1
|
Wang D, Dong W, Wang P, Hu Q, Li D, Lv L, Yang Y, Jia L, Na R, Zheng S, Miao J, Sun H, Xiong Y, Zhou J. A Single-Crystal Antimony Trioxide Dielectric for 2D Field-Effect Transistors. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2402689. [PMID: 39502011 DOI: 10.1002/smll.202402689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 10/23/2024] [Indexed: 01/11/2025]
Abstract
The remarkable potential of two-dimensional (2D) materials in sustaining Moore's law has sparked a research frenzy. Extensive efforts have been made in the research of utilizing 2D semiconductors as channel materials in field-effect transistors. However, the next generation of integrated devices requires the integration of gate dielectrics with wider bandgaps and higher dielectric constants. Here, insulating α-Sb2O3 single-crystal nanosheets are synthesized by one-step chemical vapor deposition method. Importantly, the α-Sb2O3 single-crystal dielectric exhibits a high dielectric constant of 11.8 and a wide bandgap of 3.78 eV. Besides, the atomically smooth interface between α-Sb2O3 and MoS2 enables the fabrication of dual-gated field-effect transistors with the top gate dielectric of α-Sb2O3 nanosheets. The field-effect transistors exhibit a switching ratio of exceeding 108, which achieves the manipulation of field-effect transistors by using 2D dielectric materials. These results hold significant implications for optimizing the performances of 2D devices and innovating microelectronics.
Collapse
Affiliation(s)
- Dainan Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Weikang Dong
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Ping Wang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Qingmei Hu
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Dian Li
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Lu Lv
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Yang Yang
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Lin Jia
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Rui Na
- Advanced Research Institute of Multidisciplinary Sciences, Beijing Institute of Technology, Beijing, 100081, China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314000, China
| | - Shoujun Zheng
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| | - Jinshui Miao
- State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, Shanghai, 200083, China
| | - Hui Sun
- School of Space Science and Physics, Shandong University, Weihai, Shandong, 264209, China
| | - Yan Xiong
- Analysis & Testing Center, Beijing Institute of Technology, Beijing, 100081, China
| | - Jiadong Zhou
- Centre for Quantum Physics, Key Laboratory of Advanced Optoelectronic Quantum Architecture and Measurement (MOE), School of Physics, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
2
|
Liu Y, Lin Y, Hu Y, Wang W, Chen Y, Liu Z, Wan D, Liao W. 1D/2D Heterostructures: Synthesis and Application in Photodetectors and Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1724. [PMID: 39513804 PMCID: PMC11547981 DOI: 10.3390/nano14211724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/15/2024]
Abstract
Two-dimensional (2D) semiconductor components have excellent physical attributes, such as excellent mechanical ductility, high mobility, low dielectric constant, and tunable bandgap, which have attracted much attention to the fields of flexible devices, optoelectronic conversion, and microelectronic devices. Additionally, one-dimensional (1D) semiconductor materials with unique physical attributes, such as high surface area and mechanical potency, show great potential in many applications. However, isolated 1D and 2D materials often do not meet the demand for multifunctionality. Therefore, more functionality is achieved by reconstructing new composite structures from 1D and 2D materials, and according to the current study, it has been demonstrated that hybrid dimensional integration yields a significant enhancement in performance and functionality, which is widely promising in the field of constructing novel electronic and optoelectronic nanodevices. In this review, we first briefly introduce the preparation methods of 1D materials, 2D materials, and 1D/2D heterostructures, as well as their advantages and limitations. The applications of 1D/2D heterostructures in photodetectors, gas sensors, pressure and strain sensors, as well as photoelectrical synapses and biosensors are then discussed, along with the opportunities and challenges of their current applications. Finally, the outlook of the emerging field of 1D/2D heterojunction structures is given.
