1
|
Gokul Eswaran S, Rashad M, Santhana Krishna Kumar A, El-Mahdy AFM. A Comprehensive Review of Mxene-Based Emerging Materials for Energy Storage Applications and Future Perspectives. Chem Asian J 2024:e202401181. [PMID: 39644135 DOI: 10.1002/asia.202401181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024]
Abstract
MXenes is a rapidly emerging class of two-dimensional (2D) materials. It exhibits unique properties that make it suitable for a wide range of applications. This review provides a comprehensive overview of the synthesis and processing techniques for MXenes including both bottom-up and top-down approaches. The synthesis of MXene-based composites is explored in detail focusing on Mxene-carbon composites, Mxene-metal oxides, Mxene-metal sulfides, Mxene-polymer composites and MXene-ceramic composites. Key properties of MXenes are examined including structural, electrical, morphological, optical, mechanical, chemical stability, electrical and thermal properties, conductivity, magnetic properties, dielectric charge and catalytic properties. Characterization techniques used to study these properties is also reviewed. Their 2D structure provides a high surface area and unique interlayer spacing, making MXenes ideal for applications in energy storage devices (like supercapacitors and batteries) where surface area and ion transport are critical for performance. The diverse applications of MXenes are presented emphasizing their use in batteries, catalysis, sensors, environmental remediation and supercapacitors. Special attention is given to the supercapacitor applications of MXenes of their potential in energy storage devices. Due to their high capacitance, fast charge/discharge rates, and excellent stability, MXenes are used in supercapacitors, lithium-ion batteries, and sodium-ion batteries. They can store energy more efficiently than many other materials, making them valuable in the quest for efficient, sustainable energy solutions. The progress in MXene supercapacitor devices is providing insights into the latest advancements and future prospects. MXenes are highlighted as versatile materials with significant potential in various technological fields particularly in energy storage. Future research directions and challenges are also outlined for ongoing and future studies in this dynamic area of materials science.
Collapse
Affiliation(s)
- Surulivel Gokul Eswaran
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| | - Mohamed Rashad
- Physics Department, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia
| | - Alagarsamy Santhana Krishna Kumar
- Department of Chemistry, National Sun Yat-Sen University, No. 70, Lien-hai Road, Gushan District, Kaohsiung, 80424, Taiwan
- Department of Chemistry, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, Tamil Nadu, 602 105, India
| | - Ahmed F M El-Mahdy
- Department of Materials and Optoelectronic Science, National Sun Yat-sen University, Kaohsiung, 80424, Taiwan
| |
Collapse
|
2
|
Liu C, Feng Z, Yin T, Wan T, Guan P, Li M, Hu L, Lin CH, Han Z, Xu H, Cheng W, Wu T, Liu G, Zhou Y, Peng S, Wang C, Chu D. Multi-Interface Engineering of MXenes for Self-Powered Wearable Devices. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403791. [PMID: 38780429 DOI: 10.1002/adma.202403791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/04/2024] [Indexed: 05/25/2024]
Abstract
Self-powered wearable devices with integrated energy supply module and sensitive sensors have significantly blossomed for continuous monitoring of human activity and the surrounding environment in healthcare sectors. The emerging of MXene-based materials has brought research upsurge in the fields of energy and electronics, owing to their excellent electrochemical performance, large surface area, superior mechanical performance, and tunable interfacial properties, where their performance can be further boosted via multi-interface engineering. Herein, a comprehensive review of recent progress in MXenes for self-powered wearable devices is discussed from the aspects of multi-interface engineering. The fundamental properties of MXenes including electronic, mechanical, optical, and thermal characteristics are discussed in detail. Different from previous review works on MXenes, multi-interface engineering of MXenes from termination regulation to surface modification and their impact on the performance of materials and energy storage/conversion devices are summarized. Based on the interfacial manipulation strategies, potential applications of MXene-based self-powered wearable devices are outlined. Finally, proposals and perspectives are provided on the current challenges and future directions in MXene-based self-powered wearable devices.
