1
|
Zou J, Zhu G, Lin X, Chu L, Zhong H, Jiang C, Huang Y. Metal-organic frameworks-based nanozyme sensor array for the discrimination of biogenic amines and detection of histamine. Talanta 2025; 284:127244. [PMID: 39566156 DOI: 10.1016/j.talanta.2024.127244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/11/2024] [Accepted: 11/17/2024] [Indexed: 11/22/2024]
Abstract
Biogenic amines (BAs) are hazardous substances found in fishery products that are closely associated with fish spoilage and threaten food safety. Traditional chromatographic methods for detecting BAs are expensive, complex, and time-consuming. In this study, we developed a nanozyme-based sensor array to efficiently discriminate between four types of BAs and sensitively detect histamine. Copper-, cerium-, and manganese-based metal-organic frameworks with excellent peroxidase-like activities were employed as sensor elements. Because the catalytic activities of metal-organic frameworks could be modified by different BAs to varying degrees, the sensor array could generate a distinct colorimetric response pattern (fingerprint) for each BA. Based on this principle, the sensor array accurately discriminated BAs over a wide concentration range (10-1000 μM). Histamine could be distinguished down to 1 μM and detected with a detection limit of 4.28 μM within 20 min. In addition, mixtures of BAs, target BAs, interfering substances, and BAs in fishery product samples were well discriminated. Furthermore, our sensor array could also effectively distinguish the freshness of fish samples. This work might offer a useful strategy for the discrimination and detection of BAs and could positively contribute to food safety and public health.
Collapse
Affiliation(s)
- Jiahui Zou
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Guancheng Zhu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xueer Lin
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Lanling Chu
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Huimin Zhong
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Cong Jiang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yanyan Huang
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
2
|
Zhong X, Li X, Gu L, Yang H, Du J, Wang Q, Li Y, Miao Y. Piezoelectric-mediated two-dimensional copper-based metal-organic framework for synergistic sonodynamic and cuproptosis-driven tumor therapy. J Colloid Interface Sci 2025; 679:354-363. [PMID: 39454266 DOI: 10.1016/j.jcis.2024.10.108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 10/28/2024]
Abstract
Sonodynamic therapy (SDT) is a minimally invasive therapeutic approach that utilizes sonosensitizers to catalyze substrates and generate reactive oxygen species (ROS) under ultrasound stimulation, ultimately inducing tumor cell death. Enhancing the piezoelectric properties of nanomaterials and modulating the semiconductor energy band are effective strategies to improve the catalytic efficiency of sonosensitizers. In this study, we developed a two-dimensional (2D) copper-based piezoelectric metal-organic framework (MOF) sonosensitizer, denoted as CM, through the coordination of copper and dimethylimidazole. The unique 2D MOF structure imparts CM with piezoelectric characteristics, enabling it to enhance SDT efficacy by modulating the semiconductor bandgap and carrier mobility. Upon ultrasound irradiation, CM catalyzes oxygen to undergo a cascade reaction, producing highly toxic singlet oxygen. Additionally, cupric ions in CM can be reduced by glutathione, facilitating the spontaneous catalysis of hydrogen peroxide in tumors to generate hydroxyl radicals and deplete glutathione, thereby inducing oxidative damage. Moreover, cupric ions in CM can trigger tumor cell cuproptosis, which, in combination with the generated ROS, accelerates cell death. Thus, this study establishes a MOF-based system for controllably inducing multi-pathway cancer cell death and provides a foundation for enhancing ultrasound-catalyzed tumor therapy through the optimization of piezoelectric properties.
Collapse
Affiliation(s)
- Xiaoyuan Zhong
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Xueyu Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Liping Gu
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Han Yang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Jun Du
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Qian Wang
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Yuhao Li
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| | - Yuqing Miao
- School of Materials and Chemistry, Institute of Bismuth Science, Shanghai Collaborative Innovation Center of Energy Therapy for Tumors, University of Shanghai for Science and Technology, Shanghai 200093, China.