Collapse
Affiliation(s)
- Yuqian Liu
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yihao Lin
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yanbo Hu
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wenzhao Wang
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Yiming Chen
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Zihui Liu
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Da Wan
- School of Information Science and Engineering, Wuhan University of Science and Technology, Wuhan 430081, China
- Engineering Research Center of Metallurgical Automation and Measurement Technology, Wuhan University of Science and Technology, Wuhan 430081, China
| | - Wugang Liao
- State Key Laboratory of Radio Frequency Heterogeneous Integration (Shenzhen University), College of Electronics and Information Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
3
|
Tamersit K. WS 2 Nanosheet-Based Ultrascaled Field-Effect Transistor for Hydrogen Gas Sensing: Addressing the Sensitivity-Downscaling Trade-Off. SENSORS (BASEL, SWITZERLAND) 2024; 24:6730. [PMID: 39460208 PMCID: PMC11511327 DOI: 10.3390/s24206730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Revised: 10/15/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024]
Abstract
In this paper, we propose an ultrascaled WS2 field-effect transistor equipped with a Pd/Pt sensitive gate for high-performance and low-power hydrogen gas sensing applications. The proposed nanosensor is simulated by self-consistently solving a quantum transport equation with electrostatics at the ballistic limit. The gas sensing principle is based on the gas-induced change in the metal gate work function. The hydrogen gas nanosensor leverages the high sensitivity of two-dimensional WS2 to its sur-rounding electrostatic environment. The computational investigation encompasses the nanosensor's behavior in terms of potential profile, charge density, current spectrum, local density of states (LDOS), transfer characteristics, and sensitivity. Additionally, the downscaling-sensitivity trade-off is analyzed by considering the impact of drain-to-source voltage and the electrostatics parameters on subthreshold performance. The simulation results indicate that the downscaling-sensitivity trade-off can be optimized through enhancements in electrostatics, such as utilizing high-k dielectrics and reducing oxide thickness, as well as applying a low drain-to-source voltage, which also contributes to improved energy efficiency. The proposed nanodevice meets the prerequisites for cutting-edge gas nanosensors, offering high sensing performance, improved scaling capability, low power consumption, and complementary metal-oxide-semiconductor compatibility, making it a compelling candidate for the next generation of ultrascaled FET-based gas nanosensors.
Collapse
Affiliation(s)
- Khalil Tamersit
- National School of Nanoscience and Nanotechnology, Abdelhafid Ihaddaden Science and Technology Hub, Sidi Abdellah, Algiers 16000, Algeria; or
- Laboratory of Inverse Problems, Modeling, Information and Systems (PIMIS), Université 8 Mai 1945 Guelma, Guelma 24000, Algeria
| |
Collapse
|
4
|
Thota C, Gangadhara C, Radhalayam D, Singiri R, Bak NH, Kondaiah P, Ningappa C, Maddaka R, Kim MD. CuO nanostructure-decorated InGaN nanorods for selective H 2S gas detection. Phys Chem Chem Phys 2024; 26:15530-15538. [PMID: 38752997 DOI: 10.1039/d3cp06318f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Establishing a heterostructure is one of the adequate strategies for enhancing device performance and has been explored in sensing, and energy applications. In this study, we constructed a heterostructure through a two-step process involving hydrothermal synthesis of CuO nanostructures and subsequent spin coating on MBE-grown InGaN NRs. We found that the CuO content on the InGaN NRs has a great impact on carrier injection at the heterojunction and thus the H2S gas sensing performance. Popcorn CuO/InGaN NR shows excellent gas sensing performance towards different concentrations of H2S at room temperature. The highest response is up to 35.54% to a H2S concentration of 100 ppm. Even more significantly, this response is further enhanced significantly (123.70%) under 365 nm UV light. In contrast, this composite structure exhibits negligibly low responses to 100 ppm of NO2, H2, CO, and NH3. The heterostructure band model associated with a surface reaction model is manifested to elucidate the sensing mechanism.
