1
|
Shen J, Quigley L, Barnard JP, Lu P, Tsai BK, Zemlyanov D, Zhang Y, Sheng X, Gan J, Moceri M, Hu Z, Huang J, Shen C, Deitz J, Zhang X, Wang H. Epitaxial Thin Film Growth on Recycled SrTiO 3 Substrates Toward Sustainable Processing of Complex Oxides. SMALL METHODS 2024:e2401148. [PMID: 39468802 DOI: 10.1002/smtd.202401148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/13/2024] [Indexed: 10/30/2024]
Abstract
Complex oxide thin films cover a range of physical properties and multifunctionalities that are critical for logic, memory, and optical devices. Typically, the high-quality epitaxial growth of these complex oxide thin films requires single crystalline oxide substrates such as SrTiO3 (STO), MgO, LaAlO3, a-Al2O3, and many others. Recent successes in transferring these complex oxides as free-standing films not only offer great opportunities in integrating complex oxides on other devices, but also present enormous opportunities in recycling the deposited substrates after transfer for cost-effective and sustainable processing of complex oxide thin films. In this work, the surface modification effects introduced on the recycled STO are investigated, and their impacts on the microstructure and properties of subsequently grown epitaxial oxide thin films are assessed and compared with those grown on the pristine substrates. Detailed analyses using high-resolution scanning transmission electron microscopy and geometric phase analysis demonstrate distinct strain states on the surfaces of the recycled STO versus the pristine substrates, suggesting a pre-strain state in the recycled STO substrates due to the previous deposition layer. These findings offer opportunities in growing highly mismatched oxide films on the recycled STO substrates with enhanced physical properties. Specifically, yttrium iron garnet (Y3Fe5O12) films grown on recycled STO present different ferromagnetic responses compared to that on the pristine substrates, underscoring the effects of surface modification. The study demonstrates the feasibility of reuse and redeposition using recycled substrates. Via careful handling and preparation, high-quality epitaxial thin films can be grown on recycled substrates with comparable or even better structural and physical properties toward sustainable process of complex oxide devices.
Collapse
Affiliation(s)
- Jianan Shen
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Lizabeth Quigley
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - James P Barnard
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Ping Lu
- Sandia National Laboratory, Albuquerque, New Mexico, 87185, United States
| | - Benson Kunhung Tsai
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Dmitry Zemlyanov
- Birck Nanotechnology Center, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Yizhi Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Xuanyu Sheng
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Jeremy Gan
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Matteo Moceri
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Zedong Hu
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Jialong Huang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Chao Shen
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Julia Deitz
- Sandia National Laboratory, Albuquerque, New Mexico, 87185, United States
| | - Xinghang Zhang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| | - Haiyan Wang
- School of Materials Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
- Elmore Family School of Electrical and Computer Engineering, Purdue University, West Lafayette, Indiana, 47907, United States
| |
Collapse
|
2
|
Kim M, Kim D, Mirjolet M, Shepelin NA, Lippert T, Choi H, Puigmartí-Luis J, Nelson BJ, Chen XZ, Pané S. Shape-Morphing in Oxide Ceramic Kirigami Nanomembranes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2404825. [PMID: 39385636 DOI: 10.1002/adma.202404825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/04/2024] [Indexed: 10/12/2024]
Abstract
Interfacial strain engineering in ferroic nanomembranes can broaden the scope of ferroic nanomembrane assembly as well as facilitate the engineering of multiferroic-based devices with enhanced functionalities. Geometrical engineering in these material systems enables the realization of 3-D architectures with unconventional physical properties. Here, 3-D multiferroic architectures are introduced by incorporating barium titanate (BaTiO3, BTO) and cobalt ferrite (CoFe2O4, CFO) bilayer nanomembranes. Using photolithography and substrate etching techniques, complex 3-D microarchitectures including helices, arcs, and kirigami-inspired frames are developed. These 3-D architectures exhibit remarkable mechanical deformation capabilities, which can be attributed to the superelastic behavior of the membranes and geometric configurations. It is also demonstrated that dynamic shape reconfiguration of these nanomembrane architectures under electron beam exposure showcases their potential as electrically actuated microgrippers and for other micromechanical applications. This research highlights the versatility and promise of multi-dimensional ferroic nanomembrane architectures in the fields of micro actuation, soft robotics, and adaptive structures, paving the way for incorporating these architectures into stimulus-responsive materials and devices.
