1
|
Ansari RM, Chamola S, Ahmad S. Ruddlesden-Popper 2D Perovskite-MoS 2 Hybrid Heterojunction Photocathodes for Efficient and Scalable Photo-Rechargeable Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401350. [PMID: 38822720 DOI: 10.1002/smll.202401350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/21/2024] [Indexed: 06/03/2024]
Abstract
Photo-rechargeable batteries (PRBs) can provide a compact solution to power autonomous smart devices located at remote sites that cannot be connected with the grid. The study reports the Ruddlesden-Popper (RP) metal halide perovskite (MHP) and molybdenum disulfide (MoS2) hybrid heterojunction-based photocathodes for Li-ion photo-rechargeable battery (Li-PRB) applications. Hybrid Lithium-ion batteries (LIBs) have demonstrated an average discharge specific capacity of 144.46 and 129.17 mAhg-1 for 50 cycles when operating at 176 and 294 mAg-1, respectively compared to the pristine LIBs which have shown specific capacity of 37.48 and 25.60 mAhg-1 under similar conditions. Hybrid Li-PRB has achieved an average dark discharge specific capacities of 128.66 mAhg-1 (capacity retention: 96.56%) which enhanced to 180.67 mAhg-1 under illumination (capacity retention: 97.39%; photo-enhancement: 40.42%) at 64 mAg-1. Excellent performance of hybrid Li-PRB is attributed to the formation of type-II heterojunction that leads to improved crystallinity and film morphology. The PRB has demonstrated a high photo conversion and storage efficiency (PC-SE) of 0.52% under standard 1 Sun illumination, which outperforms other previously reported MHP based LIBs and PRBs. This work provides a novel approach of harnessing the potential of MHPs for PRBs and offers new avenues for MHP photocathodes for various applications beyond PRBs.
Collapse
Affiliation(s)
- Rashid M Ansari
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Shubham Chamola
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| | - Shahab Ahmad
- Advanced Energy Materials Lab, Department of Physics, Indian Institute of Technology Jodhpur, Jodhpur, Rajasthan, 342030, India
| |
Collapse
|
2
|
Zhao F, Yang K, Liu Y, Li J, Li C, Xu X, He Y. Developing a Multifunctional Cathode for Photoassisted Lithium-Sulfur Battery. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402978. [PMID: 39030867 PMCID: PMC11425247 DOI: 10.1002/advs.202402978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/19/2024] [Indexed: 07/22/2024]
Abstract
Integration of solar cell and secondary battery cannot only promote solar energy application but also improve the electrochemical performance of battery. Lithium-sulfur battery (LSB) is an ideal candidate for photoassisted batteries owing to its high theoretical capacity. Unfortunately, the researches related the combination of solar energy and LSB are relatively lacking. Herein, a freestanding photoelectrode is developed for photoassisted lithium-sulfur battery (PALSB) by constructing a heterogeneous structured Au@N-TiO2 on carbon cloths (Au@N-TiO2/CC), which combines multiple advantages. The Au@N-TiO2/CC photoelectrode can produce the photoelectrons to facilitate sulfur reduction during discharge process, while generating holes to accelerate sulfur evolution during charge process, improving the kinetics of electrochemical reactions. Meanwhile, Au@N-TiO2/CC can work as an electrocatalyst to promote the conversion of intermediate polysulfides during charge/discharge process, mitigating induced side reactions. Benefiting from the synergistic effect of electrocatalysis and photocatalysis, PALSB assembled with an Au@N-TiO2/CC photoelectrode obtains ultrahigh specific capacity, excellent rate performance, and outstanding cycling performance. What is more, the Au@N-TiO2/CC assembled PALSB can be directly charged under light illumination. This work not only expands the application of solar energy but also provides a new insight to develop advanced LSBs.