Collapse
Affiliation(s)
- Chandrakalavathi Thota
- Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - C Gangadhara
- Department of Physics, The Visveswaraya Technological University, Belgavi 590018, India
| | - Dhanalakshmi Radhalayam
- Energy Storage and Conversion Laboratory, Department of Electrical Engineering, Chungnam National University, Daejeon 34134, Republic of Korea
| | - Ramu Singiri
- Department of Electronic Engineering, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Na-Hyun Bak
- Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| | - Paruchuri Kondaiah
- Department of Mechanical Engineering, Virginia Tech, Blacksburg, Virginia - 24061, USA
| | - C Ningappa
- Department of Physics, The Visveswaraya Technological University, Belgavi 590018, India
| | - Reddeppa Maddaka
- Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109, USA.
| | - Moon-Deock Kim
- Department of Physics and Institute of Quantum Systems (IQS), Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
5
|
Liu A, Zhang X, Liu Z, Li Y, Peng X, Li X, Qin Y, Hu C, Qiu Y, Jiang H, Wang Y, Li Y, Tang J, Liu J, Guo H, Deng T, Peng S, Tian H, Ren TL. The Roadmap of 2D Materials and Devices Toward Chips. NANO-MICRO LETTERS 2024; 16:119. [PMID: 38363512 PMCID: PMC10873265 DOI: 10.1007/s40820-023-01273-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/30/2023] [Indexed: 02/17/2024]
Abstract
Due to the constraints imposed by physical effects and performance degradation, silicon-based chip technology is facing certain limitations in sustaining the advancement of Moore's law. Two-dimensional (2D) materials have emerged as highly promising candidates for the post-Moore era, offering significant potential in domains such as integrated circuits and next-generation computing. Here, in this review, the progress of 2D semiconductors in process engineering and various electronic applications are summarized. A careful introduction of material synthesis, transistor engineering focused on device configuration, dielectric engineering, contact engineering, and material integration are given first. Then 2D transistors for certain electronic applications including digital and analog circuits, heterogeneous integration chips, and sensing circuits are discussed. Moreover, several promising applications (artificial intelligence chips and quantum chips) based on specific mechanism devices are introduced. Finally, the challenges for 2D materials encountered in achieving circuit-level or system-level applications are analyzed, and potential development pathways or roadmaps are further speculated and outlooked.
Collapse
Affiliation(s)
- Anhan Liu
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Xiaowei Zhang
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Ziyu Liu
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yuning Li
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China
| | - Xueyang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xin Li
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Yue Qin
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Chen Hu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yanqing Qiu
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China
- School of Integrated Circuits, University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Han Jiang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yang Wang
- School of Microelectronics, Fudan University, Shanghai, 200433, People's Republic of China
| | - Yifan Li
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China
| | - Jun Tang
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Jun Liu
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China
| | - Hao Guo
- State Key Laboratory of Dynamic Measurement Technology, Shanxi Province Key Laboratory of Quantum Sensing and Precision Measurement, North University of China, Taiyuan, 030051, People's Republic of China.
| | - Tao Deng
- School of Electronic and Information Engineering, Beijing Jiaotong University, Beijing, 100044, People's Republic of China.
| | - Songang Peng
- High-Frequency High-Voltage Device and Integrated Circuits R&D Center, Institute of Microelectronics, Chinese Academy of Sciences, Beijing, 100029, People's Republic of China.
- IMECAS-HKUST-Joint Laboratory of Microelectronics, Beijing, 100029, People's Republic of China.
| | - He Tian
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| | - Tian-Ling Ren
- School of Integrated Circuits and Beijing National Research Center for Information Science and Technology (BNRist), Tsinghua University, Beijing, 100049, People's Republic of China.
