1
|
Swislocki ALM, Eisenberg ML. A Review on Testosterone: Estradiol Ratio-Does It Matter, How Do You Measure It, and Can You Optimize It? World J Mens Health 2024; 42:42.e75. [PMID: 39344113 DOI: 10.5534/wjmh.240029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/15/2024] [Accepted: 06/12/2024] [Indexed: 10/01/2024] Open
Abstract
There is a natural balance between the major sex steroids, testosterone and estradiol, controlled by gonadal secretion and peripheral conversion by aromatase. This balance is impacted by a variety of inborn and acquired conditions, and, more recently, by a growing use of exogenous testosterone therapy and off-label aromatase use under the guise of "men's health." We summarize reported testosterone:estradiol ratios, both naturally occurring and with pharmacologic manipulation and consider the ramifications of significant changes in these ratios. However, significant limitations exist in terms of steroid separation and measurement techniques, timing of samples, and lack of consistency from one assay to another, as well as definition of normative data. Limited data on the testosterone:estradiol ratio in men exists, particularly due to the scan data on concurrent estradiol values in men receiving testosterone therapy or aromatase inhibitors. Nonetheless, there seems to be a range of apparently beneficial values of the testosterone: estradiol radio at between 10 and 30, calculated as: testosterone in ng/dL/estradiol in pg/mL. Higher values appear to be associated with improved spermatogenesis and reduced bone density while lower values are associated with thyroid dysfunction. While there is growing awareness of the significance of the testosterone:estradiol ratio, and a sense of a desired range, the optimal value has not yet been determined. Further work is needed to clarify the measurement strategies and clearly-defined outcome measures related to the testosterone:estradiol ratio.
Collapse
Affiliation(s)
- Arthur L M Swislocki
- Medical Service, VA Northern California Health Care System, Martinez, CA, USA
- Department of Medicine, UC Davis School of Medicine, Sacramento, CA, USA.
| | - Michael L Eisenberg
- Urology Department, Stanford University School of Medicine, Stanford, CA, USA
| |
Collapse
|
2
|
Qiu Y, Lv Y, Zhang M, Ji S, Wu B, Zhao F, Qu Y, Sun Q, Guo Y, Zhu Y, Lin X, Zheng X, Li Z, Fu H, Li Y, Song H, Wei Y, Ding L, Chen G, Zhu Y, Cao Z, Shi X. Cadmium exposure is associated with testosterone levels in men: A cross-sectional study from the China National Human Biomonitoring. CHEMOSPHERE 2022; 307:135786. [PMID: 35872064 DOI: 10.1016/j.chemosphere.2022.135786] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/21/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Sex hormone disorders can cause adverse health consequences. While experimental data suggests that cadmium (Cd) disrupts the endocrine system, little is known about the link between Cd exposure and sex hormones in men. METHODS We measured blood cadmium (B-Cd), urine cadmium (U-Cd), serum testosterone and serum estradiol in men aged ≥18 years old participating in the China National Human Biomonitoring program, from 2017 to 2018. Urine cadmium adjusted for creatinine (Ucr-Cd) and the serum testosterone to serum estradiol ratio (T/E2) were calculated. The association of Cd exposure to serum testosterone and T/E2 in men was analyzed with multiple linear regression models. RESULTS Among Chinese men ≥18 years old, the weighted geometric mean (95% CI) of B-Cd and Ucr-Cd levels were 1.23 (1.12-1.35) μg/L and 0.53 (0.47-0.59) μg/g, respectively. The geometric means (95% CI) of serum testosterone and T/E2 were 18.56 (17.92-19.22) nmol/L and 143.86 (137.24-150.80). After adjusting for all covariates, each doubling of B-Cd level was associated with a 5.04% increase in serum testosterone levels (β = 0.071; 95%CI: 0.057-0.086) and a 4.03% increase in T/E2 (β = 0.057; 95%CI: 0.040-0.075); similar findings were found in Ucr-Cd. CONCLUSIONS In Chinese men, Cd may be an endocrine disruptor, which is positively associated with serum testosterone and T/E2.