Collapse
Affiliation(s)
- Minsoo Kim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Donghoon Kim
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
- PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Mathieu Mirjolet
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Nick A Shepelin
- PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Thomas Lippert
- PSI Center for Neutron and Muon Sciences, Paul Scherrer Institut, Villigen, 5232, Switzerland
| | - Hongsoo Choi
- Department of Robotics & Mechatronics Engineering, DGIST-ETH Microrobotics Research Center, Daegu Gyeong-buk Institute of Science and Technology (DGIST), Daegu, Republic of Korea
| | - Josep Puigmartí-Luis
- Departament de Ciència de Materials i Química Física, Institut de Química Teòrica i Computacional, Universitat de Barcelona, Barcelona, 08028, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Pg. Lluís Companys 23, Barcelona, 08010, Spain
| | - Bradley J Nelson
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| | - Xiang-Zhong Chen
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
- State Key Laboratory of Photovoltaic Science and Technology, Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of Optoelectronics, and International Institute of Intelligent Nanorobots and Nanosystems, Fudan University, Shanghai, 200433, P. R. China
- Yiwu Research Institute of Fudan University, Yiwu, 322000, P. R. China
| | - Salvador Pané
- Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland
| |
Collapse
|
3
|
Xi G, Li H, Lu D, Liu X, Liu X, Tu J, Yang Q, Tian J, Zhang L. Producing Freestanding Single-Crystal BaTiO 3 Films through Full-Solution Deposition. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1456. [PMID: 39269118 PMCID: PMC11396833 DOI: 10.3390/nano14171456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024]
Abstract
Strontium aluminate, with suitable lattice parameters and environmentally friendly water solubility, has been strongly sought for use as a sacrificial layer in the preparation of freestanding perovskite oxide thin films in recent years. However, due to this material's inherent water solubility, the methods used for the preparation of epitaxial films have mainly been limited to high-vacuum techniques, which greatly limits these films' development. In this study, we prepared freestanding single-crystal perovskite oxide thin films on strontium aluminate using a simple, easy-to-develop, and low-cost chemical full-solution deposition technique. We demonstrate that a reasonable choice of solvent molecules can effectively reduce the damage to the strontium aluminate layer, allowing successful epitaxy of perovskite oxide thin films, such as 2-methoxyethanol and acetic acid. Molecular dynamics simulations further demonstrated that this is because of their stronger adsorption capacity on the strontium aluminate surface, which enables them to form an effective protective layer to inhibit the hydration reaction of strontium aluminate. Moreover, the freestanding film can still maintain stable ferroelectricity after release from the substrate, which provides an idea for the development of single-crystal perovskite oxide films and creates an opportunity for their development in the field of flexible electronic devices.
Collapse
Affiliation(s)
- Guoqiang Xi
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Hangren Li
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Dongfei Lu
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xudong Liu
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Xiuqiao Liu
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jie Tu
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Qianqian Yang
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Jianjun Tian
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| | - Linxing Zhang
- Institute for Advanced Materials Technology, University of Science and Technology Beijing, Beijing 100083, China
| |
Collapse
|
4
|
Long J, Wang T, Tan C, Chen J, Zhou Y, Lun Y, Zhang Y, Zhong X, Wu Y, Song H, Ouyang X, Hong J, Wang J. Self-Recovery of a Buckling BaTiO 3 Ferroelectric Membrane. ACS APPLIED MATERIALS & INTERFACES 2023; 15:55984-55990. [PMID: 37993976 DOI: 10.1021/acsami.3c12730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/24/2023]
Abstract
The characteristic of self-recovery holds significant implications for upholding performance stability within flexible electronic devices following the release of mechanical deformation. Herein, the dynamics of self-recovery in a buckling inorganic membrane is studied via in situ scanning probe microscopy technology. The experimental results demonstrate that the ultimate deformation ratio of the buckling BaTiO3 ferroelectric membrane is up to 88%, which is much higher than that of the buckling SrTiO3 dielectric membrane (49%). Combined with piezoresponse force microscopy and phase-field simulations, we find that ferroelectric domain transformation accompanies the whole process of buckling and self-recovery of the ferroelectric membrane, i.e., the presence of the nano-c domain not only releases part of the elastic energy of the membrane but also reduces the interface mismatch of the a/c domain, which encourages the buckling ferroelectric membrane to have excellent self-recovery properties. It is conceivable that the evolution of ferroelectric domains will play a greater role in the regulation of the mechanical properties of ferroelectric membranes and flexible devices.