| |
Collapse
|
6
|
Amodu IO, Olaojotule FA, Ogbogu MN, Olaiya OA, Benjamin I, Adeyinka AS, Louis H. Adsorption and sensor performance of transition metal-decorated zirconium-doped silicon carbide nanotubes for NO 2 gas application: a computational insight. RSC Adv 2024; 14:5351-5369. [PMID: 38348297 PMCID: PMC10859909 DOI: 10.1039/d3ra08796d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 01/24/2024] [Indexed: 02/15/2024] Open
Abstract
Owing to the fact that the detection limit of already existing sensor-devices is below 100% efficiency, the use of 3D nanomaterials as detectors and sensors for various pollutants has attracted interest from researchers in this field. Therefore, the sensing potentials of bare and the impact of Cu-group transition metal (Cu, Ag, Au)-functionalized silicon carbide nanotube (SiCNT) nanostructured surfaces were examined towards the efficient detection of NO2 gas in the atmosphere. All computational calculations were carried out using the density functional theory (DFT) electronic structure method at the B3LYP-D3(BJ)/def2svp level of theory. The mechanistic results showed that the Cu-functionalized silicon carbide nanotube surface possesses the greatest adsorption energies of -3.780 and -2.925 eV, corresponding to the adsorption at the o-site and n-site, respectively. Furthermore, the lowest energy gap of 2.095 eV for the Cu-functionalized surface indicates that adsorption at the o-site is the most stable. The stability of both adsorption sites on the Cu-functionalized surface was attributed to the small ellipticity (ε) values obtained. Sensor mechanisms confirmed that among the surfaces, the Cu-functionalized surface exhibited the best sensing properties, including sensitivity, conductivity, and enhanced adsorption capacity. Hence, the Cu-functionalized SiCNT can be considered a promising choice as a gas sensor material.
Collapse
Affiliation(s)
- Ismail O Amodu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Mathematics, University of Calabar Calabar Nigeria
| | - Faith A Olaojotule
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | - Miracle N Ogbogu
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
| | | | - Innocent Benjamin
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University Chennai India
| | - Adedapo S Adeyinka
- Department of Chemical Sciences, University of Johannesburg Pretoria South Africa
| | - Hitler Louis
- Computational and Bio-Simulation Research Group, University of Calabar Calabar Nigeria
- School of Chemistry, University of Leeds Leeds LS2 9JT UK
| |
Collapse
|
7
|
Xiao Y, Zou G, Huo J, Sun T, Peng J, Li Z, Shen D, Liu L. Local modulation of Au/MoS 2 Schottky barriers using a top ZnO nanowire gate for high-performance photodetection. NANOSCALE HORIZONS 2024; 9:285-294. [PMID: 38063807 DOI: 10.1039/d3nh00448a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Schottky junctions are commonly used for fabricating heterojunction-based 2D transition metal dichalcogenide (TMD) photodetectors, characteristically offering a wide detection range, high sensitivity and fast response. However, these devices often suffer from reduced detectivity due to the high dark current, making it challenging to discover a simple and efficient universal way to improve the photoelectric performances. Here, we demonstrate a novel approach for integrating ZnO nanowire gates into a MoS2-Au Schottky junction to improve the photoelectric performances of photodetectors by locally controlling the Schottky barrier. This strategy remarkably reduces the dark current level of the device without affecting its photocurrent and the Schottky detectivity can be modified to a maximum detectivity of 1.4 × 1013 Jones with -20 V NG bias. This work provides potential possibilities for tuning the band structure of other materials and optimizing the performance of heterojunction photodetectors.
Collapse
Affiliation(s)
- Yu Xiao
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Guisheng Zou
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Jinpeng Huo
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Tianming Sun
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
- College of Materials Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, Shanxi Province, China
| | - Jin Peng
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Zehua Li
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| | - Daozhi Shen
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Lei Liu
- Department of Mechanical Engineering, State Key Laboratory of Tribology, Key Laboratory for Advanced Manufacturing by Materials Processing Technology, Ministry of Education of PR China, Tsinghua University, Beijing 100084, P. R. China.