Collapse
Affiliation(s)
- Fei Zhao
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Ke Yang
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Yuxin Liu
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Juan Li
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Chan Li
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Xinwu Xu
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| | - Yibo He
- State Key Laboratory of Solidification ProcessingCenter of Advanced Lubrication and Seal MaterialsSchool of Materials Science and EngineeringNorthwestern Polytechnical UniversityXi'anShaanxi710072P. R. China
| |
Collapse
|
3
|
Gao X, Tian D, Shi Z, Zhang N, Sun R, Liu J, Tsai HS, Xiang X, Feng W. An Efficient MnO 2 Photocathode with an Excellent SnO 2 Electron Transport Layer for Photo-Accelerated Zinc Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405627. [PMID: 39139012 DOI: 10.1002/smll.202405627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/06/2024] [Indexed: 08/15/2024]
Abstract
Photo-accelerated rechargeable batteries play a crucial role in fully utilizing solar energy, but it is still a challenge to fabricate dual-functional photoelectrodes with simultaneous high solar energy harvesting and storage. This work reports an innovative photo-accelerated zinc-ion battery (PAZIB) featuring a photocathode with a SnO2@MnO2 heterojunction. The design ingeniously combines the excellent electronic conductivity of SnO2 with the high energy storage and light absorption capacities of MnO2. The capacity of the SnO2@MnO2-based PAZIB is ≈598 mAh g-1 with a high photo-conversion efficiency of 1.2% under illumination at 0.1 A g-1, which is superior to that of most reported MnO2-based ZIB. The boosting performance is attributed to the synergistic effect of enhanced photogenerated carrier separation efficiency, improved conductivity, and promoted charge transfer by the SnO2@MnO2 heterojunction, which is confirmed by systematic experiments and theoretical simulations. This work provides valuable insights into the development of dual-function photocathodes for effective solar energy utilization.
Collapse
Affiliation(s)
- Xinyu Gao
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Dongyue Tian
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Zhengguang Shi
- College of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Nana Zhang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Ruyu Sun
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Jiaming Liu
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Hsu-Sheng Tsai
- College of Physics, Harbin Institute of Technology, Harbin, 150001, China
| | - Xingde Xiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| | - Wei Feng
- College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
| |
Collapse
|
4
|
Pujari A, Kim BM, Abbasi H, Lee MH, Greenham NC, De Volder M. What Makes a Photobattery Light-Rechargeable? ACS ENERGY LETTERS 2024; 9:4024-4031. [PMID: 39144812 PMCID: PMC11320653 DOI: 10.1021/acsenergylett.4c01350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/11/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
The demand for autonomous off-grid devices has led to the development of "photobatteries", which integrate light-energy harvesting and electrochemical energy storage in the same architecture. Despite several photobattery chemistries and designs being reported recently, there have been few insights into the physical conditions necessary for charge transfer between the photoelectrode and counter electrode. Here, we use a three-electrode photobattery with a dye-sensitized TiO2 photoelectrode, triiodide (I-/I3 -) catholyte, and anodes with varying intercalation potentials to confirm that photocharging is only feasible when the conduction band quasi-Fermi level (EFc) is positioned above the anode intercalation/plating potential. We also show that parasitic reactions after the battery is fully charged can be accelerated if the voltage of the battery and solar cell are not matched. The integration of multiple anodes in the same photobattery ensures well-controlled measurement conditions, allowing us to demonstrate the physical conditions necessary for charge transfer in photobatteries, which has been a topic of controversy in the field.
Collapse
Affiliation(s)
- Arvind Pujari
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, United
Kingdom
| | - Byung-Man Kim
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, United
Kingdom
| | - Hooman Abbasi
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, United
Kingdom
| | - Myeong-Hee Lee
- School
of Energy and Chemical Engineering, Ulsan
National Institute of Science & Technology, Ulsan 44919, South Korea
| | - Neil C. Greenham
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, United
Kingdom
| | - Michael De Volder
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, United
Kingdom
| |
Collapse
|
5
|
Yao X, Khanam Z, Li C, Koroma M, Ouyang T, Hu YW, Shen K, Balogun MS. Unlatching the Additional Zinc Storage Ability of Vanadium Nitride Nanocrystallites. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2312036. [PMID: 38396208 DOI: 10.1002/smll.202312036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/06/2024] [Indexed: 02/25/2024]
Abstract
Vanadium-based materials, due to their diverse valence states and open-framework lattice, are promising cathodes for aqueous zinc ion batteries (AZIBs), but encounters the major challenges of in situ electrochemical activation process, potent polarity of the aqueous electrolyte and periodic expansion/contraction for efficient Zn2+ storage. Herein, architecting vanadium nitride (VN) nanosheets over titanium-based hollow nanoarrays skeletal host (denoted VNTONC) can simultaneously modulate address those challenges by creating multiple interfaces and maintaining the (1 1 1) phase of VN, which optimizes the Zn2+ storage and the stability of VN. Benefiting from the modulated crystalline thermodynamics during the electrochemical activation of VN, two outcomes are achieved; I) the cathode transforms into a nanocrystalline structure with increased active sites and higher conductivity and; II) a significant portion of the (1 1 1) crystal facets is retained in the process leading to the additional Zn2+ storage capacity. As a result, the as-prepared VNTONC electrode demonstrates remarkable discharge capacities of 802.5 and 331.8 mAh g-1 @ 0.5 and 6.0 A g-1, respectively, due to the enhanced kinetics as validated by theoretical calculations. The assembled VNTONC||Zn flexible ZIB demonstrates excellent Zn storage properties up to 405.6 mAh g-1, and remarkable robustness against extreme operating conditions.
