1
|
Pan X, Andersson MR. Fine Tuning the Glass Transition Temperature and Crystallinity by Varying the Thiophene-Quinoxaline Copolymer Composition. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6031. [PMID: 39769632 PMCID: PMC11676980 DOI: 10.3390/ma17246031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 12/04/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025]
Abstract
In recent years, the design and synthesis of high-performing conjugated materials for the application in organic photovoltaics (OPVs) have achieved lab-scale devices with high power conversion efficiency. However, most of the high-performing materials are still synthesised using complex multistep procedures, resulting in high cost. For the upscaling of OPVs, it is also important to focus on conjugated polymers that can be made via fewer simple synthetic steps. Therefore, an easily synthesised amorphous thiophene-quinoxaline donor polymer, TQ1, has attracted our attention. An analogue, TQ-EH that has the same polymer backbone as TQ1 but with short branched side-chains, was previously reported as a donor polymer with increased crystallinity. We have synthesised copolymers with varied ratios between octyloxy and branched (2-ethylhexyl)oxy-substituted quinoxaline units having the same polymer backbone, with the aim to control the aggregation/crystallisation behaviour of the resulting copolymers. The optical properties, glass transition temperatures and degree of crystallinity of the new copolymers were systematically examined in relation to their copolymer composition, revealing that the composition can be used to fine-tune these properties of conjugated polymers. In addition, multiple sub-Tg transitions were found from some of the polymers, which are not commonly or clearly seen in other conjugated polymers. The new copolymers were tested in photovoltaic devices with a fullerene derivative as the acceptor, achieving slightly higher performances compared to the homopolymers. This work demonstrates that side-chain modification by copolymerisation can fine-tune the properties of conjugated polymers without requiring complex organic synthesis, thereby expanding the number of easily synthesised polymers for future upscaling of OPVs.
Collapse
Affiliation(s)
- Xun Pan
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
| | - Mats R. Andersson
- Flinders Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, Adelaide, SA 5042, Australia;
- ARC Training Centre for Biofilm Research and Innovation, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
2
|
Wang C, Ma X, Deng D, Zhang H, Sun R, Zhang J, Zhang L, Wu M, Min J, Zhang ZG, Wei Z. Giant dimeric donors for all-giant-oligomer organic solar cells with efficiency over 16% and superior photostability. Nat Commun 2024; 15:8494. [PMID: 39353930 PMCID: PMC11445269 DOI: 10.1038/s41467-024-52821-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 09/20/2024] [Indexed: 10/03/2024] Open
Abstract
Increasing the molecular weight while maintaining mono-dispersity has been proved crucial in innovating high-performance photovoltaic materials in giant oligomeric acceptors. However, developing efficient giant oligomeric donors to replace the batch-varied polymers remains challenging due to a lack of design principles. Here, by designing two unique isomeric rhodanine-based linkers, we successfully regulate the assembly behaviors of giant dimeric donors (G-Dimer-Ds) and fabricate the first all-giant-oligomer OSCs pairing with giant dimeric acceptor DY. Multiple characterizations demonstrate the small homo-molecular interaction with strong thermal-driven assembly capability in G-Dimer-D2 simultaneously facilitates reducing energetic disorder, improving charge transport and obtaining stable morphology, resulting in a satisfactory efficiency of 15.70% and long-term photostability with an extrapolated T80 of ca.10,000 hours, and further enhancing thermal-driven assembly promotes efficiency of 16.05%. Our results provide construction approaches on efficient giant donors, and propose a promising type of OSC with completely definite structures, high efficiency and superior stability.
Collapse
Affiliation(s)
- Caixuan Wang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoming Ma
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- School of Science, Minzu University of China, Beijing, 100081, Beijing, China
| | - Dan Deng
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China.
| | - Hao Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Rui Sun
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jianqi Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
| | - Lili Zhang
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mengying Wu
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China
| | - Jie Min
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zhi-Guo Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Zhixiang Wei
- Key Laboratory of Nanosystem and Hierarchical Fabrication of Chinese Academy of Sciences, National Center for Nanoscience and Technology, Beijing, 100190, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
3
|
Zhang KN, Du XY, Yan L, Pu YJ, Tajima K, Wang X, Hao XT. Organic Photovoltaic Stability: Understanding the Role of Engineering Exciton and Charge Carrier Dynamics from Recent Progress. SMALL METHODS 2024; 8:e2300397. [PMID: 37204077 DOI: 10.1002/smtd.202300397] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 04/25/2023] [Indexed: 05/20/2023]
Abstract
Benefiting from the synergistic development of material design, device engineering, and the mechanistic understanding of device physics, the certified power conversion efficiencies (PCEs) of single-junction non-fullerene organic solar cells (OSCs) have already reached a very high value of exceeding 19%. However, in addition to PCEs, the poor stability is now a challenging obstacle for commercial applications of organic photovoltaics (OPVs). Herein, recent progress made in exploring operational mechanisms, anomalous photoelectric behaviors, and improving long-term stability in non-fullerene OSCs are highlighted from a novel and previously largely undiscussed perspective of engineering exciton and charge carrier pathways. Considering the intrinsic connection among multiple temporal-scale photocarrier dynamics, multi-length scale morphologies, and photovoltaic performance in OPVs, this review delineates and establishes a comprehensive and in-depth property-function relationship for evaluating the actual device stability. Moreover, this review has also provided some valuable photophysical insights into employing the advanced characterization techniques such as transient absorption spectroscopy and time-resolved fluorescence imagings. Finally, some of the remaining major challenges related to this topic are proposed toward the further advances of enhancing long-term operational stability in non-fullerene OSCs.
Collapse
Affiliation(s)
- Kang-Ning Zhang
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Xiao-Yan Du
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Lei Yan
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Yong-Jin Pu
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Keisuke Tajima
- RIKEN Center for Emergent Matter Science (CEMS), 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Xingzhu Wang
- Academy for Advanced Interdisciplinary Studies and Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
- School of Electrical Engineering, University of South China, Hengyang, 421001, P. R. China
| | - Xiao-Tao Hao
- School of Physics, State Key Laboratory of Crystal Materials, Shandong University, Jinan, Shandong, 250100, P. R. China
- ARC Centre of Excellence in Exciton Science, School of Chemistry, The University of Melbourne, Parkville, Victoria, 3010, Australia
| |
Collapse
|