1
|
Mahmood A, Bai Z, Wang T, Lei Y, Wang S, Sun B, Khan H, Khan K, Sun K, Wang G. Enabling high-performance multivalent metal-ion batteries: current advances and future prospects. Chem Soc Rev 2025; 54:2369-2435. [PMID: 39887968 DOI: 10.1039/d4cs00929k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The battery market is primarily dominated by lithium technology, which faces severe challenges because of the low abundance and high cost of lithium metal. In this regard, multivalent metal-ion batteries (MVIBs) enabled by multivalent metal ions (e.g. Zn2+, Mg2+, Ca2+, Al3+, etc.) have received great attention as an alternative to traditional lithium-ion batteries (Li-ion batteries) due to the high abundance and low cost of multivalent metals, high safety and higher volumetric capacities. However, the successful application of these battery chemistries requires careful control over electrode and electrolyte chemistries due to the higher charge density and slower kinetics of multivalent metal ions, structural instability of the electrode materials, and interfacial resistance, etc. This review comprehensively explores the recent advancements in electrode and electrolyte materials as well as separators for MVIBs, highlighting the potential of MVIBs to outperform Li-ion batteries regarding cost, energy density and safety. The review first summarizes the recent progress and fundamental charge storage mechanism in several MVIB chemistries, followed by a summary of major challenges. Then, a thorough account of the recently proposed methodologies is given including progress in anode/cathode design, electrolyte modifications, transition to semi-solid- and solid-state electrolytes (SSEs), modifications in separators as well as a description of advanced characterization tools towards understanding the charge storage mechanism. The review also accounts for the recent trend of using artificial intelligence in battery technology. The review concludes with a discussion on prospects, emphasizing the importance of material innovation and sustainability. Overall, this review provides a detailed overview of the current state and future directions of MVIB technology, underscoring its significance in advancing next-generation energy storage solutions.
Collapse
Affiliation(s)
- Asif Mahmood
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Zhe Bai
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Tan Wang
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Yaojie Lei
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Shijian Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Bing Sun
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Hajra Khan
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Karim Khan
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| | - Kening Sun
- Beijing Key Laboratory of Chemical Power Source and Green Catalysis, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | - Guoxiu Wang
- Centre for Clean Energy Technology, School of Mathematical and Physical Sciences, Faculty of Science, University of Technology Sydney, City Campus, Broadway, NSW 2007, Australia.
| |
Collapse
|
2
|
Ju Z, Zheng T, Zhang B, Yu G. Interfacial chemistry in multivalent aqueous batteries: fundamentals, challenges, and advances. Chem Soc Rev 2024; 53:8980-9028. [PMID: 39158505 DOI: 10.1039/d4cs00474d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
As one of the most promising electrochemical energy storage systems, aqueous batteries are attracting great interest due to their advantages of high safety, high sustainability, and low costs when compared with commercial lithium-ion batteries, showing great promise for grid-scale energy storage. This invited tutorial review aims to provide universal design principles to address the critical challenges at the electrode-electrolyte interfaces faced by various multivalent aqueous battery systems. Specifically, deposition regulation, ion flux homogenization, and solvation chemistry modulation are proposed as the key principles to tune the inter-component interactions in aqueous batteries, with corresponding interfacial design strategies and their underlying working mechanisms illustrated. In the end, we present a critical analysis on the remaining obstacles necessitated to overcome for the use of aqueous batteries under different practical conditions and provide future prospects towards further advancement of sustainable aqueous energy storage systems with high energy and long durability.