| |
Collapse
|
3
|
Wang Y, Zhao Z, Wang Y, Liu Z, Chen L, Qi J, Xie Y, Zhao P, Fei J. Ultrafine metal-organic framework @ graphitic carbon with MoS 2-CNTs nanocomposites as carbon-based electrochemical sensor for ultrasensitive detection of catechin in beverages. Mikrochim Acta 2024; 192:40. [PMID: 39731622 DOI: 10.1007/s00604-024-06901-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
GO/Co-MOF/PPy-350 (GPC-350) was synthesized by in situ growth of ultrafine Co-MOF on graphene oxide (GO), followed by encapsulation with polypyrrole (PPy) and calcination at 350.0℃. Meanwhile, MoS2-MWCNTs (MoS2-CNTs) were produced via the in situ synthesis of MoS2 within multi-walled carbon nanotubes (MWCNTs). The electrochemically superior GPC-350/MoS2-CNTs nanocomposite was then achieved by combining GPC-350 with MoS2-CNTs. The polypyrrole encapsulation serves to protect the ultrafine Co-MOF, preventing its degradation during the calcination process. The linear detection range of the GPC-350/MoS2-CNTs/GCE sensor for the determination of catechin (CA) in phosphate buffered saline (PBS) was from 5.0 to 1800.0 nM with a limit of detection of 1.78 nM. In addition, the materials were characterized using SEM, EDX, TEM, XRD, EIS, XPS, FTIR, and Raman. These results indicate that the synthesis of GPC-350/MoS2-CNTs nanocomposites is successful and CA in beverages samples can be effectively detected using electrochemical sensors. Additionally, the reaction mechanism of CA was explored through cyclic voltammetry. The application of GPC-350/MoS2-CNTs nanocomposites in sensor technology offers innovative approaches for the ultrasensitive detection of flavonoids.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Zixia Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yuefan Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Zhifang Liu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Leyao Chen
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Jin Qi
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| |
Collapse
|
4
|
Zhu L, Yang H, Xu T, Shen F, Si C. Precision-Engineered Construction of Proton-Conducting Metal-Organic Frameworks. NANO-MICRO LETTERS 2024; 17:87. [PMID: 39658670 PMCID: PMC11631836 DOI: 10.1007/s40820-024-01558-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/08/2024] [Indexed: 12/12/2024]
Abstract
Proton-conducting materials have attracted considerable interest because of their extensive application in energy storage and conversion devices. Among them, metal-organic frameworks (MOFs) present tremendous development potential and possibilities for constructing novel advanced proton conductors due to their special advantages in crystallinity, designability, and porosity. In particular, several special design strategies for the structure of MOFs have opened new doors for the advancement of MOF proton conductors, such as charged network construction, ligand functionalization, metal-center manipulation, defective engineering, guest molecule incorporation, and pore-space manipulation. With the implementation of these strategies, proton-conducting MOFs have developed significantly and profoundly within the last decade. Therefore, in this review, we critically discuss and analyze the fundamental principles, design strategies, and implementation methods targeted at improving the proton conductivity of MOFs through representative examples. Besides, the structural features, the proton conduction mechanism and the behavior of MOFs are discussed thoroughly and meticulously. Future endeavors are also proposed to address the challenges of proton-conducting MOFs in practical research. We sincerely expect that this review will bring guidance and inspiration for the design of proton-conducting MOFs and further motivate the research enthusiasm for novel proton-conducting materials.
Collapse
Affiliation(s)
- Liyu Zhu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China
| | - Hongbin Yang
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China
| | - Ting Xu
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 510640, Guangzhou, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| | - Feng Shen
- Agro-Environmenta Protection Institute, Ministry of Agriculture and Rural Affairs, 300191, Tianjin, People's Republic of China.
| | - Chuanling Si
- State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, 300457, Tianjin, People's Republic of China.
- Robustnique Co. Ltd., Block C, Phase II, Pioneer Park, Lanyuan Road, 300384, Tianjin, People's Republic of China.
| |
Collapse
|
5
|
Li Y, Cheng Y, Huang Y, Zhao P, Fei J, Xie Y. Bimetallic PdCu anchored to 3D flower-like carbon material for portable and efficient detection of glyphosate. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135786. [PMID: 39278031 DOI: 10.1016/j.jhazmat.2024.135786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/19/2024] [Accepted: 09/07/2024] [Indexed: 09/17/2024]
Abstract
Glyphosate (Gly), as a widely used broad-spectrum herbicide, may lead to soil and water pollution due to its persistence in the environment. Herein, the co-reduction method was employed to anchor bimetallic PdCu onto the Ni and nitrogen-doped 3D Flower-like Carbon Materials (Ni@NC), creating a composite material (PdCu/Ni@NC) with high specific surface area and good catalytic performance. This composite was used to modify screen-printed electrodes (SPE) to develop a portable and efficient Gly detection platform. In the presence of Cl⁻, the copper active sites convert to CuCl, achieving signal amplification. Upon the addition of Gly, a competitive reaction between Cu and Gly converts CuCl into a Cu-Gly complex, resulting in a sharp decrease in the electrochemical signal. This signal drop is used to detect Gly. The bimetallic PdCu nanoparticles (NPs) endowed the sensing platform with better stability and electrochemical performance due to their synergistic effect, and their stability was simply verified by Density functional theory (DFT). The sensor demonstrates a linear detection range spanning from 1 × 10⁻¹ ³ to 1 × 10⁻⁵ M, with a limit of detection (LOD) of 3.72 × 10⁻¹ ⁴ M. The sensor demonstrated a recovery rate of 95.9 % to 104.5 % in actual samples such as water and soil, indicating its potential for practical application.
