1
|
Kucernak AR, Wang H, Lin X. Avoid Using Phosphate Buffered Saline (PBS) as an Electrolyte for Accurate OER Studies. ACS ENERGY LETTERS 2024; 9:3939-3946. [PMID: 39144814 PMCID: PMC11320652 DOI: 10.1021/acsenergylett.4c01589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 07/09/2024] [Indexed: 08/16/2024]
Affiliation(s)
- Anthony R. Kucernak
- Department
of Chemistry, Imperial College London, London W12 0BZ, United Kingdom
| | - Haiyi Wang
- Department
of Chemistry, Imperial College London, White City, London W12 0BZ, United
Kingdom
| | - Xiaoqian Lin
- Department
of Chemistry, Imperial College London, White City, London W12 0BZ, United
Kingdom
| |
Collapse
|
2
|
Gupta D, Mao J, Guo Z. Bifunctional Catalysts for CO 2 Reduction and O 2 Evolution: A Pivotal for Aqueous Rechargeable Zn-CO 2 Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407099. [PMID: 38924576 DOI: 10.1002/adma.202407099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 06/16/2024] [Indexed: 06/28/2024]
Abstract
The quest for the advancement of green energy storage technologies and reduction of carbon footprint is determinedly rising toward carbon neutrality. Aqueous rechargeable Zn-CO2 batteries (ARZCBs) hold the great potential to encounter both the targets simultaneously, i.e., green energy storage and CO2 conversion to value-added chemicals/fuels. The major descriptor of ARZCBs efficiency is allied with the reactions occurring at cathode during discharging (CO2 reduction) and charging (O2 evolution) which own different fundamental mechanisms and hence mandate the employment of two different catalysts. This presents an overall complex and expensive battery system which requires a concrete solution, while the development and application of a bifunctional cathode catalyst toward both reactions could reduce the complexity and cost and thus can be a pivotal for ARZCBs. However, despite the increasing research interest and ongoing research, a systematic evaluation of bifunctional catalysts is rarely reported. In this review, the need of bifunctional cathode catalysts for ARZCBs and associated challenges with strategies have been critically assessed. A detailed progress examination and understanding toward designing of bifunctional catalyst for ARZCBs have been provided. This review will enlighten the future research approaching boosted performance of ARZCBs through the development of efficient bifunctional cathode catalysts.
Collapse
Affiliation(s)
- Divyani Gupta
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Zaiping Guo
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| |
Collapse
|
3
|
Chen H, Li J, Chen L, Li G, Zhao W, Tao K, Han L. Electron-Redistributed NiCo@NiFe-LDH Core-Shell Heterostructure for Significantly Enhancing Electrochemical Water Splitting. Inorg Chem 2023. [PMID: 37988673 DOI: 10.1021/acs.inorgchem.3c03115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Layered double hydroxides (LDHs) are some of the most promising precursors for the development of economically stable and efficient electrocatalysts for water splitting. An effective strategy for designing excellent performance electrocatalysts is to assemble core-shell heterostructures with a tunable electronic structure. In this work, three core-shell heterostructure electrocatalysts (NiCo@NiFe-LDH100/150/200) are developed by a simple hydrothermal and subsequent electrodeposition method on Ni foam. Among them, NiCo@NiFe-LDH150/NF exhibits the best oxygen evolution reaction electrocatalytic activity and long-term stability with a low overpotential of 197 mV to deliver a current density of 10 mA cm-2. In addition, an efficient and stable alkaline electrolytic cell with NiCo@NiFe-LDH150/NF both as the cathode and anode achieves a voltage of 1.66 V at a current density of 10 mA cm-2 and realization of ultralong stability at current densities of 20 and 200 mA cm-2 for 200 h. Density functional theory calculations reveal the strong electron interaction at the heterogeneous interface of the NiCo@NiFe-LDH150/NF core-shell structure, which effectively improves the intrinsic electron conductivity and ion diffusion kinetics and makes an important contribution to the electrocatalytic performance of the material. This work provides a new idea for the selection of materials for electrochemical water splitting by the construction of heterojunction interfaces.