Collapse
Affiliation(s)
- Jiemei Long
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Tingjun Wang
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Congbing Tan
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
- Hunan Provincial Key Laboratory of Intelligent Sensors and Advanced Sensor Materials, School of Physics and Electronics, Hunan University of Science and Technology, Xiangtan 411201, Hunan, China
| | - Jing Chen
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yu Zhou
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yingzhuo Lun
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yi Zhang
- School of Physics, Sun Yat-sen University, Guangzhou, Guangdong 510275, China
| | - Xiangli Zhong
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Yiwei Wu
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Hongjia Song
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Xiaoping Ouyang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| | - Jiawang Hong
- School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Jinbin Wang
- National-Provincial Laboratory of Special Function Thin Film Materials, School of Materials Science and Engineering, Xiangtan University, Xiangtan, Hunan 411105, China
| |
Collapse
|
5
|
Kang KT, Corey ZJ, Hwang J, Sharma Y, Paudel B, Roy P, Collins L, Wang X, Lee JW, Oh YS, Kim Y, Yoo J, Lee J, Htoon H, Jia Q, Chen A. Heterogeneous Integration of Freestanding Bilayer Oxide Membrane for Multiferroicity. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207481. [PMID: 37012611 DOI: 10.1002/advs.202207481] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/02/2023] [Indexed: 05/27/2023]
Abstract
Transition metal oxides exhibit a plethora of electrical and magnetic properties described by their order parameters. In particular, ferroic orderings offer access to a rich spectrum of fundamental physics phenomena, in addition to a range of technological applications. The heterogeneous integration of ferroelectric and ferromagnetic materials is a fruitful way to design multiferroic oxides. The realization of freestanding heterogeneous membranes of multiferroic oxides is highly desirable. In this study, epitaxial BaTiO3 /La0.7 Sr0.3 MnO3 freestanding bilayer membranes are fabricated using pulsed laser epitaxy. The membrane displays ferroelectricity and ferromagnetism above room temperature accompanying the finite magnetoelectric coupling constant. This study reveals that a freestanding heterostructure can be used to manipulate the structural and emergent properties of the membrane. In the absence of the strain caused by the substrate, the change in orbital occupancy of the magnetic layer leads to the reorientation of the magnetic easy-axis, that is, perpendicular magnetic anisotropy. These results of designing multiferroic oxide membranes open new avenues to integrate such flexible membranes for electronic applications.
Collapse
Affiliation(s)
- Kyeong Tae Kang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Physics, Kyungpook National University, Daegu, 41566, South Korea
| | - Zachary J Corey
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Jaejin Hwang
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Yogesh Sharma
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Binod Paudel
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Pinku Roy
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Liam Collins
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA
| | - Xueijing Wang
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Joon Woo Lee
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Yoon Seok Oh
- Department of Physics, Ulsan National Institute of Science and Technology, Ulsan, 44919, South Korea
| | - Yeonhoo Kim
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
- Interdisciplinary Materials Measurement Institute, Korea Research Institute of Standards and Science (KRISS), Daejeon, 34133, South Korea
| | - Jinkyoung Yoo
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Jaekwang Lee
- Department of Physics, Pusan National University, Busan, 46241, South Korea
| | - Han Htoon
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| | - Quanxi Jia
- Department of Materials Design and Innovation, University of Buffalo - The State University of New York, Buffalo, NY, 14260, USA
| | - Aiping Chen
- Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA
| |
Collapse
|
6
|
Salles P, Guzmán R, Zanders D, Quintana A, Fina I, Sánchez F, Zhou W, Devi A, Coll M. Bendable Polycrystalline and Magnetic CoFe 2O 4 Membranes by Chemical Methods. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12845-12854. [PMID: 35232015 PMCID: PMC8931725 DOI: 10.1021/acsami.1c24450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
The preparation and manipulation of crystalline yet bendable functional complex oxide membranes has been a long-standing issue for a myriad of applications, in particular, for flexible electronics. Here, we investigate the viability to prepare magnetic and crystalline CoFe2O4 (CFO) membranes by means of the Sr3Al2O6 (SAO) sacrificial layer approach using chemical deposition techniques. Meticulous chemical and structural study of the SAO surface and SAO/CFO interface properties have allowed us to identify the formation of an amorphous SAO capping layer and carbonates upon air exposure, which dictate the crystalline quality of the subsequent CFO film growth. Vacuum annealing at 800 °C of SAO films promotes the elimination of the surface carbonates and the reconstruction of the SAO surface crystallinity. Ex-situ atomic layer deposition of CFO films at 250 °C on air-exposed SAO offers the opportunity to avoid high-temperature growth while achieving polycrystalline CFO films that can be successfully transferred to a polymer support preserving the magnetic properties under bending. Float on and transfer provides an alternative route to prepare freestanding and wrinkle-free CFO membrane films. The advances and challenges presented in this work are expected to help increase the capabilities to grow different oxide compositions and heterostructures of freestanding films and their range of functional properties.
Collapse
Affiliation(s)
- Pol Salles
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Roger Guzmán
- School
of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - David Zanders
- Inorganic
Materials Chemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | | | - Ignasi Fina
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | | | - Wu Zhou
- School
of Physical Sciences and CAS Key Laboratory of Vacuum Physics, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Anjana Devi
- Inorganic
Materials Chemistry, Ruhr University Bochum, Universitätsstrasse 150, Bochum 44801, Germany
| | - Mariona Coll
- ICMAB-CSIC, Campus UAB, Bellaterra, Barcelona 08193, Spain
| |
Collapse
|