Collapse
Affiliation(s)
- Zhengyu Ju
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Tianrui Zheng
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Bowen Zhang
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
3
|
Yang X, Sun Q, Chai L, Chen S, Zhang W, Yang HY, Li Z. α-MnO 2 Cathode with Oxygen Vacancies Accelerated Affinity Electrolyte for Dual-Ion Co-Encapsulated Aqueous Aluminum Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400335. [PMID: 38682593 DOI: 10.1002/smll.202400335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/18/2024] [Indexed: 05/01/2024]
Abstract
Aluminum batteries (ABs) are identified as one of the most promising candidates for the next generation of large-scale energy storage elements because of their efficient three-electron reaction. Compared to ionic electrolytes, aqueous aluminum-ion batteries (AAIBs) are considered safer, less costly, and more environmentally friendly. However, considerable cycling performance is a key issue limiting the development of AAIBs. Stable, efficient, and electrolyte-friendly cathodes are most desirable for AAIBs. Herein, a rod-shaped defect-rich α-MnO2 is designed as a cathode, which is capable to deliver high performance with stable cycling for 180 cycles at 500 mA g-1 and maintains a discharge specific capacity of ≈100 mAh g-1. In addition, the infiltrability simulation is effectively utilized to corroborate the rapid electrochemical reaction brought about by the defective mechanism. With the formation of oxygen vacancies, the dual embedding of protons and metal ions is activated. This work provides a brand-new design for the development and characterization of cathodes for AAIBs.
Collapse
Affiliation(s)
- Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Qiwen Sun
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Luning Chai
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore, 487372, Singapore
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding, 071002, China
| |
Collapse
|
4
|
Gao Y, Zhang D, Zhang S, Li L. Research Advances of Cathode Materials for Rechargeable Aluminum Batteries. CHEM REC 2024; 24:e202400085. [PMID: 39148161 DOI: 10.1002/tcr.202400085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/07/2024] [Indexed: 08/17/2024]
Abstract
Rechargeable aluminum ion batteries (AIBs) have recently gained widespread research concern as energy storage technologies because of their advantages of being safe, economical, environmentally friendly, sustainable, and displaying high performance. Nevertheless, the intense Coulombic interactions between the Al3+ ions with high charge density and the lattice of the electrode body lead to poor cathode kinetics and limited cycle life in AIBs. This paper reviews the recent advances in the cathode design of AIBs to gain a comprehensive understanding of the opportunities and challenges presented by current AIBs. In addition, the advantages, limitations, and possible solutions of each cathode material are discussed. Finally, the future development prospect of the cathode materials is presented.
Collapse
Affiliation(s)
- Yanhong Gao
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Dan Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
- School of Materials Science and Engineering, Northwestern Polytechnical University (NPU), Xi'an, 710072, China
| | - Shengrui Zhang
- Shaanxi Key Laboratory of Catalysis, School of Chemistry and Environment Science, Shaanxi University of Technology, Hanzhong, 723001, China
| | - Le Li
- Shaanxi Key Laboratory of Industrial Automation, School of Mechanical Engineering, Shaanxi University of Technology, Hanzhong, 723001, China
| |
Collapse
|
5
|
Wang B, Tang Y, Deng T, Zhu J, Sun B, Su Y, Ti R, Yang J, Wu W, Cheng N, Zhang C, Lu X, Xu Y, Liang J. Recent progress in aqueous aluminum-ion batteries. NANOTECHNOLOGY 2024; 35:362004. [PMID: 38848693 DOI: 10.1088/1361-6528/ad555c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 06/07/2024] [Indexed: 06/09/2024]
Abstract
Aqueous aluminum-ion batteries have many advantages such as their safety, environmental friendliness, low cost, high reserves and the high theoretical specific capacity of aluminum. So aqueous aluminum-ion batteries are potential substitute for lithium-ion batteries. In this paper, the current research status and development trends of cathode and anode materials and electrolytes for aqueous aluminum-ion batteries are described. Aiming at the problem of passivation, corrosion and hydrogen evolution reaction of aluminum anode and dissolution and irreversible change of cathode after cycling in aqueous aluminum-ion batteries. Solutions of different research routes such as ASEI (artificial solid electrolyte interphase), alloying, amorphization, elemental doping, electrolyte regulation, etc and different transformation mechanisms of anode and cathode materials during cycling have been summarized. Moreover, it looks forward to the possible research directions of aqueous aluminum-ion batteries in the future. We hope that this review can provide some insights and support for the design of more suitable electrode materials and electrolytes for aqueous aluminum-ion batteries.