Collapse
Affiliation(s)
- Hao Chen
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Jiangning Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Linli Chen
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Guochang Li
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Wenna Zhao
- School of Biological and Chemical Engineering, Ningbotech University, Ningbo, Zhejiang 315100, China
| | - Kai Tao
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| | - Lei Han
- School of Materials Science & Chemical Engineering, Ningbo University, Ningbo, Zhejiang 315211, China
| |
Collapse
|
4
|
Zhao K, Tao Y, Fu L, Li C, Xu B. Bifunctional Near-Neutral Electrolyte Enhances Oxygen Evolution Reaction. Angew Chem Int Ed Engl 2023; 62:e202308335. [PMID: 37604792 DOI: 10.1002/anie.202308335] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 08/14/2023] [Accepted: 08/21/2023] [Indexed: 08/23/2023]
Abstract
Performance of electrocatalytic reactions depends on not only the composition and structure of the active sites, but also their local environment, including the surrounding electrolyte. In this work, we demonstrate that BF2 (OH)2 - anion is the key fluoroborate species formed in the mixed KBi/KF (KBi=potassium borate) electrolyte to enhance the rate of the oxygen evolution reaction (OER) at near-neutral pH. Through a combination of electrokinetic and in situ spectroscopic studies, we show that the mixed KBi/KF electrolyte promotes the OER via two pathways: 1) stabilizing the interfacial pH during the proton-producing reaction with its high buffering capacity; and 2) activating the interfacial water via strong hydrogen bonds with F-containing species. With the KBi/KF electrolyte, electrodeposited Co(OH)2 is able to achieve 100 mA/cm2 at 1.74 V, which is among the highest reported activities with earth-abundant electrocatalysts at near neutral conditions. These findings highlight the potential of leveraging electrolyte-engineering for improving the electrochemical performance of the OER.
Collapse
Affiliation(s)
- Kaiyue Zhao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Yu Tao
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Linke Fu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Chen Li
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Bingjun Xu
- College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
5
|
Tian L, Zhong D, Zhao T, Liu Y, Hao L, Fang Q, Lang X, Zhao X, Hao G, Liu G, Li J, Zhao Q. Oxygen-vacancy-rich Co 3O 4@Fe-B-O heterostructure for efficient oxygen evolution reaction in alkaline and neutral media. J Colloid Interface Sci 2023; 646:452-460. [PMID: 37207426 DOI: 10.1016/j.jcis.2023.05.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 04/26/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Developing highly efficient OER catalysts is essential for producing hydrogen from water electrolysis to compensate for conventional fossil fuel shortages. Here, the oxygen-vacancy-rich heterostructure grown on the Ni foam (NF) (Co3O4@Fe-B-O/NF) is fabricated. The synergistic effect between Co3O4 and Fe-B-O has been proven effectively modulate the electronic structure and produce highly active interface sites, ultimately leading to enhanced electrocatalytic activity. Co3O4@Fe-B-O/NFrequiresan overpotential of 237 mV to drive 20 mA cm-2 in 1 M KOH, and 384 mV to drive 10 mA cm-2 in 0.1 M PBS, superior to most catalysts currently used. Moreover, Co3O4@Fe-B-O/NF as an oxygen evolution reaction (OER) electrode shows great potential in overall water splitting and CO2 reduction reaction (CO2RR). This work may provide effective ideas for designing efficient oxide catalysts.
Collapse
Affiliation(s)
- Lu Tian
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Dazhong Zhong
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China.
| | - Tao Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Yi Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Lu Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Qiang Fang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Xuelei Lang
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Xin Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Genyan Hao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Guang Liu
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Jinping Li
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China
| | - Qiang Zhao
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, PR China; Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, Taiyuan 030024, Shanxi, PR China.
| |
Collapse
|
6
|
Strotkötter V, Krysiak OA, Zhang J, Wang X, Suhr E, Schuhmann W, Ludwig A. Discovery of High-Entropy Oxide Electrocatalysts: From Thin-Film Material Libraries to Particles. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:10291-10303. [PMID: 36530940 PMCID: PMC9753560 DOI: 10.1021/acs.chemmater.2c01455] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 11/02/2022] [Indexed: 06/17/2023]
Abstract
Discovery of new high-entropy electrocatalysts requires testing of hundreds to thousands of possible compositions, which can be addressed most efficiently by high-throughput experimentation on thin-film material libraries. Since the conditions for high-throughput measurements ("screening") differ from more standardized methods, it is frequently a concern whether the findings from screening can be transferred to the commonly used particulate catalysts. We demonstrate the successful transfer of results from thin-film material libraries to particles of Cantor alloy oxide (Co-Cr-Fe-Mn-Ni)3O4. The chemical compositions of the libraries, all single-phase spinels, cover a wide compositional range of (Cr8.1-28.0Mn11.6-28.4Fe10.6-39.0Co11.4-36.7Ni13.5-31.4)37.7±0.6O62.3±0.6, with composition-dependent lattice constant values ranging from 0.826 to 0.851 nm. Electrochemical screening of the libraries for the oxygen evolution reaction (OER) identifies (Cr24.6±1.4Mn15.7±2.0Fe16.9±1.8Co26.1±1.9Ni16.6±1.7)37.8±0.8O62.2±1.2 as the most active composition, exhibiting an overpotential of 0.36 V at a current density of 1 mA cm-2. This "hit" in the library was subsequently synthesized in the form of particles with the same composition and crystal structure using an aerosol-based synthesis strategy. The similar OER activity of the most active thin-film composition and the derived catalyst particles validates the proposed approach of accelerated discovery of novel catalysts by screening of thin-film libraries.