Collapse
Affiliation(s)
- Yuhong Li
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yujun Cheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yutian Huang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China.
| | - Yixi Xie
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China; Hunan Provincial University Key Laboratory for Environmental and Ecological Health, Xiangtan University, Xiangtan, 411105, China.
| |
Collapse
|
6
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
7
|
Xue W, Fu J, Zhang Y, Ren S, Liu G. A core-shell structured AuNPs@ZnCo-MOF SERS substrate for sensitive and selective detection of thiram. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:1811-1820. [PMID: 38450563 DOI: 10.1039/d4ay00164h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2024]
Abstract
Surface-enhanced Raman scattering (SERS) enables pesticide residue monitoring to become facile and efficient. In this study, a core-shell structured gold nanoparticles@ZnCo metal-organic framework (AuNPs@ZnCo-MOF) SERS substrate was designed and successfully synthesized for efficient and selective detection of thiram. The bimetallic ZnCo-MOF shell can not only enrich the targeted molecules in the electromagnetic field because of its excellent absorptive capacity, but also act as a stabilized matrix for protecting the AuNPs from aggregation. The AuNPs@ZnCo-MOFs exhibited a high enhancement factor (EF) of 3.51 × 106 and a low detection limit of 1 × 10-7 mol L-1. Besides, the substrate material showed exceptional stability for up to 28 days at room temperature. The AuNPs@ZnCo-MOFs were used to detect thiram which displayed wide linearity (1 × 10-7 to 1 × 10-4 mol L-1) and high recoveries (83.45-99.61%). Moreover, the AuNPs@ZnCo-MOF SERS substrate exhibited excellent anti-interference ability and size selectivity for the target molecules. These indicate that the AuNPs@ZnCo-MOF substrate has great potential for the detection of thiram residues in practical applications.
Collapse
Affiliation(s)
- Wenxia Xue
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Jihong Fu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Yaxue Zhang
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Shuxian Ren
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| | - Guoqi Liu
- Key Laboratory of Oil and Gas Fine Chemicals Ministry of Education & Xinjiang Uyghur Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, Xinjiang, China.
| |
Collapse
|
8
|
He Q, Zhao H, Teng Z, Guo Y, Ji X, Hu W, Li M. Tuning microscopic structure of La-MOFs via ligand engineering effect towards enhancing phosphate adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120149. [PMID: 38278114 DOI: 10.1016/j.jenvman.2024.120149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 12/18/2023] [Accepted: 01/07/2024] [Indexed: 01/28/2024]
Abstract
The selection of different organic ligands when synthesizing metal organic framework (MOFs) can change their effects on the adsorption performance. Here, four La-MOFs adsorbents (La-SA, La-FA, La-TA and La-OA) with different organic ligands and structures were synthesized by solvothermal method for phosphate adsorption, and the relationship between their adsorption properties and structures was established. Among four La-MOFs, their phosphate adsorption capacities and adsorption rates followed La-SA > La-FA > La-TA > La-OA. The results indicated that average pore diameter played a key role in phosphate adsorption and there was a positive correlation between average pore diameter and adsorption capacity (R2 = 0.86). Coexisting ion experiments showed that phosphate adsorptions on three La-MOFs (La-SA, La-FA and La-TA) were inhibited in the presence of CO32- and HCO3-. The inhibition of CO32- was the most pronounced and the results of redundancy analysis pointed out that it was mainly due to the change of pH value. In contrast, La-OA showed enhanced phosphate adsorption in the presence of CO32- and HCO3-, and the combination of pH experiments showed that phosphate adsorption by La-OA was increased under alkaline conditions. Further combined with FT-IR, XRD, high resolution energy spectra of XPS (La 3d, P 2p and O 1s) and XANES, the adsorption mechanisms were derived electrostatic attraction, chemical precipitation and inner sphere complexation, and the last two were identified as the main mechanisms. Moreover, it can be identified from XPS 2p that the phosphate adsorption on La-FA and La-OA were mainly in the LaPO4 state, while La-SA and La-TA mainly existed in the form of LaPO4·xH2O crystals and inner sphere complexes. From the perspective of material morphology, this work provides a thought for the rational design of MOFs with adjustable properties for phosphate adsorption.