Collapse
Affiliation(s)
- Chao Liu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Ziheng Feng
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Yin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Tao Wan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Peiyuan Guan
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Mengyao Li
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Long Hu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun-Ho Lin
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Zhaojun Han
- School of Chemical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
- School of Mechanical, Medical and Process Engineering, Queensland University of Technology, Brisbane, QLD, 4000, Australia
- CSIRO Manufacturing, 36 Bradfield Road, Lindfield, NSW, 2070, Australia
| | - Haolan Xu
- Future Industries Institute, UniSA STEM, University of South Australia, Mawson Lakes Campus, South Australia, 5095, Australia
| | - Wenlong Cheng
- School of Biomedical Engineering, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tom Wu
- Department of Applied Physics, The Hong Kong Polytechnic University, Kowloon, Hong Kong, 999077, China
| | - Guozhen Liu
- Integrated Devices and Intelligent Diagnosis (ID2) Laboratory, CUHK(SZ)-Boyalife Regenerative Medicine Engineering Joint Laboratory, Biomedical Engineering Programme, School of Medicine, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yang Zhou
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Shuhua Peng
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Chun Wang
- School of Mechanical Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| | - Dewei Chu
- School of Materials Science and Engineering, The University of New South Wales, Sydney, NSW, 2052, Australia
| |
Collapse
|
3
|
Zhang X, Dai X, Xie Z, Qi W. Borocarbonitride Catalyzed Ethylbenzene Oxidative Dehydrogenation: Activity Enhancement via Encapsulation of Mn Clusters inside the Tube. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401532. [PMID: 38699945 DOI: 10.1002/smll.202401532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Indexed: 05/05/2024]
Abstract
Borocarbonitride (BCN) catalysts, boasting multiple redox sites, have shown considerable potential in alkane oxidative dehydrogenation (ODH) to olefin molecules. However, their catalytic efficiency still lags behind that of leading commercial catalysts, primarily due to the limited reactivity of oxygen functional groups. In this study, a groundbreaking hybrid catalyst is developed, featuring BCN nanotubes (BCNNTs) encapsulated with manganese (Mn) clusters, crafted through a meticulous supramolecular self-assembly and postcalcination strategy. This novel catalyst demonstrates a remarkable enhancement in activity, achieving 30% conversion and ≈100% selectivity toward styrene in ethylbenzene ODH reactions. Notably, its performance surpasses both pure BCNNTs and those hosting Mn nanoparticles. Structural and kinetic analyses unveil a robust interaction between BCNNTs and the Mn component, substantially boosting the catalytic activity of BCNNTs. Furthermore, density functional theory (DFT) calculations elucidate that BCNNTs encapsulated with Mn clusters not only stabilize key intermediates (─B─O─O─B─) but also enhance the nucleophilicity of active sites through electron transfer from the Mn cluster to the BCNNTs. This electron transfer mechanism effectively lowers the energy barrier for ─C─H cleavage, resulting in a 13% improvement in catalytic activity compared to pure BCNNTs.