Collapse
Affiliation(s)
- Bin Wang
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yu Tang
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Tao Deng
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Jian Zhu
- College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, Hunan Province, People's Republic of China
| | - Beibei Sun
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yun Su
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Ruixia Ti
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Jiayue Yang
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Wenjiao Wu
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- School of Mechanical Engineering, Chengdu University, Chengdu 610106, Sichuan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Na Cheng
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Chaoyang Zhang
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Xingbao Lu
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Yan Xu
- School of Physics and Electronic Engineering, Xinxiang University, Xinxiang 453003, Henan Province, People's Republic of China
- Henan Province Engineering Research Center of New Energy Storage System, Xinxiang 453003, Henan Province, People's Republic of China
| | - Junfei Liang
- School of Energy and Power Engineering, North University of China, Taiyuan 030051, People's Republic of China
| |
Collapse
|
6
|
Yu H, Lv C, Yan C, Yu G. Interface Engineering for Aqueous Aluminum Metal Batteries: Current Progresses and Future Prospects. SMALL METHODS 2024; 8:e2300758. [PMID: 37584206 DOI: 10.1002/smtd.202300758] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/24/2023] [Indexed: 08/17/2023]
Abstract
Aqueous aluminum metal batteries (AMBs) have attracted numerous attention because of the abundant reserves, low cost, high theoretical capacity, and high safety. Nevertheless, the poor thermodynamics stability of metallic Al anode in aqueous solution, which is caused by the self-corrosion, surface passivation, or hydrogen evolution reaction, dramatically limits the electrochemical performance and hampers the further development of AMBs. In this comprehensive review, the key scientific challenges of Al anode/electrolyte interface (AEI) are highlighted. A systematic overview is also provided about the recent progress on the rational interface engineering principles toward a relatively stable AEI. Finally, suggestions and perspectives for future research are offered on the optimization of Al anode and aqueous electrolytes to enable a stable and durable AEI, which may pave the way for developing high-performance AMBs.
Collapse
Affiliation(s)
- Huaming Yu
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P.R. China
| | - Chade Lv
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P.R. China
| | - Chunshuang Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, Heilongjiang, 150001, P.R. China
| | - Guihua Yu
- Materials Science and Engineering Program and Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| |
Collapse
|
7
|
Luo X, Wang R, Zhang L, Liu Z, Li H, Mao J, Zhang S, Hao J, Zhou T, Zhang C. Air-Stable and Low-Cost High-Voltage Hydrated Eutectic Electrolyte for High-Performance Aqueous Aluminum-Ion Rechargeable Battery with Wide-Temperature Range. ACS NANO 2024; 18:12981-12993. [PMID: 38717035 DOI: 10.1021/acsnano.4c01276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Aqueous aluminum-ion batteries (AAIBs) are considered as a promising alternative to lithium-ion batteries due to their large theoretical capacity, high safety, and low cost. However, the uneven deposition, hydrogen evolution reaction (HER), and corrosion during cycling impede the development of AAIBs, especially under a harsh environment. Here, a hydrated eutectic electrolyte (AATH40) composed of Al(OTf)3, acetonitrile (AN), triethyl phosphate (TEP), and H2O was designed to improve the electrochemical performance of AAIBs in a wide temperature range. The combination of molecular dynamics simulations and spectroscopy analysis reveals that AATH40 has a less-water-solvated structure [Al(AN)2(TEP)(OTf)2(H2O)]3+, which effectively inhibits side reactions, decreases the freezing point, and extends the electrochemical window of the electrolyte. Furthermore, the formation of a solid electrolyte interface, which effectively inhibits HER and corrosion, has been demonstrated by X-ray photoelectron spectroscopy, X-ray diffraction tests, and in situ differential electrochemical mass spectrometry. Additionally, operando synchrotron Fourier transform infrared spectroscopy and electrochemical quartz crystal microbalance with dissipation monitoring reveal a three-electron storage mechanism for the Al//polyaniline full cells. Consequently, AAIBs with this electrolyte exhibit improved cycling stability within the temperature range of -10-50 °C. This present study introduces a promising methodology for designing electrolytes suitable for low-cost, safe, and stable AAIBs over a wide temperature range.
