1
|
Mu JJ, Gao XW, Zhao Z, Liu ZM, Gu Q, Luo WB. Electron Sponge Effect by Dynamic-Regulated Electron Self-Flow toward Coupled Electrochemical Ammonia Synthesis. ACS NANO 2024; 18:27090-27100. [PMID: 39294859 DOI: 10.1021/acsnano.4c11702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/21/2024]
Abstract
A dynamic-regulated Pd-Fe-N electrocatalyst was effectively constructed with electron-donating and back-donating effects, which serves as an efficient engineering strategy to optimize the electrocatalytic activity. The designed PdFe3/FeN features a comprehensive electrocatalytic performance toward the nitrogen reduction reaction (NRR, yield rate of 29.94 μg h-1 mgcat-1 and FE of 38.43% at -0.2 V vs RHE) and oxygen evolution reaction (OER, 308 mV at 100 mA cm-2). Combining in situ ATR-FTIR, XAS, and DFT results, the role of the interstitial-N-dopant-induced electron sponge effect has been significantly elucidated in strengthening the electrocatalytic NRR process. Specifically, the introduction of a N dopant, an electron acceptor, initiates the generation of robust Lewis-acidic Fe sites, facilitating free N2 capture and bonding. Simultaneously, after NH3 adsorption, the N dopant can back-donate electrons to Fe sites, strengthening the NH3 deportation through weakening the Lewis acidity of Fe centers. Besides, the electron-deficient Fe sites contribute to the reconstruction of FeOOH, the real active species during the OER, which accelerates the four-electron reaction kinetics. This research offers a perspective on electrocatalyst design, potentially facilitating the evolution of advanced material engineering for efficient electrocatalytic synthesis and energy storage.
Collapse
Affiliation(s)
- Jian-Jia Mu
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| | - Xuan-Wen Gao
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zhiwei Zhao
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhao-Meng Liu
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qinfen Gu
- Australian Synchrotron (ANSTO), 800 Blackburn Rd, Clayton, Victoria 3168, Australia
| | - Wen-Bin Luo
- Institute for Energy Electrochemistry and Urban Mines Metallurgy, School of Metallurgy, Northeastern University, Shenyang, Liaoning 110819, China
| |
Collapse
|
2
|
Lin P, Zhao F, Ren X, Lu Y, Dong X, Gao L, Ma T, Bao J, Liu A. Recent progress on Ti-based catalysts in the electrochemical synthesis of ammonia. NANOSCALE 2024; 16:17300-17323. [PMID: 39240163 DOI: 10.1039/d4nr02852j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Electrochemical ammonia synthesis presents a sustainable alternative, offering the potential for enhanced energy efficiency and environmental benefits compared to the conventional Haber-Bosch process. In recent years, the electrocatalytic reduction of nitrate to ammonia (NO3-RR) has emerged as a crucial approach for achieving sustainable NH3 production. To enhance energy efficiency and successfully convert NO3- to NH3, it is essential to investigate cost-effective electrocatalysts that provide high Faraday efficiency and demonstrate adequate stability. Ti-based materials are considered ideal candidates as catalysts due to their environmental friendliness and robust stability. This review initially summarizes the nitrate reduction reaction pathway and concisely discusses the impact of the potential intermediates and reaction steps on the overall reaction efficiency and product selectivity. Subsequently, an overview of the fundamental characteristics of Ti and TiO2 is presented. Additionally, the research process on Ti-based electrocatalysts in the electrochemical reduction of nitrate for ammonia synthesis is summarized. Finally, the design strategies, such as heteroatom doping and the introduction of oxygen vacancies, to enhance catalytic efficiency and selectivity are presented. Through this comprehensive review, we endeavor to furnish researchers with the most recent insights into the application of titanium-based electrocatalysts in nitrate reduction reactions and to stimulate innovative thought processes on the electrocatalytic synthesis of ammonia.