| |
Collapse
|
8
|
Suman PH, Junker B, Weimar U, Orlandi MO, Barsan N. Modeling the Conduction Mechanism in Chemoresistive Gas Sensor Based on Single-Crystalline Sn 3O 4 Nanobelts: A Phenomenological In Operando Investigation. ACS Sens 2024; 9:149-156. [PMID: 38178551 DOI: 10.1021/acssensors.3c01810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
Investigating the sensing mechanisms in semiconducting metal oxide (SMOx) gas sensors is essential for optimizing their performance across a wide range of potential applications. Despite significant progress in the field, there are still many gaps in comprehending the phenomenological processes occurring in one-dimensional (1D) nanostructures. This article presents the first insights into the conduction mechanism of chemoresistive gas sensors based on single-crystalline Sn3O4 nanobelts using the operando Kelvin Probe technique. From this approach, direct current (DC) electrical resistance and work function changes were simultaneously measured in different working conditions, and a correlation between the conductance and the surface band bending was established. Appropriate modeling was proposed, and the results revealed that the conduction mechanism in the single-crystalline one-dimensional nanostructures closely aligns with the behavior observed in single-crystalline epitaxial layers rather than in polycrystalline grains. Based on this assumption, relevant parameters were further estimated, including Debye length, concentration of free charge carriers, effective density of states in the conduction band, and position of the Fermi level. Overall, this study provides an effective contribution to understanding the role of surface chemistry in the transduction of the electrical signal generated from gas adsorption in single-crystalline one-dimensional nanostructures.
Collapse
Affiliation(s)
- Pedro H Suman
- Institute of Physical and Theoretical Chemistry, University of Tübingen, D-72076 Tübingen, Germany
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, Brazil
| | - Benjamin Junker
- Institute of Physical and Theoretical Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Udo Weimar
- Institute of Physical and Theoretical Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| | - Marcelo O Orlandi
- Department of Engineering, Physics and Mathematics, Institute of Chemistry, São Paulo State University (UNESP), 14800-060 Araraquara, Brazil
| | - Nicolae Barsan
- Institute of Physical and Theoretical Chemistry, University of Tübingen, D-72076 Tübingen, Germany
| |
Collapse
|
9
|
Baharfar M, Lin J, Kilani M, Zhao L, Zhang Q, Mao G. Gas nanosensors for health and safety applications in mining. NANOSCALE ADVANCES 2023; 5:5997-6016. [PMID: 37941945 PMCID: PMC10629029 DOI: 10.1039/d3na00507k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 10/06/2023] [Indexed: 11/10/2023]
Abstract
The ever-increasing demand for accurate, miniaturized, and cost-effective gas sensing systems has eclipsed basic research across many disciplines. Along with the rapid progress in nanotechnology, the latest development in gas sensing technology is dominated by the incorporation of nanomaterials with different properties and structures. Such nanomaterials provide a variety of sensing interfaces operating on different principles ranging from chemiresistive and electrochemical to optical modules. Compared to thick film and bulk structures currently used for gas sensing, nanomaterials are advantageous in terms of surface-to-volume ratio, response time, and power consumption. However, designing nanostructured gas sensors for the marketplace requires understanding of key mechanisms in detecting certain gaseous analytes. Herein, we provide an overview of different sensing modules and nanomaterials under development for sensing critical gases in the mining industry, specifically for health and safety monitoring of mining workers. The interactions between target gas molecules and the sensing interface and strategies to tailor the gas sensing interfacial properties are highlighted throughout the review. Finally, challenges of existing nanomaterial-based sensing systems, directions for future studies, and conclusions are discussed.