Collapse
Affiliation(s)
- Xuefei Zhang
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fuzhou University, Fuzhou, Fujian, 350016, China
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
- College of Chemical Engineering, Fuzhou University, Fuzhou, 350016, China
| | - Xueya Dai
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| | - Zailai Xie
- Key Laboratory of Advanced Carbon-Based Functional Materials, Fuzhou University, Fuzhou, Fujian, 350016, China
| | - Wei Qi
- Shenyang National Laboratory for Materials Science, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, 110016, China
| |
Collapse
|
4
|
Xiao J, Yuan X, Li W, Zhang TC, He G, Yuan S. Cellulose-based aerogel derived N, B-co-doped porous biochar for high-performance CO 2 capture and supercapacitor. Int J Biol Macromol 2024; 269:132078. [PMID: 38705332 DOI: 10.1016/j.ijbiomac.2024.132078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 05/07/2024]
Abstract
The remarkable characteristics of porous biochar have generated significant interest in various fields, such as CO2 capture and supercapacitors. The modification of aerogel-derived porous biochar through activation and heteroatomic doping can effectively enhance CO2 adsorption and improve supercapacitor performance. In this study, a novel N, B-co-doped porous biochar (NBCPB) was synthesized by carbonating and activating the N, B dual-doped cellulose aerogel. N and B atoms were doped in-situ using a modified alkali-urea method. The potassium citrate was served as both an activator and a salt template to facilitate the formation of a well-developed nanostructure. The optimized NBCPB-650-1 (where 650 corresponded to activation temperature and 1 represented mass ratio of potassium citrate activator to carbonized NBCPB-400 precursor) displayed the largest micropore volume of 0.40 cm3·g-1 and a high specific surface area of 891 m2·g-1, which contributed to an excellent CO2 adsorption capacity of 4.19 mmol·g-1 at 100 kPa and 25 °C, a high CO2/N2 selectivity, and exceptional reusability (retained >97.5 % after 10 adsorption-desorption cycles). Additionally, the NBCPB-650-1 electrode also delivered a high capacitance of 220.9 F·g-1 at 1 A·g-1. Notably, the symmetrical NBCPB-650-1 supercapacitor exhibited a high energy density of 9 Wh·kg-1 at the power density of 100 W·kg-1. This study not only presents the potential application of NBCPB-650-1 material in CO2 capture and electrochemical energy storage, but also offers a new insight into easy-to-scale production of heteroatomic-modified porous biochar.
Collapse
Affiliation(s)
- Jianfei Xiao
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Xiaofang Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China
| | - Weikeduo Li
- School of Chemistry and Chemical Engineering, Guangxi University, Nanning 530004, China
| | - Tian C Zhang
- Civil & Environmental Engineering Department, University of Nebraska-Lincoln, Omaha, NE 68182-0178, USA
| | - Ge He
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| | - Shaojun Yuan
- Low-carbon Technology & Chemical Reaction Engineering Lab, School of Chemical Engineering, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
5
|
Jiang J, Zhao W, Zhao L. Ultrarapid Gelation of Porous Ti 3C 2T x MXene Monoliths Induced by Ionic Liquids. NANO LETTERS 2024; 24:3196-3203. [PMID: 38437624 DOI: 10.1021/acs.nanolett.4c00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Gelation is a promising method to assemble 3D macroscopic structures from MXene sheets for various applications. However, the fine control and scalable manufacturing of 3D MXene monoliths remains a great challenge. Herein, the controllable gelation of Ti3C2Tx MXene initiated by various ionic liquids (ILs) is first proposed, where the IL serve as linkers to bond the nanosheets together through electrostatic and hydrogen bonding interactions, forming 3D monoliths with well-adjustable structure. Furthermore, density functional theory calculations and experiments further reveal the cross-linking effect of different ILs. Typically, 3D porous structure with high specific surface area, suitable pore size, and improved electrolyte affinity is designed through the cross-linking of Ti3C2Tx with 1-vinyl-3-ethylimidazole bromide ([C2VIm]Br-Ti3C2Tx). Due to the strong coupling, the as-synthesized monolith possesses excellent rate performance and high energy density. The methodology is quite flexible, controllable, and universal that provides a new perspective for promoting innovative applications of 2D materials.
Collapse
Affiliation(s)
- Jiali Jiang
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wenchao Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Long Zhao
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
- State Key Laboratory of Advanced Electromagnetic Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
6
|
Radhakrishnan S, Patra A, Manasa G, Belgami MA, Mun Jeong S, Rout CS. Borocarbonitride-Based Emerging Materials for Supercapacitor Applications: Recent Advances, Challenges, and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305325. [PMID: 38009510 PMCID: PMC10811497 DOI: 10.1002/advs.202305325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Supercapacitors have emerged as a promising energy storage technology due to their high-power density, fast charging/discharging capabilities, and long cycle life. Moreover, innovative electrode materials are extensively explored to enhance the performance, mainly the energy density of supercapacitors. Among the two-dimensional (2D) supercapacitor electrodes, borocarbonitride (BCN) has sparked widespread curiosity owing to its exceptional tunable properties concerning the change in concentration of the constituent elements, along with an excellent alternative to graphene-based electrodes. BCN, an advanced nanomaterial, possesses excellent electrical conductivity, chemical stability, and a large specific surface area. These factors contribute to supercapacitors' overall performance and reliability, making them a viable option to address the energy crisis. This review provides a detailed survey of BCN, its structural, electronic, chemical, magnetic, and mechanical properties, advanced synthesis methods, factors affecting the charge storage mechanism, and recent advances in BCN-based supercapacitor electrodes. The review embarks on the scrupulous elaboration of ways to enhance the electrochemical properties of BCN through various innovative strategies followed by critical challenges and future perspectives. BCN, as an eminent electrode material, holds great potential to revolutionize the energy landscape and support the growing energy demands of the future.