Collapse
Affiliation(s)
- Xincheng Yao
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Zeba Khanam
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Chenglin Li
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Malcolm Koroma
- National Engineering Research Center for High Efficiency Grinding, State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha, 410082, China
| | - Ting Ouyang
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Yu-Wen Hu
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - Ke Shen
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| | - M-Sadeeq Balogun
- College of Materials Science and Engineering, Hunan Joint International Laboratory of Advanced Materials and Technology for Clean Energy, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
6
|
Wu TY, Li XR, Chen BC, Wang LW, Wang JH, Chu SY, Chang CC. Study of the Rolling Effect on MoS 2-Carbon Fiber Density and Its Consequences for the Functionality of Li-Ion Batteries. MATERIALS (BASEL, SWITZERLAND) 2024; 17:2825. [PMID: 38930194 PMCID: PMC11204658 DOI: 10.3390/ma17122825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 06/04/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024]
Abstract
In this study, an electrode slurry composed of molybdenum disulfide (MoS2) and vapor-grown carbon fiber (VGCF) prepared through a solid-phase synthesis method was blade-coated onto copper foil to form a thick film as the anode for lithium-ion batteries. In previously reported work, MoS2-based lithium-ion batteries have experienced gradual deformation, fracture, and pulverization of electrode materials during the charge and discharge cycling process. This leads to an unstable electrode structure and rapid decline in battery capacity. Furthermore, MoS2 nanosheets tend to aggregate over charge and discharge cycles, which diminishes the surface activity of the material and results in poor electrochemical performance. In this study, we altered the density of the MoS2-carbon fiber/Cu foil anode electrode by rolling. Three different densities of electrode sheets were obtained through varying rolling repetitions. Our study shows the best electrochemical performance was achieved at a material density of 2.2 g/cm3, maintaining a capacity of 427 mAh/g even after 80 cycles.
Collapse
Affiliation(s)
- Tai-Yu Wu
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (T.-Y.W.); (B.-C.C.); (J.-H.W.)
| | - Xiao-Ru Li
- College of Environmental Sciences and Ecology, National University of Tainan, Tainan 70101, Taiwan; (X.-R.L.); (L.-W.W.)
| | - Bo-Chun Chen
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (T.-Y.W.); (B.-C.C.); (J.-H.W.)
| | - Li-Wen Wang
- College of Environmental Sciences and Ecology, National University of Tainan, Tainan 70101, Taiwan; (X.-R.L.); (L.-W.W.)
| | - Jia-Hao Wang
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (T.-Y.W.); (B.-C.C.); (J.-H.W.)
| | - Sheng-Yuan Chu
- Department of Electrical Engineering, National Cheng Kung University, Tainan 70101, Taiwan; (T.-Y.W.); (B.-C.C.); (J.-H.W.)
| | - Chia-Chin Chang
- College of Environmental Sciences and Ecology, National University of Tainan, Tainan 70101, Taiwan; (X.-R.L.); (L.-W.W.)