Collapse
Affiliation(s)
- Mahroo Baharfar
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Jiancheng Lin
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Mohamed Kilani
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| | - Liang Zhao
- Azure Mining Technology Pty Ltd Sydney New South Wales 2067 Australia
| | - Qing Zhang
- CCTEG Changzhou Research Institute Changzhou 213015 China
| | - Guangzhao Mao
- School of Chemical Engineering, University of New South Wales (UNSW Sydney) Sydney New South Wales 2052 Australia
| |
Collapse
|
10
|
Mehrez JAA, Chen X, Zeng M, Yang J, Hu N, Wang T, Liu R, Xu L, González-Alfaro Y, Yang Z. MoTe 2/InN van der Waals heterostructures for gas sensors: a DFT study. Phys Chem Chem Phys 2023; 25:28677-28690. [PMID: 37849357 DOI: 10.1039/d3cp02906a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Vertical van der Waals (vdW) heterostructures have shown potential for gas sensing owing to their remarkable sensitivity. However, the optimization process for achieving the best gas sensing performance is complicated by the heterostructure's reliance on both physical and electrical characteristics. This study employs density functional theory (DFT) to analyse the structural and electronic parameters of a MoTe2/InN vdW heterostructure. The findings of this study indicate that the vdW heterostructure has a type-II band alignment with higher adsorption energy towards NH3, NO2, and SO2 than the individual monolayers. In specific, the heterostructure is well suited for NO2 detection but has limitations in reliably detecting NH3 and SO2 due to longer recovery times. We find significant hybridization between the adsorbate and interacting surfaces' orbitals and a notable presence of NO2 molecular orbitals in proximity to the Fermi level. Additionally, dielectric and work function modulations offer a viable means to develop optical-based gas sensors that can selectively detect NO2. Our research provides valuable insights into vdW heterostructure design for high-performance gas sensors.
Collapse
Affiliation(s)
- Jaafar Abdul-Aziz Mehrez
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Xiyu Chen
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Min Zeng
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Jianhua Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Nantao Hu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Tao Wang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Ruili Liu
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| | - Lin Xu
- Department of Ophthalmology, Shanghai General Hospital (Shanghai First People's Hospital), Shanghai Jiao Tong University School of Medicine, National Clinical Research Centre for Eye Diseases, Shanghai Key Laboratory of Ocular Fundus Diseases, Shanghai Engineering Centre for Visual Science and Photomedicine, Shanghai 200080, People's Republic of China
| | | | - Zhi Yang
- Key Laboratory of Thin Film and Microfabrication (Ministry of Education), Department of Micro/Nano Electronics, School of Electronics Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China.
| |
Collapse
|
11
|
Aftab S, Hussain S, Al-Kahtani AA. Latest Innovations in 2D Flexible Nanoelectronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2301280. [PMID: 37104492 DOI: 10.1002/adma.202301280] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/30/2023] [Indexed: 06/19/2023]
Abstract
2D materials with dangling-bond-free surfaces and atomically thin layers have been shown to be capable of being incorporated into flexible electronic devices. The electronic and optical properties of 2D materials can be tuned or controlled in other ways by using the intriguing strain engineering method. The latest and encouraging techniques in regard to creating flexible 2D nanoelectronics are condensed in this review. These techniques have the potential to be used in a wider range of applications in the near and long term. It is possible to use ultrathin 2D materials (graphene, BP, WTe2 , VSe2 etc.) and 2D transition metal dichalcogenides (2D TMDs) in order to enable the electrical behavior of the devices to be studied. A category of materials is produced on smaller scales by exfoliating bulk materials, whereas chemical vapor deposition (CVD) and epitaxial growth are employed on larger scales. This overview highlights two distinct requirements, which include from a single semiconductor or with van der Waals heterostructures of various nanomaterials. They include where strain must be avoided and where it is required, such as solutions to produce strain-insensitive devices, and such as pressure-sensitive outcomes, respectively. Finally, points-of-view about the current difficulties and possibilities in regard to using 2D materials in flexible electronics are provided.