Collapse
Affiliation(s)
- Peiyan Lin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Fang Zhao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xuefeng Ren
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Yumeng Lu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Xiaoying Dong
- Panjin Institute of Industrial Technology, Dalian University of Technology, Panjin 124221, Liaoning, China.
| | - Liguo Gao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Tingli Ma
- Graduate School of Life Science and Systems Engineering, Kyushu Institute of Technology, 2-4 Hibikino, Wakamatsu, Kitakyushu, Fukuoka 808-0196, Japan
| | - Junjiang Bao
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| | - Anmin Liu
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
3
|
Zhu X, Yuan X, Ge M, Tang Y. Atomic-Dispersed Cu Catalysts for Electrochemical Nitrate Reduction: Coordination Engineering and Fundamental Insights. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2405158. [PMID: 39183524 DOI: 10.1002/smll.202405158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/23/2024] [Indexed: 08/27/2024]
Abstract
The development of Cu-based atomic dispersed catalysts with tailored coordination environments represents a significant step forward in enhancing the electrocatalytic reduction of nitrate to ammonia. By precisely modulating the electronic structures of Cu active centers, the binding strength of the *NO3 intermediates is successfully tuned, thereby substantially improving the catalytic activity toward electrochemical nitrate reduction reaction (eNO3RR). This study reveals that the N4-coordinated Cu single-atom catalyst (Cu-SAC) exhibits superior performance due to its robust interaction with coordinating atoms. Notably, this optimized catalyst achieves a low limiting potential of -0.38 V, while the dual-atom system further reduces this value to -0.32 V, demonstrating exceptional activity. Detailed electronic structure analysis, including the examination of d-band centers, Bader charges, and projected density of states (PDOS), provides a comprehensive understanding of the origin of this high activity. Specifically, the high and concentrated density of states near the Fermi level plays a crucial role in facilitating the electrocatalytic nitrate reduction process. This work not only offers crucial insights into the underlying mechanisms of eNO3RR but also provides valuable guidelines for the rational design of highly efficient electrocatalysts for this important reaction.
Collapse
Affiliation(s)
- Xiaorong Zhu
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Xiaolei Yuan
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Ming Ge
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| | - Yanfeng Tang
- School of Chemistry and Chemical Engineering, Nantong University, Nantong, 226019, China
| |
Collapse
|
4
|
Xiong Y, Wang Y, Zhou J, Liu F, Hao F, Fan Z. Electrochemical Nitrate Reduction: Ammonia Synthesis and the Beyond. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2304021. [PMID: 37294062 DOI: 10.1002/adma.202304021] [Citation(s) in RCA: 45] [Impact Index Per Article: 45.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/29/2023] [Indexed: 06/10/2023]
Abstract
Natural nitrogen cycle has been severely disrupted by anthropogenic activities. The overuse of N-containing fertilizers induces the increase of nitrate level in surface and ground waters, and substantial emission of nitrogen oxides causes heavy air pollution. Nitrogen gas, as the main component of air, has been used for mass ammonia production for over a century, providing enough nutrition for agriculture to support world population increase. In the last decade, researchers have made great efforts to develop ammonia processes under ambient conditions to combat the intensive energy consumption and high carbon emission associated with the Haber-Bosch process. Among different techniques, electrochemical nitrate reduction reaction (NO3RR) can achieve nitrate removal and ammonia generation simultaneously using renewable electricity as the power, and there is an exponential growth of studies in this research direction. Here, a timely and comprehensive review on the important progresses of electrochemical NO3RR, covering the rational design of electrocatalysts, emerging CN coupling reactions, and advanced energy conversion and storage systems is provided. Moreover, future perspectives are proposed to accelerate the industrialized NH3 production and green synthesis of chemicals, leading to a sustainable nitrogen cycle via prosperous N-based electrochemistry.
Collapse
Affiliation(s)
- Yuecheng Xiong
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Yunhao Wang
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Jingwen Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fu Liu
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Fengkun Hao
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
| | - Zhanxi Fan
- Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- Hong Kong Branch of National Precious Metals Material Engineering Research Center (NPMM), City University of Hong Kong, Kowloon, Hong Kong SAR, 999077, P. R. China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
5
|
Mu J, Gao X, Yu T, Zhao L, Luo W, Yang H, Liu Z, Sun Z, Gu Q, Li F. Ambient Electrochemical Ammonia Synthesis: From Theoretical Guidance to Catalyst Design. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308979. [PMID: 38345238 PMCID: PMC11022736 DOI: 10.1002/advs.202308979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/01/2024] [Indexed: 04/18/2024]
Abstract
Ammonia, a vital component in the synthesis of fertilizers, plastics, and explosives, is traditionally produced via the energy-intensive and environmentally detrimental Haber-Bosch process. Given its considerable energy consumption and significant greenhouse gas emissions, there is a growing shift toward electrocatalytic ammonia synthesis as an eco-friendly alternative. However, developing efficient electrocatalysts capable of achieving high selectivity, Faraday efficiency, and yield under ambient conditions remains a significant challenge. This review delves into the decades-long research into electrocatalytic ammonia synthesis, highlighting the evolution of fundamental principles, theoretical descriptors, and reaction mechanisms. An in-depth analysis of the nitrogen reduction reaction (NRR) and nitrate reduction reaction (NitRR) is provided, with a focus on their electrocatalysts. Additionally, the theories behind electrocatalyst design for ammonia synthesis are examined, including the Gibbs free energy approach, Sabatier principle, d-band center theory, and orbital spin states. The review culminates in a comprehensive overview of the current challenges and prospective future directions in electrocatalyst development for NRR and NitRR, paving the way for more sustainable methods of ammonia production.