Collapse
Affiliation(s)
- Yidan Qiu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yuebin Lv
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Miao Zhang
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Saisai Ji
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Bing Wu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Feng Zhao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yingli Qu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Qi Sun
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yanbo Guo
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Yuanduo Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiao Lin
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xulin Zheng
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zheng Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Hui Fu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yawei Li
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Haocan Song
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Yuan Wei
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, Jilin, China
| | - Liang Ding
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Guangdi Chen
- Institute of Environmental Health, School of Public Health, and Bioelectromagnetics Laboratory, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Ying Zhu
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhaojin Cao
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoming Shi
- China CDC Key Laboratory of Environment and Population Health, National Institute of Environmental Health, Chinese Center for Disease Control and Prevention, Beijing, China; Department of Big Data in Health Science, School of Public Health, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
3
|
Huang W. The roles of aromatase inhibitors in treating hypogonadism and male infertility. UROLOGICAL SCIENCE 2022. [DOI: 10.4103/uros.uros_28_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
4
|
Dinicola S, Unfer V, Facchinetti F, Soulage CO, Greene ND, Bizzarri M, Laganà AS, Chan SY, Bevilacqua A, Pkhaladze L, Benvenga S, Stringaro A, Barbaro D, Appetecchia M, Aragona C, Bezerra Espinola MS, Cantelmi T, Cavalli P, Chiu TT, Copp AJ, D’Anna R, Dewailly D, Di Lorenzo C, Diamanti-Kandarakis E, Hernández Marín I, Hod M, Kamenov Z, Kandaraki E, Monastra G, Montanino Oliva M, Nestler JE, Nordio M, Ozay AC, Papalou O, Porcaro G, Prapas N, Roseff S, Vazquez-Levin M, Vucenik I, Wdowiak A. Inositols: From Established Knowledge to Novel Approaches. Int J Mol Sci 2021; 22:10575. [PMID: 34638926 PMCID: PMC8508595 DOI: 10.3390/ijms221910575] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/24/2022] Open
Abstract
Myo-inositol (myo-Ins) and D-chiro-inositol (D-chiro-Ins) are natural compounds involved in many biological pathways. Since the discovery of their involvement in endocrine signal transduction, myo-Ins and D-chiro-Ins supplementation has contributed to clinical approaches in ameliorating many gynecological and endocrinological diseases. Currently both myo-Ins and D-chiro-Ins are well-tolerated, effective alternative candidates to the classical insulin sensitizers, and are useful treatments in preventing and treating metabolic and reproductive disorders such as polycystic ovary syndrome (PCOS), gestational diabetes mellitus (GDM), and male fertility disturbances, like sperm abnormalities. Moreover, besides metabolic activity, myo-Ins and D-chiro-Ins deeply influence steroidogenesis, regulating the pools of androgens and estrogens, likely in opposite ways. Given the complexity of inositol-related mechanisms of action, many of their beneficial effects are still under scrutiny. Therefore, continuing research aims to discover new emerging roles and mechanisms that can allow clinicians to tailor inositol therapy and to use it in other medical areas, hitherto unexplored. The present paper outlines the established evidence on inositols and updates on recent research, namely concerning D-chiro-Ins involvement into steroidogenesis. In particular, D-chiro-Ins mediates insulin-induced testosterone biosynthesis from ovarian thecal cells and directly affects synthesis of estrogens by modulating the expression of the aromatase enzyme. Ovaries, as well as other organs and tissues, are characterized by a specific ratio of myo-Ins to D-chiro-Ins, which ensures their healthy state and proper functionality. Altered inositol ratios may account for pathological conditions, causing an imbalance in sex hormones. Such situations usually occur in association with medical conditions, such as PCOS, or as a consequence of some pharmacological treatments. Based on the physiological role of inositols and the pathological implications of altered myo-Ins to D-chiro-Ins ratios, inositol therapy may be designed with two different aims: (1) restoring the inositol physiological ratio; (2) altering the ratio in a controlled way to achieve specific effects.