Collapse
Affiliation(s)
- Sithara Radhakrishnan
- Centre for Nano and Material SciencesJain (Deemed‐to‐be University)Jain Global Campus, Kanakapura RoadBangaloreKarnataka562112India
| | - Abhinandan Patra
- Centre for Nano and Material SciencesJain (Deemed‐to‐be University)Jain Global Campus, Kanakapura RoadBangaloreKarnataka562112India
| | - G. Manasa
- Centre for Nano and Material SciencesJain (Deemed‐to‐be University)Jain Global Campus, Kanakapura RoadBangaloreKarnataka562112India
| | - Mohammed Arkham Belgami
- Centre for Nano and Material SciencesJain (Deemed‐to‐be University)Jain Global Campus, Kanakapura RoadBangaloreKarnataka562112India
| | - Sang Mun Jeong
- Department of Chemical EngineeringChungbuk National UniversityCheongjuChungbuk28644Republic of Korea
| | - Chandra Sekhar Rout
- Centre for Nano and Material SciencesJain (Deemed‐to‐be University)Jain Global Campus, Kanakapura RoadBangaloreKarnataka562112India
- Department of Chemical EngineeringChungbuk National UniversityCheongjuChungbuk28644Republic of Korea
| |
Collapse
|
7
|
Wang J, Xu Q, Liu J, Kong W, Shi L. Electrostatic Self-Assembly of MXene on Ruthenium Dioxide-Modified Carbon Cloth for Electrochemical Detection of Kaempferol. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2301709. [PMID: 37093500 DOI: 10.1002/smll.202301709] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 03/26/2023] [Indexed: 05/03/2023]
Abstract
A superior composite material consisting of MXene and ruthenium dioxide-modified carbon cloth is synthesized by pulsed laser deposition and electrostatic self-assembly, which is further utilized to construct a class of novel electrochemical (EC) sensors for kaempferol (KA) detection. The carbon-cloth-based electrodes modified by ruthenium dioxide and then MXene are characterized by X-ray diffraction, scanning electron microscope, and X-ray photoemission spectroscopy. The EC process on the modified electrodes is analyzed by cyclic voltammetry, EC impedance spectroscopy, and differential pulse voltammetry. It is found that positively charged RuO2 not only possesses the remarkable electrical conductivity and electrocatalysis activity but also hampers the restacking of MXene, which accordingly enhances the exposure of the active surface area and greatly boosts the electrocatalysis activity of the entire composite. Consequently, this newly developed composite-based EC sensor exhibits a high sensitivity, selectivity, and remarkable stability to detect KA with two linear ranges of 0.06-1 and 1-15 µM. The inferred limit of detection is 0.039 µM via differential pulse voltammetry. More importantly, this novel EC sensor is found to be applicable for detecting KA in practical traditional Chinese medicines.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Qingbin Xu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Jinxin Liu
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| | - Weijun Kong
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, 100069, P. R. China
| | - Linchun Shi
- Key Laboratory of Chinese Medicine Resources Conservation, State Administration of Traditional Chinese Medicine of the People's Republic of China, Engineering Research Center of Chinese Medicine Resource of Ministry of Education, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, P. R. China
| |
Collapse
|
8
|