Collapse
Affiliation(s)
- Jianjia Mu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Xuan‐Wen Gao
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Tong Yu
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Lu‐Kang Zhao
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Wen‐Bin Luo
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Huicong Yang
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Zhao‐Meng Liu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
| | - Zhenhua Sun
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| | - Qin‐Fen Gu
- Institute for Energy Electrochemistry and Urban Mines MetallurgySchool of MetallurgyNortheastern UniversityShenyangLiaoning110819China
- Australian Synchrotron (ANSTO)800 Blackburn RdClaytonVIC3168Australia
| | - Feng Li
- Institute of Metal ResearchChinese Academy of SciencesShenyangLiaoning110016China
| |
Collapse
|
6
|
Wu T, Zhang F, Wang J, Liu X, Tian Y, Chu K. Electrochemical reduction of nitrite to ammonia on amorphous MoO 3 nanosheets. Dalton Trans 2024; 53:877-881. [PMID: 38131476 DOI: 10.1039/d3dt03808d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Electrocatalytic NO2- reduction to NH3 (NO2RR) is an appealing approach for mitigating NO2- pollution and for the synthesis of valuable NH3, and so the exploration for high-performance NO2RR catalysts is pivotal yet remains challenging. Herein, amorphous MoO3 nanosheets (am-MoO3) were designed as a high-performance NO2RR electrocatalyst, delivering a maximum NO2--to-NH3 faradaic efficiency of 94.8% and NH3 yield rate of 480.4 μmol h-1 cm-2 at -0.6 V vs. RHE. Theoretical computations revealed that the largely enhanced NO2RR activity of am-MoO3 originated from the amorphization-induced O-vacancies, which could enhance the NO2--to-NH3 reaction energetics and hamper the competitive hydrogen evolution.
Collapse
Affiliation(s)
- Tingting Wu
- College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Fengyu Zhang
- College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Jingxuan Wang
- College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Xiaoxu Liu
- College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Ye Tian
- College of Science, Hebei North University, Zhangjiakou 075000, Hebei, China.
| | - Ke Chu
- School of Materials Science and Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| |
Collapse
|
7
|
Zafari M, Anand R, Nissimagoudar AS, Ha M, Lee G, Kim KS. Single-atom catalysts supported on a hybrid structure of boron nitride/graphene for efficient nitrogen fixation via synergistic interfacial interactions. NANOSCALE 2024; 16:555-563. [PMID: 38088120 DOI: 10.1039/d3nr05295h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Hexagonal boron nitride (BN) shows significant chemical stability and promising thermal nitrogen reduction reaction (NRR) activity but suffers from low conductivity in electrolysis with a wide band gap. To overcome this problem, two-dimensional (2D) BN and graphene (G) are designed as a heterostructure, namely BN/G. According to density functional theory (DFT), the higher conductivity of G narrows the band gap of BN by inducing some electronic states near the Fermi energy level (Ef). Once transition metals (TMs) are anchored in the BN/G structure as single atom catalysts (SACs), the NRR activity improves as the inert BN basal layer activates with moderate *NH2 binding energy and further the band gap is reduced to zero. V (vanadium) and W (tungsten) SACs exhibit the best performance with limiting potentials of -0.22 and -0.41 V, respectively. This study helps in understanding the improvement of the NRR activity of BN, providing physical insights into the adsorbate-TM interaction.