Collapse
Affiliation(s)
- Simona Dinicola
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Vittorio Unfer
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | - Fabio Facchinetti
- Obstetrics and Gynecology Unit, Mother-Infant and Adult Department of Medical and Surgical Sciences, University of Modena and Reggio Emilia, 41121 Modena, Italy
| | - Christophe O. Soulage
- CarMeN Lab, INSA-Lyon, INSERM U1060, INRA, University Claude Bernard Lyon 1, 69100 Villeurbanne, France;
| | - Nicholas D. Greene
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Mariano Bizzarri
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
- Department of Experimental Medicine, University La Sapienza, 00161 Rome, Italy
| | - Antonio Simone Laganà
- Department of Obstetrics and Gynecology, Hospital “Filippo Del Ponte”, University of Insubria, 21100 Varese, Italy;
| | - Shiao-Yng Chan
- Department of Obstetrics and Gynecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119228, Singapore;
| | - Arturo Bevilacqua
- Department of Dynamic, Clinical Psychology and Health Studies, Sapienza University, 00161 Rome, Italy;
| | - Lali Pkhaladze
- Zhordania and Khomasuridze Institute of Reproductology, Tbilisi 0112, Georgia;
| | - Salvatore Benvenga
- Department of Clinical and Experimental Medicine, University of Messina, 98122 Messina, Italy;
| | - Annarita Stringaro
- National Center for Drug Research and Evaluation, Italian National Institute of Health, 00161 Rome, Italy;
| | - Daniele Barbaro
- U.O. Endocrinology in Livorno Hospital, USL Nordovest Toscana, 57100 Livorno, Italy;
| | - Marialuisa Appetecchia
- Oncological Endocrinology Unit, Regina Elena National Cancer Institute, IRCCS, 00161 Rome, Italy;
| | - Cesare Aragona
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - Tonino Cantelmi
- Institute for Interpersonal Cognitive Therapy, 00100 Rome, Italy;
| | - Pietro Cavalli
- Humanitas Research Hospital, Rozzano, 20089 Milan, Italy;
| | | | - Andrew J. Copp
- Newlife Birth Defects Research Centre and Developmental Biology and Cancer Programme, Institute of Child Health, University College London, London WC1E 6BT, UK; (N.D.G.); (A.J.C.)
| | - Rosario D’Anna
- Department of Human Pathology, University of Messina, 98122 Messina, Italy;
| | - Didier Dewailly
- Faculty of Medicine, University of Lille, 59000 Lille, France;
| | - Cherubino Di Lorenzo
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome Polo Pontino, 04100 Latina, Italy;
| | - Evanthia Diamanti-Kandarakis
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Imelda Hernández Marín
- Human Reproduction Department, Hospital Juárez de México, Universidad Nacional Autónoma de México (UNAM), Mexico City 07760, Mexico;
| | - Moshe Hod
- Department of Obstetrics and Gynecology Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv 6997801, Israel;
| | - Zdravko Kamenov
- Department of Internal Medicine, Medical University of Sofia, 1431 Sofia, Bulgaria;
| | - Eleni Kandaraki
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | - Giovanni Monastra
- Systems Biology Group Lab, 00161 Rome, Italy; (S.D.); (V.U.); (M.B.); (C.A.); (M.S.B.E.); (G.M.)
| | | | - John E. Nestler
- Division of Endocrinology, Diabetes and Metabolism, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA 23284, USA;
| | | | - Ali C. Ozay
- Department of Obstetrics and Gynecology, Near East University Hospital, Nicosia 99138, Cyprus;
| | - Olga Papalou
- Department of Endocrinology and Diabetes, HYGEIA Hospital, Marousi, 15123 Athens, Greece; (E.D.-K.); (E.K.); (O.P.)
| | | | - Nikos Prapas
- IAKENTRO, Infertility Treatment Center, 54250 Thessaloniki, Greece;
| | - Scott Roseff
- Reproductive Endocrinology and Infertility, South Florida Institute for Reproductive Medicine (IVFMD), Boca Raton, FL 33458, USA;
| | - Monica Vazquez-Levin
- Instituto de Biología y Medicina Experimental (IBYME, CONICET-FIBYME), Consejo Nacional de Investigaciones Científicas y Técnicas de Argentina (CONICET), Buenos Aires 2490, Argentina;
| | - Ivana Vucenik
- Department of Medical & Research Technology and Pathology, School of Medicine, University of Maryland, Baltimore, MD 21201, USA;
| | - Artur Wdowiak
- Diagnostic Techniques Unit, Medical University of Lublin, 20-081 Lublin, Poland;
| |
Collapse
|
5
|
Court L, Balthazart J, Ball GF, Cornil CA. Effect of chronic intracerebroventricular administration of an aromatase inhibitor on the expression of socio-sexual behaviors in male Japanese quail. Behav Brain Res 2021; 410:113315. [PMID: 33901434 DOI: 10.1016/j.bbr.2021.113315] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 11/17/2022]
Abstract
Aromatase converts androgens into estrogens in the brain of vertebrates including humans. This enzyme is also expressed in other tissues where its action may result in negative effects on human health (e.g., promotion of tumor growth). To prevent these effects, aromatase inhibitors were developed and are currently used to block human estrogen-dependent tumors. In vertebrates including quail, aromatase is expressed in a highly conserved set of interconnected brain nuclei known as the social behavior network. This network is directly implicated in the expression of a large range of social behaviors. The primary goal of this study was to characterize in Japanese quail the potential impact of brain aromatase on sexual behavior, aggressiveness and social motivation (i.e., tendency to approach and stay close to conspecifics). An additional goal was to test the feasibility and effectiveness of long-term delivery of an aromatase inhibitor directly into the third ventricle via Alzet™ osmotic minipumps using male sexual behavior as the aromatase dependent measure. We demonstrate that this mode of administration results in the strongest inhibition of both copulatory behavior and sexual motivation ever observed in this species, while other social behaviors were variably affected. Sexual motivation and the tendency to approach a group of conspecifics including females clearly seem to depend on brain aromatase, but the effects of central estrogen production on aggressive behavior and on the motivation to approach males remain less clear.