Zheng J, Xu T, Xia G, Cui WG, Yang Y, Yu X. Water-Stabilized Vanadyl Phosphate Monohydrate Ultrathin Nanosheets toward High Voltage Al-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2207619. [PMID: 36775918 DOI: 10.1002/smll.202207619] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/29/2023] [Indexed: 05/04/2023]
Abstract
Al ion batteries (AIBs) are attracting considerable attention owing to high volumetric capacity, low cost, and high safety. However, the strong electrostatic interaction between Al3+ and host lattice leads to discontented cycling life and inferior rate capability. Herein, a new strategy of employing water molecules contained VOPO4 ·H2 O to boost Al3+ migration via the charge shielding effect of water is reported. It is revealed that VOPO4 ·H2 O with water lubrication effect and smaller steric hindrance owns high capacity and fast Al3+ diffusion, while the loss of unstable water upon cycling leads to a rapid performance degradation. To address this problem, ultrathin VOPO4 ·H2 O@MXene nanosheets are fabricated via the formed TiOV bond between VOPO4 ·H2 O and MXene. The MXene aided exfoliation results in enhanced VOwater bond strength between H2 O and VOPO4 that endows the obtained composite with strong water holding ability, contributing to the extraordinary cycling stability. Consequently, the VOPO4 ·H2 O@MXene delivers a high discharge potential of 1.8 V and maintains discharge capacities of 410 and 374.8 mAh g-1 after 420 and 2000 cycles at the current densities of 0.5 and 1.0 A g-1 , respectively. This work provides a new understanding of water-contained AIBs cathodes and vital guidance for developing high-performance AIBs.
Collapse
Affiliation(s)
- Jiening Zheng
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Tian Xu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Guanglin Xia
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| | - Wen-Gang Cui
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Yaxiong Yang
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Xuebin Yu
- Department of Materials Science, Fudan University, Shanghai, 200433, China
| |
Collapse
|
9
|
Singh KK, Pushpan S, Loredo SL, Cerdán-Pasarán A, Hernández-Magallanes JA, Sanal KC. Safe Etching Route of Nb 2SnC for the Synthesis of Two-Dimensional Nb 2CT x MXene: An Electrode Material with Improved Electrochemical Performance. MATERIALS (BASEL, SWITZERLAND) 2023; 16:3488. [PMID: 37176370 PMCID: PMC10180212 DOI: 10.3390/ma16093488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023]
Abstract
In this study, low-temperature synthesis of a Nb2SnC non-MAX phase was carried out via solid-state reaction, and a novel approach was introduced to synthesize 2D Nb2CTx MXenes through selective etching of Sn from Nb2SnC using mild phosphoric acid. Our work provides valuable insights into the field of 2D MXenes and their potential for energy storage applications. Various techniques, including XRD, SEM, TEM, EDS, and XPS, were used to characterize the samples and determine their crystal structures and chemical compositions. SEM images revealed a two-dimensional layered structure of Nb2CTx, which is consistent with the expected morphology of MXenes. The synthesized Nb2CTx showed a high specific capacitance of 502.97 Fg-1 at 1 Ag-1, demonstrating its potential for high-performance energy storage applications. The approach used in this study is low-cost and could lead to the development of new energy storage materials. Our study contributes to the field by introducing a unique method to synthesize 2D Nb2CTx MXenes and highlights its potential for practical applications.