Collapse
Affiliation(s)
- Sikandar Aftab
- Department of Intelligent Mechatronics Engineering, Sejong University, Seoul, 05006, South Korea
| | - Sajjad Hussain
- Department of Nanotechnology and Advanced Materials Engineering, Sejong University, Seoul, 05006, South Korea
| | - Abdullah A Al-Kahtani
- Chemistry Department, Collage of Science, King Saud University, P. O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
12
|
Karamov DD, Galiev AF, Lachinov AA, Davlyatgareev KI, Salazkin SN, Yakhin AR, Lachinov AN. Non-Conjugated Poly(Diphenylene Phthalide)-New Electroactive Material. Polymers (Basel) 2023; 15:3366. [PMID: 37631421 PMCID: PMC10459138 DOI: 10.3390/polym15163366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/07/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
In organic electronics, conjugated conductive polymers are most widely used. The scope of their application is currently very wide. Non-conjugated polymers are used much less in electronics and are usually used as insulation materials or materials for capacitors. However, the potential of non-conjugated polymers is much wider, due to the fact that new electronic materials with unique electronic properties can be created on the basis of non-conjugated polymers, as well as other inorganic dielectrics. This article demonstrates the possibilities of creating electrically conductive materials with unique electronic parameters based on non-conjugated polymers. The results of the study of the sensory properties of humidity are given as examples of the practical application of the structure. The abnormal electronic properties are realized along the interface of two polymer dielectrics with functional polar groups. The submicron films of polydiphenylenephthalide were used as a dielectric. It is shown that a quasi-two-dimensional electronic structure with abnormally large values of conductivity and mobility of charge carriers occurs along the interface. These structures are often called quasi-two-dimensional electron gas (Q2DEG). This article describes the manufacturing processes of multielectrode devices. Polymer films are deposited via the spin-coating method with polymer solutions in cyclohexanone. The metal electrodes were manufactured through thermal deposition in a vacuum. Three types of metal electrodes made of aluminum, copper and chromium were used. The influence of the electron work function of contacting metals on the electronic parameters of the structure was studied. It was established that the work function decrease leads to an increase in the conductivity and mobility of charge carriers. The charge carrier parameters were estimated based on the analysis of the current-voltage characteristics within the space-charge-limited current technique. The Richardson-Schottky thermionic emission model was used to evaluate values a potential barrier at metal/organic interfaces. It was established that the change in ambient humidity strongly affects the electronic transport properties along the polymer/polymer interface. It is demonstrated that the increase in conductivity with an increase in humidity occurs due to an increase in the mobility of charge carriers and a decrease in the height of the potential barrier at the three-dimensional metal contact with two-dimensional polymer interface. The potential barrier between the electrode and the bulk of the polymer film is significantly higher than between the electrode and the quasi-two-dimensional polymer structure.
Collapse
Affiliation(s)
- Danfis D. Karamov
- Institute of Molecule and Crystal Physics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075 Ufa, Russia; (A.F.G.); (A.N.L.)
| | - Azat F. Galiev
- Institute of Molecule and Crystal Physics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075 Ufa, Russia; (A.F.G.); (A.N.L.)
| | - Alexey A. Lachinov
- Institute of Molecule and Crystal Physics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075 Ufa, Russia; (A.F.G.); (A.N.L.)
| | - Khalim I. Davlyatgareev
- Institute of Physics, Mathematics, Digital and Nanotechnologies, Akmulla Bashkir State Pedagogical University, 450000 Ufa, Russia
| | - Sergey N. Salazkin
- Nesmeyanov Institute of Organoelement Compounds of the Russian Academy of Sciences, 119334 Moscow, Russia;
- Skobeltsyn Institute of Nuclear Physics, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Artur R. Yakhin
- Institute of Physics, Mathematics, Digital and Nanotechnologies, Akmulla Bashkir State Pedagogical University, 450000 Ufa, Russia
| | - Alexey N. Lachinov
- Institute of Molecule and Crystal Physics—Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 450075 Ufa, Russia; (A.F.G.); (A.N.L.)