Collapse
Affiliation(s)
- Lucas Court
- GIGA Neurosciences, University of Liège, B-4000, Liège, Belgium
| | | | - Gregory F Ball
- Department of Psychology, University of Maryland, College Park, MD, USA
| | | |
Collapse
|
6
|
Laganà AS, Garzon S, Unfer V. New clinical targets of d-chiro-inositol: rationale and potential applications. Expert Opin Drug Metab Toxicol 2020; 16:703-710. [PMID: 32552009 DOI: 10.1080/17425255.2020.1785429] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Inositols have a key role in ovarian physiology and the literature reports a wealth of studies about the major isomer, myo-inositol (MI). However, information about d-chiro-inositol (DCI) is still scarce, despite the ratio MI:DCI is tissue-specific and actively maintained by an insulin-dependent epimerase enzyme. AREAS COVERED This expert opinion provides an overview of the physiological contribution of DCI in regulating steroidogenesis. DCI indeed mediates the intracellular signaling of insulin, which induces the biosynthesis of androgens. Studies on second messengers of insulin also revealed that DCI has a specific role in modulating the activity of aromatase enzyme. Specifically, recent findings demonstrated that DCI influences the enzyme gene expression, thus reducing the conversion of androgens into estrogens. EXPERT OPINION Available evidence suggests that the effects of DCI administration may be similar to those of aromatase inhibitors, but without causing hypo-estrogenic states. Therefore, DCI treatments should be evaluated for either estrogen-dependent gynecological conditions or low testosterone states in male subjects.
Collapse
Affiliation(s)
- Antonio Simone Laganà
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria , Varese, Italy.,The Experts Group on Inositol in Basic and Clinical Research (EGOI): https://www.inositolgroup.com
| | - Simone Garzon
- Department of Obstetrics and Gynecology, "Filippo Del Ponte" Hospital, University of Insubria , Varese, Italy
| | - Vittorio Unfer
- The Experts Group on Inositol in Basic and Clinical Research (EGOI): https://www.inositolgroup.com.,Systems Biology Group Lab, "Sapienza" University , Piazza Biroldi 1, 21100 Varese, Italy
| |
Collapse
|
7
|
Herati AS, Kohn TP, Kassiri B. New frontiers in fertility preservation: a hypothesis on fertility optimization in men with hypergonadotrophic hypogonadism. Transl Androl Urol 2020; 9:S171-S177. [PMID: 32257857 PMCID: PMC7108987 DOI: 10.21037/tau.2019.12.39] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Strategies exist that can mitigate the risk of causing iatrogenic infertility when men require testosterone replacement therapy (TRT). This article reviews the current medical therapies that preserve spermatogenesis when TRT is indicated. Furthermore, we highlight the re-emerging concept of hypothalamic-pituitary-gonadal (HPG) axis reset in hypergonadotrophic, hypogonadal infertile men who are planning sperm retrieval procedures. Finally, we present our hypothesis for a novel protocol to optimize hypergonadotrophic hypogonadal men before sperm extraction surgeries hormonally.