| |
Collapse
|
7
|
Wen X, Zhong Y, Chen S, Yang Z, Dong P, Wang Y, Zhang L, Wang Z, Jiang Y, Zhou G, Liu J, Gao J. 3D Hierarchical Sunflower-Shaped MoS 2/SnO 2 Photocathodes for Photo-Rechargeable Zinc Ion Batteries. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309555. [PMID: 38502881 DOI: 10.1002/advs.202309555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/28/2024] [Indexed: 03/21/2024]
Abstract
Photo-rechargeable zinc-ion batteries (PRZIBs) have attracted much attention in the field of energy storage due to their high safety and dexterity compared with currently integrated lithium-ion batteries and solar cells. However, challenges remain toward their practical applications, originating from the unsatisfactory structural design of photocathodes, which results in low photoelectric conversion efficiency (PCE). Herein, a flexible MoS2/SnO2-based photocathode is developed via constructing a sunflower-shaped light-trapping nanostructure with 3D hierarchical and self-supporting properties, enabled by the hierarchical embellishment of MoS2 nanosheets and SnO2 quantum dots on carbon cloth (MoS2/SnO2 QDs@CC). This structural design provides a favorable pathway for the effective separation of photogenerated electron-hole pairs and the efficient storage of Zn2+ on photocathodes. Consequently, the PRZIB assembled with MoS2/SnO2 QDs@CC delivers a desirable capacity of 366 mAh g-1 under a light intensity of 100 mW cm-2, and achieves an ultra-high PCE of 2.7% at a current density of 0.125 mA cm-2. In practice, an integrated battery system consisting of four series-connected quasi-solid-state PRZIBs is successfully applied as a wearable wristband of smartwatches, which opens a new door for the application of PRZIBs in next-generation flexible energy storage devices.
Collapse
Affiliation(s)
- Xinyang Wen
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yaotang Zhong
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Shuai Chen
- School of Chemistry, South China Normal University, Guangzhou, 510006, China
| | - Zhengchi Yang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Pengyu Dong
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yuqi Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Linghai Zhang
- School of Flexible Electronics (Future Technologies), Nanjing Tech University, Nanjing, 211816, China
| | - Zhen Wang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Yue Jiang
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
| | - Junming Liu
- Laboratory of Solid State Microstructures, Nanjing University, Nanjing, 210093, China
| | - Jinwei Gao
- Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, China
- Centre for Advanced Optoelectronics, School of Physics and Electronic Information, Gannan Normal University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
8
|
Lu Y, Andersen H, Wu R, Ganose AM, Wen B, Pujari A, Wang T, Borowiec J, Parkin IP, De Volder M, Boruah BD. Hydrogenated V 2O 5 with Improved Optical and Electrochemical Activities for Photo-Accelerated Lithium-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308869. [PMID: 37988637 DOI: 10.1002/smll.202308869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/06/2023] [Indexed: 11/23/2023]
Abstract
Solar power represents an abundant and readily available source of renewable energy. However, its intermittent nature necessitates external energy storage solutions, which can often be expensive, bulky, and associated with energy conversion losses. This study introduces the concept of a photo-accelerated battery that seamlessly integrates energy harvesting and storage functions within a single device. In this research, a novel approach for crafting photocathodes is presented using hydrogenated vanadium pentoxide (H:V2O5) nanofibers. This method enhances optical activity, electronic conductivity, and ion diffusion rates within photo-accelerated Li-ion batteries. This study findings reveal that H:V2O5 exhibits notable improvements in specific capacity under both dark and illuminated conditions. Furthermore, it demonstrates enhanced diffusion kinetics and charge storage performance when exposed to light, as compared to pristine counterparts. This strategy of defect engineering holds great promise for the development of high-performance photocathodes in future energy storage applications.
Collapse
Affiliation(s)
- Yinan Lu
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Holly Andersen
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| | - Ruiqi Wu
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Alex M Ganose
- Department of Chemistry, Molecular Sciences Research Hub, White City Campus, Imperial College London, Wood Lane, London, W12 0BZ, UK
| | - Bo Wen
- Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Arvind Pujari
- Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, UK
| | - Tianlei Wang
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Joanna Borowiec
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Ivan P Parkin
- Department of Chemistry, University College London, London, WC1H 0AJ, UK
| | - Michael De Volder
- Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge, CB3 0FS, UK
| | - Buddha Deka Boruah
- Institute for Materials Discovery, University College London, London, WC1E 7JE, UK
| |
Collapse
|
9
|
Pujari A, Kim BM, Sayed FN, Sanders K, Dose WM, Mathieson A, Grey CP, Greenham NC, De Volder M. Does Heat Play a Role in the Observed Behavior of Aqueous Photobatteries? ACS ENERGY LETTERS 2023; 8:4625-4633. [PMID: 37969251 PMCID: PMC10644369 DOI: 10.1021/acsenergylett.3c01627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 10/06/2023] [Indexed: 11/17/2023]
Abstract
Light-rechargeable photobatteries have emerged as an elegant solution to address the intermittency of solar irradiation by harvesting and storing solar energy directly through a battery electrode. Recently, a number of compact two-electrode photobatteries have been proposed, showing increases in capacity and open-circuit voltage upon illumination. Here, we analyze the thermal contributions to this increase in capacity under galvanostatic and photocharging conditions in two promising photoactive cathode materials, V2O5 and LiMn2O4. We propose an improved cell and experimental design and perform temperature-controlled photoelectrochemical measurements using these materials as photocathodes. We show that the photoenhanced capacities of these materials under 1 sun irradiation can be attributed mostly to thermal effects. Using operando reflection spectroscopy, we show that the spectral behavior of the photocathode changes as a function of the state of charge, resulting in changing optical absorption properties. Through this technique, we show that the band gap of V2O5 vanishes after continued zinc ion intercalation, making it unsuitable as a photocathode beyond a certain discharge voltage. These results and experimental techniques will enable the rational selection and testing of materials for next-generation photo-rechargeable systems.