Collapse
Affiliation(s)
- Valerie Strotkötter
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Olga A. Krysiak
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Jian Zhang
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Xiao Wang
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Ellen Suhr
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
| | - Wolfgang Schuhmann
- Analytical
Chemistry − Centre for Electrochemical Sciences (CES), Faculty
of Chemistry and Biochemistry, Ruhr University
Bochum, Universitätsstraße
150, D-44801Bochum, Germany
| | - Alfred Ludwig
- Materials
Discovery and Interfaces (MDI), Institute for Materials, Ruhr University Bochum, Universitätsstraße 150, D-44801Bochum, Germany
- Centre
for Interface-Dominated High Performance Materials (ZGH), Ruhr University, BochumD-44801, Germany
| |
Collapse
|
7
|
Lin HY, Lou ZX, Ding Y, Li X, Mao F, Yuan HY, Liu PF, Yang HG. Oxygen Evolution Electrocatalysts for the Proton Exchange Membrane Electrolyzer: Challenges on Stability. SMALL METHODS 2022; 6:e2201130. [PMID: 36333185 DOI: 10.1002/smtd.202201130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Hydrogen generated by proton exchange membrane (PEM) electrolyzer holds a promising potential to complement the traditional energy structure and achieve the global target of carbon neutrality for its efficient, clean, and sustainable nature. The acidic oxygen evolution reaction (OER), owing to its sluggish kinetic process, remains a bottleneck that dominates the efficiency of overall water splitting. Over the past few decades, tremendous efforts have been devoted to exploring OER activity, whereas most show unsatisfying stability to meet the demand for industrial application of PEM electrolyzer. In this review, systematic considerations of the origin and strategies based on OER stability challenges are focused on. Intrinsic deactivation of the material and the extrinsic balance of plant-induced destabilization are summarized. Accordingly, rational strategies for catalyst design including doping and leaching, support effect, coordination effect, strain engineering, phase and facet engineering are discussed for their contribution to the promoted OER stability. Moreover, advanced in situ/operando characterization techniques are put forward to shed light on the OER pathways as well as the structural evolution of the OER catalyst, giving insight into the deactivation mechanisms. Finally, outlooks toward future efforts on the development of long-term and practical electrocatalysts for the PEM electrolyzer are provided.