- Institute of Physics, Mathematics, Digital and Nanotechnologies, Akmulla Bashkir State Pedagogical University, 450000 Ufa, Russia
| |
Collapse
|
13
|
Dutta T, Noushin T, Tabassum S, Mishra SK. Road Map of Semiconductor Metal-Oxide-Based Sensors: A Review. SENSORS (BASEL, SWITZERLAND) 2023; 23:6849. [PMID: 37571634 PMCID: PMC10422562 DOI: 10.3390/s23156849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/22/2023] [Accepted: 07/19/2023] [Indexed: 08/13/2023]
Abstract
Identifying disease biomarkers and detecting hazardous, explosive, flammable, and polluting gases and chemicals with extremely sensitive and selective sensor devices remains a challenging and time-consuming research challenge. Due to their exceptional characteristics, semiconducting metal oxides (SMOxs) have received a lot of attention in terms of the development of various types of sensors in recent years. The key performance indicators of SMOx-based sensors are their sensitivity, selectivity, recovery time, and steady response over time. SMOx-based sensors are discussed in this review based on their different properties. Surface properties of the functional material, such as its (nano)structure, morphology, and crystallinity, greatly influence sensor performance. A few examples of the complicated and poorly understood processes involved in SMOx sensing systems are adsorption and chemisorption, charge transfers, and oxygen migration. The future prospects of SMOx-based gas sensors, chemical sensors, and biological sensors are also discussed.
Collapse
Affiliation(s)
- Taposhree Dutta
- Department of Chemistry, IIEST Shibpur, Howrah 711103, West Bengal, India;
| | - Tanzila Noushin
- Department of Electrical and Computer Engineering, The University of Texas at Dallas, Richardson, TX 75080, USA;
| | - Shawana Tabassum
- Department of Electrical Engineering, The University of Texas at Tyler, Tyler, TX 75799, USA;
| | - Satyendra K. Mishra
- Danish Offshore Technology Center, Technical University of Denmark, 2800 Lyngby, Denmark
- SRCOM, Centre Technologic de Telecomunicacions de Catalunya, 08860 Castelldefels, Barcelona, Spain
| |
Collapse
|
14
|
Li Z, Xiao M, Jin C, Zhang Z. Toward the Commercialization of Carbon Nanotube Field Effect Transistor Biosensors. BIOSENSORS 2023; 13:326. [PMID: 36979538 PMCID: PMC10046102 DOI: 10.3390/bios13030326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 02/21/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
The development of biosensors based on field-effect transistors (FETs) using atomically thick carbon nanotubes (CNTs) as a channel material has the potential to revolutionize the related field due to their small size, high sensitivity, label-free detection, and real-time monitoring capabilities. Despite extensive research efforts to improve the sensitivity, selectivity, and practicality of CNT FET-based biosensors, their commercialization has not yet been achieved due to the non-uniform and unstable device performance, difficulties in their fabrication, the immaturity of sensor packaging processes, and a lack of reliable modification methods. This review article focuses on the practical applications of CNT-based FET biosensors for the detection of ultra-low concentrations of biologically relevant molecules. We discuss the various factors that affect the sensors' performance in terms of materials, device architecture, and sensor packaging, highlighting the need for a robust commercial process that prioritizes product performance. Additionally, we review recent advances in the application of CNT FET biosensors for the ultra-sensitive detection of various biomarkers. Finally, we examine the key obstacles that currently hinder the large-scale deployment of these biosensors, aiming to identify the challenges that must be addressed for the future industrialization of CNT FET sensors.
Collapse
Affiliation(s)
- Zhongyu Li
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| | - Mengmeng Xiao
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
| | - Chuanhong Jin
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Jihua Laboratory, Foshan 528200, China
- State Key Laboratory of Silicon Materials, School of Materials Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Zhiyong Zhang
- Hunan Institute of Advanced Sensing and Information Technology, Xiangtan University, Xiangtan 411105, China
- Key Laboratory for the Physics and Chemistry of Nanodevices and Center for Carbon-Based Electronics, School of Electronics, Peking University, Beijing 100871, China
- Jihua Laboratory, Foshan 528200, China
| |
Collapse
|