Collapse
Affiliation(s)
- Qinqin He
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Hongjun Zhao
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China
| | - Zedong Teng
- Innovation Academy for Green Manufacture, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yali Guo
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Xiaonan Ji
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Wei Hu
- Shanghai Investigation, Design & Research Institute Co., Ltd., Shanghai, 200335, China; YANGTZE Eco-Environment Engineering Research Center (Shanghai), China Three Gorges Corporation, Shanghai, 200335, China
| | - Min Li
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China; Engineering Research Center for Water Pollution Source Control & Eco-remediation, College of Environmental Science and Engineering, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
9
|
Li S, Liang L, Tian L, Wu J, Zhu Y, Qin Y, Zhao S, Ye F. Enhanced peroxidase-like activity of MOF nanozymes by co-catalysis for colorimetric detection of cholesterol. J Mater Chem B 2023; 11:7913-7919. [PMID: 37431242 DOI: 10.1039/d3tb00958k] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/12/2023]
Abstract
Metal-organic frameworks (MOFs) have been widely used as nanozymes with a great development prospect due to their unique advantages. It is known that the current Fe-based or Cu-based MOF, etc., exhibits the catalytic activity of nanozymes through the Fenton catalytic reaction. And the conversion efficiency of the Fe3+/Fe2+ or Cu2+/Cu+ cycle is key to the catalytic activity. Therefore, we proposed a novel co-catalytic method to promote the reaction rate of the rate-limiting step of Cu2+/Cu+ conversion in the Fenton reaction of Cu2+/H2O2 to enhance the catalytic activity of the nanozymes. As a proof of concept, the MoCu-2MI nanozyme with high catalytic activity was successfully synthesized using Mo-doped Cu-2MI (2-methylimidazole). By using 3,3',5,5'-tetramethylbenzidine (TMB) as the chromogenic substrate, MoCu-2MI exhibited higher peroxidase-like activity than pure Cu-2MI. Then, it was confirmed that the newly introduced Mo played a crucial co-catalytic role by characterizing the possible catalytic mechanism. Specifically, Mo acted as a co-catalyst to accelerate the electron transfer in the system, and then promote the Cu2+/Cu+ cycle in the Cu-Fenton reaction, which was conducive to accelerating the production of a large number of reactive oxygen species (ROS) from H2O2, and finally improve the activity. Ultimately, a biosensor platform combined with MoCu-2MI and cholesterol oxidase realized the one-step colorimetric detection of cholesterol in the range of 2-140 μM with the detection limit as low as 1.2 μM. This study provides a new strategy for regulating the activity of MOF nanozymes.
Collapse
Affiliation(s)
- Shuishi Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Ling Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Longfei Tian
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Jia Wu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yuhui Zhu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yuan Qin
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Shulin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fanggui Ye
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541004, P. R. China.
| |
Collapse
|
10
|
Wang Y, Chen J, Wang C, Zhang L, Yang Y, Chen C, Xie Y, Zhao P, Fei J. An electrochemical sensor based on Ce-MOF-derived Ce-doped poly(3,4-ethylenedioxythiophene) composite for efficient determination of rutin in food. Talanta 2023; 263:124678. [PMID: 37247454 DOI: 10.1016/j.talanta.2023.124678] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/19/2023] [Accepted: 05/14/2023] [Indexed: 05/31/2023]
Abstract
As a common antioxidant and nutritional fortifier in food chemistry, rutin has positive therapeutic effects against novel coronaviruses. Here, Ce-doped poly(3,4-ethylenedioxythiophene) (Ce-PEDOT) nanocomposites derived through cerium-based metal-organic framework (Ce-MOF) as a sacrificial template have been synthesized and successfully applied to electrochemical sensors. Due to the outstanding electrical conductivity of PEDOT and the high catalytic activity of Ce, the nanocomposites were used for the detection of rutin. The Ce-PEDOT/GCE sensor detects rutin over a linear range of 0.02-9 μM with the limit of detection of 14.7 nM (S/N = 3). Satisfactory results were obtained in the determination of rutin in natural food samples (buckwheat tea and orange). Moreover, the redox mechanism and electrochemical reaction sites of rutin were investigated by the CV curves of scan rate and density functional theory. This work is the first to demonstrate the combined PEDOT and Ce-MOF-derived materials as an electrochemical sensor to detect rutin, thus opening a new window for the application of the material in detection.