Collapse
Affiliation(s)
- Arvind Pujari
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, U.K.
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, U.K.
| | - Byung-Man Kim
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, U.K.
| | - Farheen N. Sayed
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Kate Sanders
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, U.K.
| | - Wesley M. Dose
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, U.K.
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
- School
of Chemistry, University of New South Wales, Sydney, NSW 2052, Australia
| | - Angus Mathieson
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, U.K.
| | - Clare P. Grey
- Department
of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K.
| | - Neil C. Greenham
- Cavendish
Laboratory, Department of Physics, University
of Cambridge, Cambridge CB3 0HE, U.K.
| | - Michael De Volder
- Institute
for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FE, U.K.
| |
Collapse
|
10
|
Kumar A, Hammad R, Pahuja M, Arenal R, Ghosh K, Ghosh S, Narayanan TN. Photo-Rechargeable Li-Ion Batteries using TiS 2 Cathode. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303319. [PMID: 37194967 DOI: 10.1002/smll.202303319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 05/18/2023]
Abstract
Photo-rechargeable (solar) battery can be considered as an energy harvesting cum storage system, where it can charge the conventional metal-ion battery using light instead of electricity, without having other parasitic reactions. Here a two-electrode lithium-ion solar battery with multifaceted TiS2 -TiO2 hybrid sheets as cathode. The choice of TiS2 -TiO2 electrode ensures the formation of a type II semiconductor heterostructure while the lateral heterostructure geometry ensures high mass/charge transfer and light interactions with the electrode. TiS2 has a higher lithium binding energy (1.6 eV) than TiO2 (1.03 eV), ensuring the possibilities of higher amount of Li-ion insertion to TiS2 and hence the maximum recovery with the photocharging, as further confirmed by the experiments. Apart from the demonstration of solar solid-state batteries, the charging of lithium-ion full cell with light indicates the formation of lithium intercalated graphite compounds, ensuring the charging of the battery without any other parasitic reactions at the electrolyte or electrode-electrolyte interfaces. Possible mechanisms proposed here for the charging and discharging processes of solar batteries, based on the experimental and theoretical results, indicate the potential of such systems in the forthcoming era of renewable energies.
Collapse
Affiliation(s)
- Amar Kumar
- Tata Institute of Fundamental Research-Hyderabad, Sy No. 36/P Serilingampally Mandal, Hyderabad, 500046, India
| | - Raheel Hammad
- Tata Institute of Fundamental Research-Hyderabad, Sy No. 36/P Serilingampally Mandal, Hyderabad, 500046, India
| | - Mansi Pahuja
- Institute of Nano Science & Technology, Mohali, Punjab, 140306, India
| | - Raul Arenal
- Instituto de Nanociencia y Materiales de Aragon (INMA), CSIC-Universidad de Zaragoza, Pedro Cerbuna, 12, Zaragoza, 50009, Spain
- Laboratorio de MicroscopiasAvanzadas (LMA), Universidad de Zaragoza, Calle de Mariano Esquillor, Zaragoza, 50018, Spain
- Fundación ARAID, Zaragoza, 50018, Spain
| | - Kaushik Ghosh
- Institute of Nano Science & Technology, Mohali, Punjab, 140306, India
| | - Soumya Ghosh
- Tata Institute of Fundamental Research-Hyderabad, Sy No. 36/P Serilingampally Mandal, Hyderabad, 500046, India
| | - Tharangattu N Narayanan
- Tata Institute of Fundamental Research-Hyderabad, Sy No. 36/P Serilingampally Mandal, Hyderabad, 500046, India
| |
Collapse
|
11
|
Bao W, Wang R, Liu H, Qian C, Liu H, Yu F, Guo C, Li J, Sun K. Photoelectrochemical Engineering for Light-Assisted Rechargeable Metal Batteries: Mechanism, Development, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2303745. [PMID: 37616514 DOI: 10.1002/smll.202303745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 07/14/2023] [Indexed: 08/26/2023]
Abstract
Rechargeable battery devices with high energy density are highly demanded by our modern society. The use of metal anodes is extremely attractive for future rechargeable battery devices. However, the notorious metal dendritic and instability of solid electrolyte interface issues pose a series of challenges for metal anodes. Recently, considering the indigestible dynamical behavior of metal anodes, photoelectrochemical engineering of light-assisted metal anodes have been rapidly developed since they efficiently utilize the integration and synergy of oriented crystal engineering and photocatalysis engineering, which provided a potential way to unlock the interface electrochemical mechanism and deposition reaction kinetics of metal anodes. This review starts with the fundamentals of photoelectrochemical engineering and follows with the state-of-art advance of photoelectrochemical engineering for light-assisted rechargeable metal batteries where photoelectrode materials, working principles, types, and practical applications are explained. The last section summarizes the major challenges and some invigorating perspectives for future research on light-assisted rechargeable metal batteries.