Collapse
Affiliation(s)
- Amin S Herati
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Taylor P Kohn
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Borna Kassiri
- Department of Urology, The James Buchanan Brady Urological Institute, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
8
|
Cheboub A, Regouat N, Djidjik R, Slimani A, Hadj-Bekkouche F. Short-term aromatase inhibition induces prostatic alterations in adult wistar rat: A biochemical, histopathological and immunohistochemical study. Acta Histochem 2019; 121:151441. [PMID: 31522738 DOI: 10.1016/j.acthis.2019.151441] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 08/08/2019] [Accepted: 09/04/2019] [Indexed: 12/22/2022]
Abstract
PURPOSE This study aimed to evaluate the effects of estrogen reduction on amyloid deposition, some lipid metabolism and oxidative stress markers, PSA-like production and p63 expression in the prostate of the adult rat. METHODS Aromatase inhibitor: Formestane (4-OHA), was administrated to male rats, at a dose of 0.1 mg/kg b.w./day, for 10 days. The control group (CONT) received the same volume of placebo injection (NaCl 0.9%). RESULTS 4-OHA treatment induced a significant accumulation of intraprostatic cholesterol (138.90 ± 17.64 vs 85.12 ± 2.87, p = 0.01); against an insignificant diminution of malondialdehyde (412.6 ± 54.35 vs 842.70 ± 336.50, p > 0.05) and glutathione (2.40 ± 0.23 vs 3.65 ± 0.88, p > 0.05). This was associated with a significant decrease of nitric oxide (31.76 ± 7.07 vs 179.40 ± 58.35, p = 0.024). Additionally, 4-OHA significantly increased the intraprostatic production of PSA-like (11.12 ± 2.78 vs 3.91 ± 0.43, p = 0.043). The prostatic histology revealed an amyloid deposition, in all prostatic lobes and a smooth muscle layer growth (p < 0.05); especially significant in the dorsal and lateral lobes. Theses lobes manifested a basal cells proliferation, with a 3-fold increase of p63 expression (p < 0.001). The ventral lobe presented epithelial atrophy (37.80 ± 16.20 vs 167.60 ± 5.16, p < 0.05); with occasional and significant proliferative foci (247.00 ± 9.573 vs 167.60 ± 5.16 p < 0.05). DISCUSSION AND CONCLUSION Aromatase inhibition, in the adult male rat, alters the prostatic function by reducing nitric oxide availability and inducing amyloid deposition along with limiting the differentiation of basal cells, through a lobe-specific p63-overexpression.
Collapse
Affiliation(s)
- Amina Cheboub
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria.
| | - Nadia Regouat
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| | - Reda Djidjik
- Immunology Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Assia Slimani
- Pathological Anatomy Service of Isaad Hassani-Beni Messous Hospital, Algiers, Algeria
| | - Fatima Hadj-Bekkouche
- Faculty of Biology Sciences, University of Sciences and Technology Houari Boumediene, Algeria
| |
Collapse
|
9
|
Shay DA, Vieira-Potter VJ, Rosenfeld CS. Sexually Dimorphic Effects of Aromatase on Neurobehavioral Responses. Front Mol Neurosci 2018; 11:374. [PMID: 30374289 PMCID: PMC6196265 DOI: 10.3389/fnmol.2018.00374] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Accepted: 09/21/2018] [Indexed: 01/16/2023] Open
Abstract
Aromatase is the enzyme responsible for converting testosterone to estradiol. In mammals, aromatase is expressed in the testes, ovaries, brain, and other tissues. While estrogen is traditionally associated with reproduction and sexual behavior in females, our current understanding broadens this perspective to include such biological functions as metabolism and cognition. It is now well-recognized that aromatase plays a vital lifetime role in brain development and neurobehavioral function in both sexes. Thus, ongoing investigations seek to highlight potentially vital sex differences in the role of aromatase, particularly regarding its centrally mediated effects. To characterize the role of aromatase in mediating such functions, effects of aromatase inhibitor (AI) treatments on humans and animal models have been determined. Aromatase knockout (ArKO) mice that systemically lack the enzyme have also been employed. Humans possessing mutations in the gene encoding aromatase, CYP19, have also provided critical insight into how aromatase affects brain function in a possible sex-dependent manner. A better understanding of how AIs, used to treat breast cancer and other clinical conditions, may detrimentally affect neurobehavioral responses will likely promote development of future therapies to combat these effects. Herein, we will provide a critical review of the current knowledge of sex differences in aromatase regulation of various neurobehavioral functions. Although many species have been used to better understand the functions of aromatase, this review focuses on rodent models and humans. Critical gaps in our present understanding of this area will be considered, and important future research directions will be discussed.