Collapse
Affiliation(s)
- Karan Kishor Singh
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza 66455, Nuevo León, Mexico
| | - Soorya Pushpan
- Facultad de Ingeniería Mecánica y Eléctrica, Universidad Autónoma de Nuevo León, San Nicolas de los Garza 66455, Nuevo León, Mexico
| | - Shadai Lugo Loredo
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza 66455, Nuevo León, Mexico
| | - Andrea Cerdán-Pasarán
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza 66455, Nuevo León, Mexico
| | - J. A. Hernández-Magallanes
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza 66455, Nuevo León, Mexico
| | - K. C. Sanal
- Facultad de Ciencias Químicas, Universidad Autónoma de Nuevo León, San Nicolas de los Garza 66455, Nuevo León, Mexico
| |
Collapse
|
10
|
Xu W, Xu Y, Schultz T, Lu Y, Koch N, Pinna N. Heterostructured and Mesoporous Nb 2O 5@TiO 2 Core-Shell Spheres as the Negative Electrode in Li-Ion Batteries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:795-805. [PMID: 36542687 DOI: 10.1021/acsami.2c15124] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Niobium pentoxides have received considerable attention and are promising anode materials for lithium-ion batteries (LIBs), due to their fast Li storage kinetics and high capacity. However, their cycling stability and rate performance are still limited owing to their intrinsic insulating properties and structural degradation during charging and discharging. Herein, a series of mesoporous Nb2O5@TiO2 core-shell spherical heterostructures have been prepared for the first time by a sol-gel method and investigated as anode materials in LIBs. Mesoporosity can provide numerous open and short pathways for Li+ diffusion; meanwhile, heterostructures can simultaneously enhance the electronic conductivity and thus improve the rate capability. The TiO2 coating layer shows robust crystalline skeletons during repeated lithium insertion and extraction processes, retaining high structural integrity and, thereby, enhancing cycling stability. The electrochemical behavior is strongly dependent on the thickness of the TiO2 layer. After optimization, a mesoporous Nb2O5@TiO2 core-shell structure with a ∼13 nm thick TiO2 layer delivers a high specific capacity of 136 mA h g-1 at 5 A g-1 and exceptional cycling stability (88.3% retention over 1000 cycles at 0.5 A g-1). This work provides a facile strategy to obtain mesoporous Nb2O5@TiO2 core-shell spherical structures and underlines the importance of structural engineering for improving the performance of battery materials.
Collapse
Affiliation(s)
- Wenlei Xu
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| | - Yaolin Xu
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
| | - Thorsten Schultz
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Yan Lu
- Department of Electrochemical Energy Storage, Helmholtz-Zentrum Berlin für Materialien und Energie, 14109 Berlin, Germany
- Institute of Chemistry, University of Potsdam, Potsdam 14476, Germany
| | - Norbert Koch
- Institut für Physik and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
- Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, 12489 Berlin, Germany
| | - Nicola Pinna
- Institut für Chemie and IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany
| |
Collapse
|
11
|
Li L, Niu H, Robertson J, Jiang Z, Guo Y, Kuai C. Cyclocrosslinked Polyphosphazene Modified MXene as Aqueous Supercapacitor. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.141574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
12
|
Wang L, Tang Y, Li Y, Liu C, Wei N, Zeng W, Liang D. Multifunctional Integrated Interdigital Microsupercapacitors and Self-Powered Iontronic Tactile Pressure Sensor for Wearable Electronics. ACS APPLIED MATERIALS & INTERFACES 2022; 14:47136-47147. [PMID: 36200953 DOI: 10.1021/acsami.2c15117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Multifunctionality and self-powering are key technologies for next-generation wearable electronics. Herein, an interdigitated MXene/TiS2-based self-powered intelligent pseudocapacitive iontronic sensor system is designed, realizing integration of energy storage and pressure-sensitive sensing function into one device. The intercalation of TiS2 nanosheet can effectively prevent self-stacking of MXene and results in mesoporous cross-linked framework, therefore exposing more active sites and broadening the electron/ion transport channels. The pressure sensing performance together with developed all-solid-state microsupercapacitor is explored systematically. When applied in a symmetrical microsupercapacitor, it presents a satisfactory energy density of 31.6 Wh/kg at 400 W/kg and 79.8% capacitance retention after 10 000 cycles. Meanwhile, with MXene/TiS2//MXene/TiS2 interdigitated structure as flexible self-powering pressure sensor, it illustrates outstanding pressure-sensing response toward external pressure, realizing accurate and continuous detection of human body motion signals. It is believed that this work proposes a feasible strategy by integrating pressure-sensing with a self-powering function for the next-generation self-powered E-skin electronics.