Collapse
Affiliation(s)
- Yilin Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China
| | - Jia Chen
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chenxi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Li Zhang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Yaqi Yang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China
| | - Chao Chen
- School of Materials and Chemical Engineering, Hunan City University, Yiyang, 413000, People's Republic of China
| | - Yixi Xie
- Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Xiangtan University, Xiangtan 411105, People's Republic of China
| | - Pengcheng Zhao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China.
| | - Junjie Fei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan, 411105, People's Republic of China; Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan, 411105, People's Republic of China; Key Laboratory of Polar Materials and Devices, Ministry of Education, East China Normal University, Shanghai 200241, People's Republic of China.
| |
Collapse
|
11
|
Hu H, Huang X, Dai Y, Zhu K, Ye X, Meng S, Zhang Q, Xie X. Organic metal matrix Mil-88a nano-enzyme for joint repair in the osteoarthritis mouse model. Front Bioeng Biotechnol 2023; 11:1164942. [PMID: 37187885 PMCID: PMC10175628 DOI: 10.3389/fbioe.2023.1164942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/04/2023] [Indexed: 05/17/2023] Open
Abstract
Introduction: In this paper we tried to conduct a novel nanomaterial strategy to overcome osteoarthritis (OA) in a mouse model. Methods: In this regard, after synthesizing the Mil-88a nanozyme, as a certain Fe-MOF, its toxic effects were detected by CCK-8 method and live-dead staining. The OA model of mouse was constructed, and paraffin sections of joints were taken for histological evaluation. In addition, immunofluorescence and immunohistochemistry were used to identify the OA progression and OARSI was used to evaluate the OA grades. We observed that Mil-88a could be easily synthesized and has high biocompatibility. Results: We observed that Mil-88a could significantly promote the expression of OA anabolism-related genes such as Col2 and also significantly inhibit the expression of OA catabolism-related genes MMP13. Besides, we observed better OARSI score in animals treated with Mil-88a nano-enzyme loading on organic metal matrix. Discussion: Overall, Mil-88a nano-enzyme could be used as a novel strategy to treat OA.
Collapse
|
12
|
Pervez MN, Chen C, Li Z, Naddeo V, Zhao Y. Tuning the structure of cerium-based metal-organic frameworks for efficient removal of arsenic species: The role of organic ligands. CHEMOSPHERE 2022; 303:134934. [PMID: 35561775 DOI: 10.1016/j.chemosphere.2022.134934] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 05/01/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
The ability of organic ligands to change the structure of metal-organic frameworks (MOFs) in nature and influence their adsorption efficiency for arsenic species is enormous. The current work was designed to investigate the adsorption performance of cerium-based MOFs with tunable structures through the use of organic ligands (Ce-MOF-66 and Ce-MOF-808) towards arsenic species from water. The structural features of Ce-MOF-66 and Ce-MOF-808 with varying crystallinity, morphology, particle size, and surface area are considerably altered by organic ligands tuning, resulting in clearly distinct arsenate (As (V)) and arsenite (As (III)) adsorption capabilities. The experimental results showed that the Langmuir adsorption capacities of As (V) by Ce-MOF-66 and Ce-MOF-808 reached 355.67 and 217.80 mg/g, respectively, while for As (III) were 5.52 and 402.10 mg/g for Ce-MOF-66 and Ce-MOF-808, respectively. Except for the impact of PO43- on As (V), co-existing ions had no significant influence on adsorption, illustrating the high selectivity. Furthermore, to understand the structure and adsorption mechanism, two adsorbents were characterized by powder X-ray diffraction, scanning electron microscopy, thermogravimetric analysis, specific surface area, Fourier transform infrared and X-ray photoelectron spectroscopy, in which identified that unsaturated sites and ligand exchange were the main adsorption mechanisms of As (V) and As (III). Overall, this research presents a novel approach for developing high-performance Ce-derived MOFs adsorbents to capture arsenic species.
Collapse
Affiliation(s)
- Md Nahid Pervez
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China; Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Changxun Chen
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Zongchen Li
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China
| | - Vincenzo Naddeo
- Sanitary Environmental Engineering Division (SEED), Department of Civil Engineering, University of Salerno, via Giovanni Paolo II 132, 84084, Fisciano (SA), Italy
| | - Yaping Zhao
- Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, School of Ecological and Environmental Sciences, East China Normal University, and Institute of Eco-Chongming, Shanghai, 200241, China.
| |
Collapse
|