Collapse
Affiliation(s)
- Dusti A Shay
- Nutrition and Exercise Physiology, University of Missouri Columbia, MO, United States
| | | | - Cheryl S Rosenfeld
- Bond Life Sciences Center, University of Missouri Columbia, MO, United States.,Thompson Center for Autism and Neurobehavioral Disorders, University of Missouri Columbia, MO, United States.,Department of Biomedical Sciences, University of Missouri Columbia, MO, United States
| |
Collapse
|
10
|
Borbélyová V, Domonkos E, Csongová M, Kačmárová M, Ostatníková D, Celec P, Hodosy J. Sex-dependent effects of letrozole on anxiety in middle-aged rats. Clin Exp Pharmacol Physiol 2017; 44 Suppl 1:93-98. [DOI: 10.1111/1440-1681.12731] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 01/04/2017] [Accepted: 01/07/2017] [Indexed: 12/24/2022]
Affiliation(s)
- Veronika Borbélyová
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
| | - Emese Domonkos
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
| | - Melinda Csongová
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
| | - Mária Kačmárová
- Department of Animal Physiology and Ethology; Faculty of Natural Sciences; Comenius University; Bratislava Slovakia
| | - Daniela Ostatníková
- Institute of Physiology; Faculty of Medicine; Comenius University; Bratislava Slovakia
| | - Peter Celec
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Institute of Pathophysiology; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Department of Molecular Biology; Faculty of Natural Sciences; Comenius University; Bratislava Slovakia
| | - Július Hodosy
- Institute of Molecular Biomedicine; Faculty of Medicine; Comenius University; Bratislava Slovakia
- Institute of Physiology; Faculty of Medicine; Comenius University; Bratislava Slovakia
| |
Collapse
|
11
|
“Cherchez La Femme”: Modulation of Estrogen Receptor Function With Selective Modulators: Clinical Implications in the Field of Urology. Sex Med Rev 2017; 5:365-386. [DOI: 10.1016/j.sxmr.2017.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/03/2017] [Accepted: 03/04/2017] [Indexed: 12/22/2022]
|
12
|
Rubinow KB. Estrogens and Body Weight Regulation in Men. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1043:285-313. [PMID: 29224100 DOI: 10.1007/978-3-319-70178-3_14] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Our understanding of the metabolic roles of sex steroids in men has evolved substantially over recent decades. Whereas testosterone once was believed to contribute to metabolic risk in men, the importance of adequate androgen exposure for the maintenance of metabolic health has been demonstrated unequivocally. A growing body of evidence now also supports a critical role for estrogens in metabolic regulation in men. Recent data from clinical intervention studies indicate that estradiol may be a stronger determinant of adiposity than testosterone in men, and even short-term estradiol deprivation contributes to fat mass accrual. The following chapter will outline findings to date regarding the mechanisms, whereby estrogens contribute to the regulation of body weight and adiposity in men. It will present emergent clinical data as well as preclinical findings that reveal mechanistic insights into estrogen-mediated regulation of body composition. Findings in both males and females will be reviewed, to draw comparisons and to highlight knowledge gaps regarding estrogen action specifically in males. Finally, the clinical relevance of estrogen exposure in men will be discussed, particularly in the context of a rising global prevalence of obesity and expanding clinical use of sex steroid-based therapies in men.
Collapse
Affiliation(s)
- Katya B Rubinow
- Division of Metabolism, Endocrinology, and Nutrition Department of Medicine, University of Washington, Seattle, WA, USA.
| |
Collapse
|
13
|
Ahmad S, Khan MF, Parvez S, Akhtar M, Raisuddin S. Molecular docking reveals the potential of phthalate esters to inhibit the enzymes of the glucocorticoid biosynthesis pathway. J Appl Toxicol 2016; 37:265-277. [DOI: 10.1002/jat.3355] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 02/06/2023]
Affiliation(s)
- Shahzad Ahmad
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Mohemmed Faraz Khan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Suhel Parvez
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Mohammad Akhtar
- Department of Pharmacology, Faculty of Pharmacy; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology; Jamia Hamdard (Hamdard University); New Delhi 110062 India
| |
Collapse
|
14
|
Goldstein I. Sexual Medicine Reviews-The Premiere Review Journal for the Field of Sexual Medicine. Sex Med Rev 2015; 3:1-2. [PMID: 27784567 DOI: 10.1002/smrj.40] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
15
|
|