Collapse
Affiliation(s)
- Leini Wang
- School of Electronic Information and Electrical Engineering, Hefei Normal University, Hefei230601, AnhuiPeople's Republic of China
- School of Materials Science and Engineering, Anhui University, No. 111 Jiulong Road, Hefei230601, Anhui ProvincePeople's Republic of China
| | - Yuxi Tang
- School of Electronic Information and Electrical Engineering, Hefei Normal University, Hefei230601, AnhuiPeople's Republic of China
| | - Yan Li
- School of Electronic Information and Electrical Engineering, Hefei Normal University, Hefei230601, AnhuiPeople's Republic of China
| | - Changyong Liu
- School of Electronic Information and Electrical Engineering, Hefei Normal University, Hefei230601, AnhuiPeople's Republic of China
| | - Ning Wei
- School of Electronic Information and Electrical Engineering, Hefei Normal University, Hefei230601, AnhuiPeople's Republic of China
| | - Wei Zeng
- Industry-Education-Research Institute of Advanced Materials and Technology for Integrated Circuits, School of Electronics and Information Engineering, Anhui University, Hefei230601, AnhuiPeople's Republic of China
| | - Dewei Liang
- School of Energy Materials and Chemical Engineering, Hefei University, Hefei230601, China
| |
Collapse
|
13
|
Moorthy M, Karnan M, Suresh Balaji S, Gokulnath S, Sathish M. Nanoarchitectonics with Beetroot Peel Waste Derived Activated Carbon for Improved Electrochemical Performances in Supercapacitors using Redox Additive Electrolyte. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
14
|
Wang G, Guo S, Wu Y, Wu J, Zhang F, Li L, Zhang M, Yao C, Gómez-García CJ, Wang T, Zhang Y, Chen T, Ma H. POMCPs with Novel Two Water-Assisted Proton Channels Accommodated by MXenes for Asymmetric Supercapacitors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2202087. [PMID: 35729064 DOI: 10.1002/smll.202202087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Revised: 05/05/2022] [Indexed: 06/15/2023]
Abstract
To develop high-performance supercapacitors, the negative electrode is at present viewed as one of the most challenging tasks for obtaining the next-generation of energy storage devices. Therefore, in this study, a polyoxometalate-based coordination polymer [Zn(itmb)3 H2 O][H2 SiW12 O40 ]·5H2 O (1) is designed and prepared by a simple hydrothermal method for constructing a high-capacity negative electrode. Polymer 1 has two water-assisted proton channels, which are conducive to enhancing the electrical conductivity and storage capacity. Then, MXene Ti3 C2 Tx is chosen to accommodate coordination polymer 1 as the interlayer spacers to improve the conductivity and cycling stability of 1, while preventing the restacking of MXene. Expectedly, the produced composite electrode 1@Ti3 C2 Tx shows an excellent specific capacitance (1480.1 F g-1 at 5 A g-1 ) and high rate performance (a capacity retention of 71.5% from 5 to 20 A g-1 ). Consequently, an asymmetric supercapacitor device is fabricated using 1@Ti3 C2 Tx as the negative electrode and celtuce leaves-derived carbon paper as the positive electrode, which demonstrates ultrahigh energy density of 32.2 Wh kg-1 , and power density 2397.5 W kg-1 , respectively. In addition, the ability to illuminate a red light-emitting diode for several minutes validates its feasibility for practical application.