Collapse
Affiliation(s)
- Hao Yang Lin
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Zhen Xin Lou
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yeliang Ding
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Xiaoxia Li
- China General Nuclear New Energy Holdings Co., Ltd., Beijing, 100071, China
| | - Fangxin Mao
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hai Yang Yuan
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Peng Fei Liu
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hua Gui Yang
- Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, China
| |
Collapse
|
8
|
Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew Chem Int Ed Engl 2022; 61:e202210753. [DOI: 10.1002/anie.202210753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Jianyun Liu
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 China
| | - Shuo Duan
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Hao Shi
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Tanyuan Wang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
- Shenzhen Huazhong University of Science and Technology Research Institute Shenzhen 518000 China
| | - Xiaoxuan Yang
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Yunhui Huang
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| | - Gang Wu
- Department of Chemical and Biological Engineering University at Buffalo The State University of New York Buffalo NY 14260 USA
| | - Qing Li
- State Key Laboratory of Material Processing and Die & Mould Technology School of Materials Science and Engineering Huazhong University of Science and Technology Wuhan 430074 China
| |
Collapse
|
9
|
Liu J, Duan S, Shi H, Wang T, Yang X, Huang Y, Wu G, Li Q. Rationally Designing Efficient Electrocatalysts for Direct Seawater Splitting: Challenges, Achievements, and Promises. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianyun Liu
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Shuo Duan
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Hao Shi
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Tanyuan Wang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Xiaoxuan Yang
- State University of New York at Buffalo: University at Buffalo Department of Chemical and Biological Engineering UNITED STATES
| | - Yunhui Huang
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| | - Gang Wu
- State University of New York at Buffalo: University at Buffalo Department of Chemical and Biological Engineering 309 Furnas Hall 14260 Buffalo UNITED STATES
| | - Qing Li
- Huazhong University of Science and Technology School of Materials Science and Engineering CHINA
| |
Collapse
|
10
|
Chandrakala K, Giddaerappa, Venugopala Reddy K, Shivaprasad K. Investigational undertaking descriptors for reduced graphene oxide-phthalocyanine composite based catalyst for electrochemical oxygen evolution reaction. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Liu T, Chen Y, Hao Y, Wu J, Wang R, Gu L, Yang X, Yang Q, Lian C, Liu H, Gong M. Hierarchical anions at the electrode-electrolyte interface for synergized neutral water oxidation. Chem 2022. [DOI: 10.1016/j.chempr.2022.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
12
|
Chang H, Liang Z, Wang L, Wang C. Research progress in improving the oxygen evolution reaction by adjusting the 3d electronic structure of transition metal catalysts. NANOSCALE 2022; 14:5639-5656. [PMID: 35333268 DOI: 10.1039/d2nr00522k] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
As a clean and renewable energy carrier, hydrogen (H2) has become an attractive alternative to dwindling fossil fuels. The key to realizing hydrogen-based energy systems is to develop efficient and economical hydrogen production methods. The water electrolysis technique has the advantages of cleanliness, sustainability, and high efficiency, which can be applied to large-scale hydrogen production. However, the electrocatalytic oxygen evolution reaction (OER) at the anode plays a decisive role in the efficiency of hydrogen evolution during water splitting. Generally, noble metal catalysts (such as ruthenium and iridium) are considered to exhibit the best OER performance; however, they exhibit disadvantages such as high costs, limited reserves, and poor stability. Therefore, the research on highly efficient non-noble metal catalysts that can replace their noble metal counterparts has always been important. This review presents the recent advances in the preparation of high-performance OER electrocatalysts by regulating the electronic structure of 3d transition metals. First, we introduce the reaction mechanism of water splitting and the OER, which reveals the high requirement of the complex four-electron process of the OER. Second, the electron transfer mode and development progress of highly active transition metal electrocatalysts are used to summarize the research situation of transition metal OER catalysts in water splitting. Finally, the future development direction and challenges of transition metal catalysts are prospected based on the current research progress.
Collapse
Affiliation(s)
- Haiyang Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Zhijian Liang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Lei Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| | - Cheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, Heilongjiang University, Harbin 150080, China.
| |
Collapse
|
13
|
Evaluating the effect of ionomer chemical composition in silver-ionomer catalyst inks toward the oxygen evolution reaction by half-cell measurements and water electrolysis. Electrochim Acta 2022. [DOI: 10.1016/j.electacta.2022.140124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
14
|
Vass Á, Kormányos A, Kószó Z, Endrődi B, Janáky C. Anode Catalysts in CO 2 Electrolysis: Challenges and Untapped Opportunities. ACS Catal 2022; 12:1037-1051. [PMID: 35096466 PMCID: PMC8787754 DOI: 10.1021/acscatal.1c04978] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/11/2021] [Indexed: 02/08/2023]
Abstract
The field of electrochemical carbon dioxide reduction has developed rapidly during recent years. At the same time, the role of the anodic half-reaction has received considerably less attention. In this Perspective, we scrutinize the reports on the best-performing CO2 electrolyzer cells from the past 5 years, to shed light on the role of the anodic oxygen evolution catalyst. We analyze how different cell architectures provide different local chemical environments at the anode surface, which in turn determines the pool of applicable anode catalysts. We uncover the factors that led to either a strikingly high current density operation or an exceptionally long lifetime. On the basis of our analysis, we provide a set of criteria that have to be fulfilled by an anode catalyst to achieve high performance. Finally, we provide an outlook on using alternative anode reactions (alcohol oxidation is discussed as an example), resulting in high-value products and higher energy efficiency for the overall process.