Collapse
Affiliation(s)
- Weizhai Bao
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ronghao Wang
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hongmin Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Chengfei Qian
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He Liu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Feng Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Cong Guo
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jingfa Li
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
- Department of Materials Physics, School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| |
Collapse
|
12
|
Li J, Zhang Y, Mao Y, Zhao Y, Kan D, Zhu K, Chou S, Zhang X, Zhu C, Ren J, Chen Y. Dual-Functional Z-Scheme TiO 2 @MoS 2 @NC Multi-Heterostructures for Photo-Driving Ultrafast Sodium Ion Storage. Angew Chem Int Ed Engl 2023; 62:e202303056. [PMID: 37243514 DOI: 10.1002/anie.202303056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/17/2023] [Accepted: 05/25/2023] [Indexed: 05/29/2023]
Abstract
Exploiting dual-functional photoelectrodes to harvest and store solar energy is a challenging but efficient way for achieving renewable energy utilization. Herein, multi-heterostructures consisting of N-doped carbon coated MoS2 nanosheets supported by tubular TiO2 with photoelectric conversion and electronic transfer interfaces are designed. When a photo sodium ion battery (photo-SIB) is assembled based on the heterostructures, its capacity increases to 399.3 mAh g-1 with a high photo-conversion efficiency of 0.71 % switching from dark to visible light at 2.0 A g-1 . Remarkably, the photo-SIB can be recharged by light only, with a striking capacity of 231.4 mAh g-1 . Experimental and theoretical results suggest that the proposed multi-heterostructures can enhance charge transfer kinetics, maintain structural stability, and facilitate the separation of photo-excited carriers. This work presents a new strategy to design dual-functional photoelectrodes for efficient use of solar energy.
Collapse
Affiliation(s)
- Jinhang Li
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yuqiang Zhang
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yiyang Mao
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yingying Zhao
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Dongxiao Kan
- Northwest Institute for Non-Ferrous Metal Research Xi'an, Shaanxi, 710016, China
| | - Kai Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University Wenzhou, Zhejiang, 325035, China
| | - Xitian Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials (Ministry of Education), School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, China
| | - Chunling Zhu
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Jing Ren
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
| | - Yujin Chen
- Key Laboratory of In-Fiber Integrated Optics (Ministry of Education), College of Physics and Optoelectronic Engineering, Harbin Engineering University, Harbin, 150001, China
- Laboratory of Superlight Materials and Surface Technology (Ministry of Education), College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin, 150001, China
| |
Collapse
|
13
|
Ciria-Ramos I, Juarez-Perez EJ, Haro M. Solar Energy Storage Using a Cu 2 O-TiO 2 Photocathode in a Lithium Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023:e2301244. [PMID: 37010019 DOI: 10.1002/smll.202301244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Indexed: 06/19/2023]
Abstract
A Cu2 O-TiO2 photoelectrode is pr+oposed for simultaneous solar light energy harvesting and storing of electrochemical energy in an adapted lithium coin cell. The p-type Cu2 O semiconductor layer is the light harvester component of the photoelectrode and the TiO2 film performs as the capacitive layer. The rationale of the energy scheme shows that the photocharges generated in the Cu2 O semiconductor induce lithiation/delithiation processes in the TiO2 film as a function of the applied bias voltage and light power. A photorechargeable lithium button cell drilled on one side recharges with visible white light in ≈9 h in open circuit. It provides an energy density of ≈150 mAh g-1 at 0.1 C discharge current in dark, and the overall efficiency is 0.29%. This work draws a new approach for the photoelectrode role to advance in monolithic rechargeable batteries.