Collapse
Affiliation(s)
- Guangning Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Siyu Guo
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yang Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Jiaqi Wu
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Feng Zhang
- School of Chemistry and Chemical Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Lu Li
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Mingyi Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Chengbao Yao
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Carlos J Gómez-García
- Department of Inorganic Chemistry, Institute of Molecular Science, University of Valencia, C/Catedrático José Beltrán, Paterna, Valencia, 46980, Spain
| | - Tianyang Wang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Yajing Zhang
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Tingting Chen
- Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University, Harbin, 150025, P. R. China
| | - Huiyuan Ma
- Key Laboratory of Green Chemical Engineering and Technology, School of Chemical and Environmental Engineering, Harbin University of Science and Technology, Harbin, 150040, P. R. China
| |
Collapse
|
15
|
Wang L, Tang Y, Li Y, Wei N, Yang J. MXene/Silver Nanowire-Based Spring Frameworks for Highly Flexible Waterproof Supercapacitors and Piezoelectrochemical-Type Pressure-Sensitive Sensor Devices. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:7312-7321. [PMID: 35656874 DOI: 10.1021/acs.langmuir.2c00846] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
With widespread application of flexible electronic devices, the multifunction for supercapacitors has attracted tremendous attention. Here, developed is a novel multifunctional MXene-based pizeoelectrochemical-type pressure sensor based on highly compressible antiwater supercapacitor. This novel design realizes energy storage and pressure sensing functions simultaneously. The outstanding rate performance is realized by the reasonable design of electron and ion transport channels, originating from strong synergistic bridging interactions between silver nanowires (AgNWs) and MXene. Serving as the electrochemical storage device, even at large 500 mV s-1, the cyclic voltammetry curve of AgNWs/MXene aerogel still maintains nearly rectangular characteristics. For the assembled antiwater symmetric supercapacitor, it records a high specific capacitance of 210.5 F g-1 at 0.5 A g-1, a maximum energy density of 74.7 W h Kg-1 at 400 W Kg-1, and outstanding waterproof cyclic stability of 86.51% in water. Based on elastic AgNWs/MXene aerogel, an antiwater pizeoelectrochemical-type strain sensor is designed, and the device presents stable and sensitive current response while facing external pressure. This study clearly demonstrates that our work promises a new research direction toward the design of next-generation wearable devices that could be used in wirelessly powered wearable devices.
Collapse
Affiliation(s)
- Leini Wang
- AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, Anhui Province, People's Republic of China
- School of Materials Science and Engineering, Anhui University, No. 111 Jiulong Road, Hefei 230601, Anhui Province, People's Republic of China
| | - Yuxi Tang
- AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, Anhui Province, People's Republic of China
| | - Yan Li
- AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, Anhui Province, People's Republic of China
| | - Ning Wei
- AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, Anhui Province, People's Republic of China
| | - Jin Yang
- AnHui Province Key Laboratory of Simulation and Design for Electronic Information System, Hefei Normal University, Hefei 230601, Anhui Province, People's Republic of China
| |
Collapse
|
16
|
Nasrin K, Sudharshan V, Arunkumar M, Sathish M. 2D/2D Nanoarchitectured Nb 2C/Ti 3C 2 MXene Heterointerface for High-Energy Supercapacitors with Sustainable Life Cycle. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21038-21049. [PMID: 35476396 DOI: 10.1021/acsami.2c02871] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Layered 2D/2D heterointerface composites experience interesting properties that greatly stimulate the recent surge in the attention as robust supercapacitor electrode materials, especially the MXene-based 2D/2D heterointerface for its robust energy storage compatibility. This report unveils a synergistically in situ prepared 2D/2D Nb2C/Ti3C2 MXene (NCTC) heterointerface nanoarchitecture by facile one-pot chemical etching. The methodology adopted enables the interconnected and simultaneous growth of MXenes exposing and retaining their active surfaces for enhanced ion diffusion pathways, charge storage dynamics, microstructural stability, and a noticeable potential window. Henceforth, the in situ developed NCTC heterointerface electrode delivered an excellent specific capacitance of 584 F/g at 2 A/g with a commendable energy density of 38.5 W h/kg in MXene supercapacitors owing to the augmented surface- and redox-based charge storage at the interface. Finally, the developed all-solid-state system demonstrated a superior cycling retention of 98% capacitance after 50,000 cycles. These superlative results encourage the exploration of such prospective 2D/2D heterointerfaces with intriguing charge storage and microstructural attributes for designing next-generation energy storage systems.
Collapse
Affiliation(s)
- Kabeer Nasrin
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Electrochemical Power Sources Division (ECPS), CSIR─Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Vasudevan Sudharshan
- Electrochemical Power Sources Division (ECPS), CSIR─Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Murugesan Arunkumar
- Electrochemical Power Sources Division (ECPS), CSIR─Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| | - Marappan Sathish
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
- Electrochemical Power Sources Division (ECPS), CSIR─Central Electrochemical Research Institute, Karaikudi 630 003, Tamil Nadu, India
| |
Collapse
|