Collapse
Affiliation(s)
| | | | - Zsófia Kószó
- Department of Physical Chemistry
and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Balázs Endrődi
- Department of Physical Chemistry
and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| | - Csaba Janáky
- Department of Physical Chemistry
and Materials Science, Interdisciplinary Excellence Centre, University of Szeged, Aradi Square 1, Szeged H-6720, Hungary
| |
Collapse
|
15
|
Li W, Zhao L, Wang C, Lu X, Chen W. Interface Engineering of Heterogeneous CeO 2-CoO Nanofibers with Rich Oxygen Vacancies for Enhanced Electrocatalytic Oxygen Evolution Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:46998-47009. [PMID: 34549934 DOI: 10.1021/acsami.1c11101] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The development of highly efficient and cheap electrocatalysts for the oxygen evolution reaction (OER) is highly desirable in typical water-splitting electrolyzers to achieve renewable energy production, yet it still remains a huge challenge. Herein, we have presented a simple procedure to construct a new nanofibrous hybrid structure with the interface connecting the surface of CeO2 and CoO as a high-performance electrocatalyst toward the OER through an electrospinning-calcination-reduction process. The resultant CeO2-CoO nanofibers exhibit excellent electrocatalytic properties with a small overpotential of 296 mV at 10 mA cm-2 for the OER, which is superior to many previously reported nonprecious metal-based and commercial RuO2 catalysts. Furthermore, the prepared CeO2-CoO nanofibers display remarkable long-term stability, which can be maintained for 130 h with nearly no attenuation of OER activity in an alkaline electrolyte. A combined experimental and theoretical investigation reveals that the excellent OER properties of CeO2-CoO nanofibers are due to the unique interfacial architecture between CeO2 and CoO, where abundant oxygen vacancies can be generated due to the incomplete matching of atomic positions of two parts, leading to the formation of many low-coordinated Co sites with high OER catalytic activity. This research provides a practical and promising opportunity for the application of heterostructured nonprecious metal oxide catalysts for high-efficiency electrochemical water oxidation.
Collapse
Affiliation(s)
- Weimo Li
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Lusi Zhao
- Laboratory of Theoretical and Computational Chemistry, Institute of Theoretical Chemistry, Jilin University, Changchun 130023, China
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China
| | - Wei Chen
- Engineering Research Center of Industrial Biocatalysis, Fujian Province University, Fujian Provincial Key Laboratory of Advanced Materials Oriented Chemical Engineering, College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, China
- Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen University, Xiamen 361005, China
| |
Collapse
|
16
|
Wang T, Wang W, Shao W, Bai M, Zhou M, Li S, Ma T, Ma L, Cheng C, Liu X. Synthesis and Electronic Modulation of Nanostructured Layered Double Hydroxides for Efficient Electrochemical Oxygen Evolution. CHEMSUSCHEM 2021; 14:5112-5134. [PMID: 34520128 DOI: 10.1002/cssc.202101844] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/14/2021] [Indexed: 02/05/2023]
Abstract
Water electrolysis is considered to be one of the most promising technologies to produce clean fuels. However, its extensive realization critically depends on the progress in cost-effective and high-powered oxygen evolution reaction (OER) electrocatalysts. As a member of the big family of two-dimensional (2D) materials, nanostructured layered double hydroxides (nLDHs) have made significant processes and continuous breakthroughs for OER electrocatalysis. In this Review, the advancements in designing nLDHs for OER in recent years were discussed with a unique focus on their electronic modulations and in situ analysis on catalytic processes. After a brief discussion on different synthetic methodologies of nLDHs, including "bottom-up" and "top-down" approaches, the general strategies to enhance the catalytic performances of nLDHs reported so far were summarized, including compositional substitution, heteroatom doping, vacancy engineering, and amorphous/crystalline engineering. Furthermore, the in situ OER processes and mechanism analysis on engineering efficient nLDHs electrocatalysts were discussed. Finally, the research trends, perspectives, and challenges on designing nLDHs were also carefully outlined. This progress Review may offer enlightening experimental/theoretical guidance for designing highly catalytic active nLDHs and provide new directions to promote their future prosperity for practical utilization in water splitting.
Collapse
Affiliation(s)
- Ting Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Weiwen Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Wenjie Shao
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Mingru Bai
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Mi Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Shuang Li
- Functional Materials, Department of Chemistry, Technische Universität Berlin, Hardenbergstraße 40, 10623, Berlin, Germany
| | - Tian Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| | - Lang Ma
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Chong Cheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China.,Department of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 3, 14195, Berlin, Germany
| | - Xikui Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Department of Ultrasound, West China Hospital, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|