Collapse
Affiliation(s)
- Isabel Ciria-Ramos
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| | - Emilio J Juarez-Perez
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Aragonese Foundation for Research and Development (ARAID), Government of Aragon, Zaragoza, 50018, Spain
| | - Marta Haro
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC-Universidad de Zaragoza, Zaragoza, 50009, Spain
- Departamento de Química Física, Facultad de Ciencias, Universidad de Zaragoza, Plaza San Francisco, Zaragoza, 50009, Spain
| |
Collapse
|
14
|
Jiao L, Luo Y, Cheng L. Ni3S2/NiSe2 Hollow Spheres with Low Bonding Energy Ni-Se Bonds for Excellent Lithium-Ion Charge-Discharge Stability. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
|
15
|
Chamidah N, Tsuchida S, Yaji T, Irizawa A, Zhong C, Okazaki KI, Orikasa Y. Light-assist Electrochemical Lithiation to Silicon Semiconductor. Electrochem commun 2023. [DOI: 10.1016/j.elecom.2023.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
16
|
Liu H, Wu P, Wang R, Meng H, Zhang Y, Bao W, Li J. A Photo-rechargeable Aqueous Zinc-Tellurium Battery Enabled by the Janus-Jointed Perovskite/Te Photocathode. ACS NANO 2023; 17:1560-1569. [PMID: 36622820 DOI: 10.1021/acsnano.2c10762] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
The combination of photo-driven self-powered supplies and energy storage systems is considered as a promising candidate to solve the global energy dilemma. The photo-absorber and the energy storage material are integrated into the photocathode to effectively achieve a high-energy and high-efficiency energy system. In this work, we report the customized Janus-jointed photocathode design (integrating with highly efficient halide perovskite and tellurium composite electrode) and introduce it into the aqueous zinc-tellurium battery. The well-matched energy level of the Janus-jointed photocathode ensures the conversion of the photoenergy into electrical energy by transferring the photoexcited charge between each. As expected, in the photo-assisted recharging model, the decreased 0.1 V charge voltage and the extra 362 mA h g-1 at 100 mA g-1 demonstrated the significant merits of saving energy for such a photo-rechargeable Zn-Te (PRZT) battery. When the current density is 1000 mA g-1, the specific capacity of the prepared photocathode is 83% higher than that under dark conditions. More importantly, the photogenerated charge by the perovskite under light illumination could also directly photocharge the battery with no external current, indicating the self-powering traits. The rational design in this work is believed to provide a sustainable mode for efficient charging of the aqueous PRZT battery.
Collapse
Affiliation(s)
- Hongmin Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Pankun Wu
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Ronghao Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Huanjiang Meng
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yaqi Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Weizhai Bao
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Jingfa Li
- School of Chemistry and Materials Science, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
17
|
Praveen S, Kim T, Jung SP, Lee CW. 3D-Printed Silicone Substrates as Highly Deformable Electrodes for Stretchable Li-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205817. [PMID: 36408809 DOI: 10.1002/smll.202205817] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 11/04/2022] [Indexed: 06/16/2023]
Abstract
Stretchable energy storage devices receive a considerable attention at present due to their growing demand for powering wearable electronics. A vital component in stretchable energy storage devices is its electrode which should endure a large and repeated number of mechanical deformations during its prolonged use. It is crucial to develop a technology to fabricate highly deformable electrode in an easy and an economic manner. Here, the fabrication of stretchable electrode substrates using 3D-printing technology is reported. The ink for fabricating it contains a mixture of sacrificial sugar particles and polydimethylsiloxane resin which solidifies upon thermal curing. The printed stretchable substrate attains a porous structure after leaching the sugar particles in water. The resulting printed porous stretchable substrates are then utilized as electrodes for Li-ion batteries (LIBs) after loading them with electrode materials. The batteries with stretchable electrodes exhibit a decent electrochemical performance comparable to that of the conventional electrodes. The stretchable electrodes also exhibit a stable electrochemical performance under various mechanical deformations and even after several hundreds of stretch/release cycles. This work provides a feasible route for constructing LIBs with high stretchability and enhanced electrochemical performance thereby providing a platform for realizing stretchable batteries for next generation wearable electronics.