Collapse
Affiliation(s)
- Mohammad Zafari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Rohit Anand
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Arun S Nissimagoudar
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Miran Ha
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
- Center for Multidimensional Carbon Materials (CMCM), Institute for Basic Science (IBS), Ulsan 44919, Republic of Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea.
| |
Collapse
|
8
|
Recent advances in metal–organic frameworks and their derivatives for electrocatalytic nitrogen reduction to ammonia. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214761] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
9
|
Liu X, Xu X, Li F, Xu J, Ma H, Sun X, Wu D, Zhang C, Ren X, Wei Q. Heterostructured Bi 2S 3/MoS 2 Nanoarrays for Efficient Electrocatalytic Nitrate Reduction to Ammonia Under Ambient Conditions. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38835-38843. [PMID: 35996968 DOI: 10.1021/acsami.2c10323] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Developing efficient electrocatalysts to realize the nitrate reduction reaction (eNO3-RR) for ammonia synthesis as an alternative to the traditional Haber-Bosch production process is of great significance. Herein, the heterostructured Bi2S3/MoS2 nanoarrays were successfully synthesized by Bi2S3 nanowires anchored on MoS2 nanosheets. Owing to the interfacial coupling effect, both particular surface area and exposure active sites increase. Density functional theory further uncovered that the excellent activity originates from charge transfer of the interface and a low potential barrier of 0.58 eV for hydrogenation of *NO to *NOH on Bi2S3/MoS2. Compared with pure Bi2S3 and MoS2 catalysts, the heterostructured Bi2S3/MoS2 nanoarrays exhibit a superior NH3 yield of 15.04 × 10-2 mmol·h-1·cm-2 and a Faraday efficiency of 88.4% at -0.8 V versus the reversible hydrogen electrode. This work provides a new avenue to explore advanced electrocatalysts, which is expected to shorten the distance from the practical application of the eNO3-RR technology.
Collapse
Affiliation(s)
- Xuejing Liu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Xiaolong Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Faying Li
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Jingyi Xu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Hongmin Ma
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Xu Sun
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Dan Wu
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Changwen Zhang
- School of Physics and Technology, University of Jinan, Jinan 250022 Shandong, China
| | - Xiang Ren
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| | - Qin Wei
- Collaborative Innovation Center for Green Chemical Manufacturing and Accurate Detection, Key Laboratory of Interfacial Reaction & Sensing Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022 Shandong, China
| |
Collapse
|
10
|
Zhang M, Cui L, Mao Q, Wang Z, Yu H, Xu Y, Li X, Wang L, Wang H. Heterogeneous Pd-PdO mesoporous film for ammonia electrosynthesis. NANOTECHNOLOGY 2022; 33:385703. [PMID: 35667346 DOI: 10.1088/1361-6528/ac75f8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Exploring cost-effective and highly active electrocatalysts is of great significance for sustainable electrochemical NH3synthesis. Palladium (Pd)-based catalysts have been unanimously considered as one of the most efficient catalysts for the nitrogen reduction reaction (NRR). Herein, self-supported mesoporous Pd film with partial oxidation on Ni foam (mPd-PdO/NF) was synthesized through the micelle-assisted chemical replacement method coupled with air oxidation under 260 °C, and the mPd-PdO/NF electrocatalyst exhibited superior NRR performance with the maximum values ofrNH3(24.8 mg h-1mgcat.-1) and FE (16.64%) were obtained at -0.1 V, relative to the single counterparts (mPd/NF and mPdO/NF). It is proposed that both metallic Pd and its oxide domains when co-existing with a phase boundary between them can facilitate nitrogen activation and hydrogenation, resulting in an enhanced NRR performance. This work provides an inspiring strategy for the rational design of highly active and durable metal-metal-oxide nanoarchitectonics for ammonia electrosynthesis.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Lin Cui
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Qiqi Mao
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Ziqiang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hongjie Yu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - You Xu
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Xiaonian Li
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Liang Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| | - Hongjing Wang
- State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, People's Republic of China
| |
Collapse
|
11
|
Zafari M, Umer M, Nissimagoudar AS, Anand R, Ha M, Umer S, Lee G, Kim KS. Unveiling the Role of Charge Transfer in Enhanced Electrochemical Nitrogen Fixation at Single-Atom Catalysts on BX Sheets (X = As, P, Sb). J Phys Chem Lett 2022; 13:4530-4537. [PMID: 35576271 DOI: 10.1021/acs.jpclett.2c00918] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
To tune single-atom catalysts (SACs) for effective nitrogen reduction reaction (NRR), we investigate various transition metals implanted on boron-arsenide (BAs), boron-phosphide (BP), and boron-antimony (BSb) using density functional theory (DFT). Interestingly, W-BAs shows high catalytic activity and excellent selectivity with an insignificant barrier of only 0.05 eV along the distal pathway and a surmountable kinetic barrier of 0.34 eV. The W-BSb and Mo-BSb exhibit high performances with limiting potentials of -0.19 and -0.34 V. The Bader-charge descriptor reveals that the charge transfers from substrate to *NNH in the first protonation step and from *NH3 to substrate in the last protonation step, circumventing a big hurdle in NRR by achieving negative free energy change of *NH2 to *NH3. Furthermore, machine learning (ML) descriptors are introduced to reduce computational cost. Our rational design meets the three critical prerequisites of chemisorbing N2 molecules, stabilizing *NNH, and destabilizing *NH2 adsorbates for high-efficiency NRR.
