaviors of O2 molecular and H2O molecular on a FRP surface or at a FRP edge. A covalent modification approach using an aryl diazonium salt was adopted to passivate the surface of FRP flakes and significantly enhance their stability in air.
Collapse
Affiliation(s)
- Yunke Zhao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zhaojian Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bowen Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
15
|
Sun Z, Zhang B, Yan Q. Solution phase synthesis of the less-known Form II crystalline red phosphorus. Inorg Chem Front 2022. [DOI: 10.1039/d2qi01019d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Form II crystalline red phosphorus was grown by solvothermal reactions. XRD patterns match well with Roth’s results in 1947. Polyphosphide anions captured during phosphorus phase transformation support the “dissolution–crystallization” mechanism.
Collapse
Affiliation(s)
- Zhaojian Sun
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Bowen Zhang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Qingfeng Yan
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
16
|
Fung CM, Er CC, Tan LL, Mohamed AR, Chai SP. Red Phosphorus: An Up-and-Coming Photocatalyst on the Horizon for Sustainable Energy Development and Environmental Remediation. Chem Rev 2021; 122:3879-3965. [PMID: 34968051 DOI: 10.1021/acs.chemrev.1c00068] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photocatalysis is a perennial solution that promises to resolve deep-rooted challenges related to environmental pollution and energy deficit through harvesting the inexhaustible and renewable solar energy. To date, a cornucopia of photocatalytic materials has been investigated with the research wave presently steered by the development of novel, affordable, and effective metal-free semiconductors with fascinating physicochemical and semiconducting characteristics. Coincidentally, the recently emerged red phosphorus (RP) semiconductor finds itself fitting perfectly into this category ascribed to its earth abundant, low-cost, and metal-free nature. More notably, the renowned red allotrope of the phosphorus family is spectacularly bestowed with strengthened optical absorption features, propitious electronic band configuration, and ease of functionalization and modification as well as high stability. Comprehensively detailing RP's roles and implications in photocatalysis, this review article will first include information on different RP allotropes and their chemical structures, followed by the meticulous scrutiny of their physicochemical and semiconducting properties such as electronic band structure, optical absorption features, and charge carrier dynamics. Besides that, state-of-the-art synthesis strategies for developing various RP allotropes and RP-based photocatalytic systems will also be outlined. In addition, modification or functionalization of RP with other semiconductors for promoting effective photocatalytic applications will be discussed to assess its versatility and feasibility as a high-performing photocatalytic system. Lastly, the challenges facing RP photocatalysts and future research directions will be included to propel the feasible development of RP-based systems with considerably augmented photocatalytic efficiency. This review article aspires to facilitate the rational development of multifunctional RP-based photocatalytic systems by widening the cognizance of rational engineering as well as to fine-tune the electronic, optical, and charge carrier properties of RP.
Collapse
Affiliation(s)
- Cheng-May Fung
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Chen-Chen Er
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Lling-Lling Tan
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| | - Abdul Rahman Mohamed
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal, Pulau Pinang 14300, Malaysia
| | - Siang-Piao Chai
- Multidisciplinary Platform of Advanced Engineering, Chemical Engineering Discipline, School of Engineering, Monash University, Jalan Lagoon Selatan, Bandar Sunway, Selangor 47500, Malaysia
| |
Collapse
|
17
|
Zhao L, Fu H, Jian L, Zeng Y, Liu L, Liang Q, Xiao X. In situ growth of metal-free snowflake-like 1D/2D phosphorus element heterostructures for photocatalytic overall pure-water splitting. NEW J CHEM 2021. [DOI: 10.1039/d1nj03439a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
In this work, we report a novel phosphorus element heterostructure with a snowflake-like morphology consisting of 1D rod-like black phosphorus (BP) and 2D flake-like red phosphorus (RP).
Collapse
Affiliation(s)
- Ling Zhao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Hanping Fu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Lishan Jian
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Yating Zeng
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Liran Liu
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Qingshuang Liang
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| | - Xiufeng Xiao
- Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Material Science, Fujian Normal University, Fuzhou, Fujian 350007, China
| |
Collapse
|