Collapse
Affiliation(s)
- Sekar Praveen
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| | - Taehyung Kim
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| | - Soon Phil Jung
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| | - Chang Woo Lee
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
- Center for the SMART Energy Platform, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin, Gyeonggi, 17104, South Korea
| |
Collapse
|
18
|
Li QY, Xu C, Liang YR, Yang Z, LeGe N, Peng J, Chen L, Lai WH, Wang YX, Tao Z, Liu M, Chou S. Reforming Magnet Waste to Prussian Blue for Sustainable Sodium-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47747-47757. [PMID: 36250578 DOI: 10.1021/acsami.2c13639] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Increasing generation of permanent magnet waste has resulted in an urgent need to preserve finite resources. Reforming these wastes as feedstock to produce renewables is an ideal strategy for addressing waste and energy challenges. Herein, our work reports a smart and sustainable strategy to convert iron in magnet wastes into Prussian blue analogues that can serve as cathode materials for sodium-ion batteries. Moreover, a method to control feed rates is proposed to generate high-quality materials with fewer [Fe(CN)6] vacancies at a feed rate of 3 mL min-1. The recycled Na1.46Fe[Fe(CN)6]0.85·□0.15 shows low vacancies and excellent cycling stability over 300 cycles (89% capacity retention at 50 mA g-1). In operando, evidence indicates that high-quality Prussian blue allows fast sodium-ion mobility and a high degree of reversibility over the course of cycling, although with a three-phase-transition mechanism. This study opens up a future direction for magnet waste created with the expectation of being environmentally reused.
Collapse
Affiliation(s)
- Qing-Yan Li
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Chunmei Xu
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou325035, China
| | - Ya-Ru Liang
- School of Materials Science and Engineering, Xiangtan University, Xiangtan411105, China
| | - Zhuo Yang
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou325035, China
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong2522, New South Wales, Australia
| | - Niubu LeGe
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou325035, China
| | - Jian Peng
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong2522, New South Wales, Australia
| | - Lijia Chen
- Institute of Intelligent Manufacturing, Guangdong Academy of Sciences, Guangdong Key Laboratory of Modern Control Technology, Guangzhou510000, China
| | - Wei-Hong Lai
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong2522, New South Wales, Australia
| | - Yun-Xiao Wang
- Institute for Superconducting and Electronic Materials, Australian Institute for Innovative Materials, University of Wollongong, Innovation Campus, North Wollongong2522, New South Wales, Australia
| | - Zhanliang Tao
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Renewable Energy Conversion and Storage Center, College of Chemistry, Nankai University, Tianjin300071, China
| | - Min Liu
- Key Laboratory of Advanced Functional Materials, Ministry of Education, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing100124, China
| | - Shulei Chou
- Institute for Carbon Neutralization, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou325035, China
| |
Collapse
|
19
|
Wang R, Liu H, Zhang Y, Sun K, Bao W. Integrated Photovoltaic Charging and Energy Storage Systems: Mechanism, Optimization, and Future. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203014. [PMID: 35780491 DOI: 10.1002/smll.202203014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/17/2022] [Indexed: 06/15/2023]
Abstract
As an emerging solar energy utilization technology, solar redox batteries (SPRBs) combine the superior advantages of photoelectrochemical (PEC) devices and redox batteries and are considered as alternative candidates for large-scale solar energy capture, conversion, and storage. In this review, a systematic summary from three aspects, including: dye sensitizers, PEC properties, and photoelectronic integrated systems, based on the characteristics of rechargeable batteries and the advantages of photovoltaic technology, is presented. The matching problem of high-performance dye sensitizers, strategies to improve the performance of photoelectrode PEC, and the working mechanism and structure design of multienergy photoelectronic integrated devices are mainly introduced and analyzed. In particular, the devices and improvement strategies of high-performance electrode materials are analyzed from the perspective of different photoelectronic integrated devices (liquid-based and solid-state-based). Finally, future perspectives are provided for further improving the performance of SPRBs. This work will open up new prospects for the development of high-efficiency photoelectronic integrated batteries.
Collapse
Affiliation(s)
- Ronghao Wang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Hongmin Liu
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Yuhao Zhang
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| | - Kaiwen Sun
- Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Weizhai Bao
- School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing, 210044, P. R. China
| |
Collapse
|