Collapse
Affiliation(s)
- Mohammad Zafari
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Muhammad Umer
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Arun S Nissimagoudar
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Rohit Anand
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Miran Ha
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Sohaib Umer
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Geunsik Lee
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| | - Kwang S Kim
- Center for Superfunctional Materials, Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Ulsan 44919, Republic of Korea
| |
Collapse
|
12
|
Xiong Y, Li Y, Wan S, Yu Y, Zhang S, Zhong Q. Ferrous-based electrolyte for simultaneous NO absorption and electroreduction to NH 3 using Au/rGO electrode. JOURNAL OF HAZARDOUS MATERIALS 2022; 430:128451. [PMID: 35158243 DOI: 10.1016/j.jhazmat.2022.128451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/30/2021] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Electrochemical reduction of NO to NH3 (NORR) is an attractive approach to mildly realize NO removal and valuable NH3 production. The electrolyte, as function as the NO absorbent, is crucial to apply electrochemical technology in practical de-NO engineering. In this paper, the ferrous chelate acted as the electrolyte for effective NO absorption in NORR based on the Brown-ring reaction. The rGO and Au/rGO catalysts served as cathodes to realize ferrous regeneration for continuous NO reduction. The results revealed that ferric chelate could be fully reduced at lower onset potential on rGO electrode. The Au/rGO catalyst exhibited excellent average yield and selectivity for NH3 at - 0.1 V and pH = 6.32, (14.6 μmol* h-1 * cm-2 and 65.2%, respectively). The Faradaic Efficiency of NH3 could reach 98.3% at pH = 1.0. This work provides a valuable reference for effective NO adsorption and sustainable NO-to-NH3 conversion.
Collapse
Affiliation(s)
- Yongheng Xiong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yuting Li
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Shipeng Wan
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China
| | - Yang Yu
- Department of Environment Engineering, Nanjing Institute of Technology, Nanjing 211167, PR China
| | - Shule Zhang
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| | - Qin Zhong
- School of Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
13
|
Wu J, Yu YX. A theoretical descriptor for screening efficient NO reduction electrocatalysts from transition-metal atoms on N-doped BP monolayer. J Colloid Interface Sci 2022; 623:432-444. [PMID: 35597013 DOI: 10.1016/j.jcis.2022.05.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/04/2022] [Accepted: 05/05/2022] [Indexed: 11/29/2022]
Abstract
An electrochemical nitric oxide (NO) reduction reaction (NORR) is proposed as an attractive method for simultaneous realization of NO removal and ammonia (NH3) synthesis. Here, the potentials of 29 transition-metal atoms anchored on the nitrogen-doped BP monolayer (MN3/BP) as efficient NORR catalysts are systematically examined using first-principles calculations. Combining the adsorption Gibbs free energies of the N and OH species, a simple descriptor is constructed and a volcano plot of the NORR limiting potentials on the single atom catalysts (SACs) is established. Consequently, the MoN3/BP and IrN3/BP SACs are picked out as promising NORR electrocatalysts for NH3 synthesis with the limiting potentials of -0.10 V and -0.06 V, respectively. Their corresponding rate constants are significantly larger than or close to that of the excellent Pt(111) surface. The electronic analysis shows that the Mo-4d or Ir-5d orbitals can be well hybridized with the NO-2p orbitals, sufficiently activating the adsorbed NO species. Particularly, the MoN3/BP and IrN3/BP SACs possess high thermal stabilities and can be easily synthesized by using MoCl3 and IrCl3 as precursors, respectively. This work not only offers a simple descriptor to efficiently design NORR electrocatalysts but also provides a comprehensive atomic understanding on the mechanism of NO-to-NH3 conversion.
Collapse
Affiliation(s)
- Jie Wu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yang-Xin Yu
- Laboratory of Chemical Engineering Thermodynamics, Department of Chemical Engineering, Tsinghua University, Beijing 100084, People's Republic of China.
| |
Collapse
|