Collapse
Affiliation(s)
- Xiansheng Luo
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Rui Wang
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Longhai Zhang
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Zixiang Liu
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Hongbao Li
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Jianfeng Mao
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia
| | - Shilin Zhang
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia
| | - Junnan Hao
- School of Chemical Engineering, The University of Adelaide, Adelaide 5005, Australia
| | - Tengfei Zhou
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| | - Chaofeng Zhang
- Institutes of Physical Science and Information Technology, Leibniz Research Center of Materials Sciences of Anhui Province, Anhui University, Hefei 230601, China
| |
Collapse
|
8
|
Shehroz H, Ali S, Bibi G, Khan T, Jamil S, Khan SR, Hashaam M, Naz S. Comparative investigation of the catalytic application of α/β/γ-MnO 2 nanoparticles synthesized by green and chemical approaches. ENVIRONMENTAL TECHNOLOGY 2024; 45:1081-1091. [PMID: 36288459 DOI: 10.1080/09593330.2022.2137437] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 09/30/2022] [Indexed: 06/16/2023]
Abstract
Three phases (α, β, and γ) of manganese dioxide (MnO2) are successfully stabilized in a single entity for the first time. For this purpose, Citrullus colocynthis (bitter apple) extract is used as a natural surfactant in green synthesis. MnO2 nanoparticles were synthesized in the presence and absence of plant extracts under the same conditions. The morphology of both products is analysed by SEM and STEM to understand the role of plant extract in controlling the morphology of particles. The crystallinity and composition are analysed by XRD and confirmed that the product is composed of multiple phases α, β, and γ. The reduction of dyes and nitroarenes is studied using MnO2 nanoparticles (green and chemical products) as catalysts. The apparent rate constant, a percentage reduction, time reduction and reduced concentration compare the activities of both catalysts. After comparative data analysis, the catalytic reduction of picric acid is found fastest among all the substrates. All the results are analysed based on structure, functional group and affinity towards catalysts.
Collapse
Affiliation(s)
- Hamza Shehroz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Sarmed Ali
- Faculty of Engineering, Østfold University College, Halden, Norway
| | - Guria Bibi
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Tahreem Khan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saba Jamil
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Shanza Rauf Khan
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Hashaam
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| | - Saman Naz
- Department of Chemistry, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
9
|
Hu E, Jia BE, Zhu Q, Xu J, Loh XJ, Chen J, Pan H, Yan Q. Engineering High Voltage Aqueous Aluminum-Ion Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2309252. [PMID: 38217311 DOI: 10.1002/smll.202309252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 12/14/2023] [Indexed: 01/15/2024]
Abstract
The energy transition to renewables necessitates innovative storage solutions beyond the capacities of lithium-ion batteries. Aluminum-ion batteries (AIBs), particularly their aqueous variants (AAIBs), have emerged as potential successors due to their abundant resources, electrochemical advantages, and eco-friendliness. However, they grapple with achieving their theoretical voltage potential, often yielding less than expected. This perspective article provides a comprehensive examination of the voltage challenges faced by AAIBs, attributing gaps to factors such as the aluminum reduction potential, hydrogen evolution reaction, and aluminum's inherent passivation. Through a critical exploration of methodologies, strategies, such as underpotential deposition, alloying, interface enhancements, tailored electrolyte compositions, and advanced cathode design, are proposed. This piece seeks to guide researchers in harnessing the full potential of AAIBs in the global energy storage landscape.
Collapse
Affiliation(s)
- Erhai Hu
- Energy Research Institute @ NTU, Nanyang Technological University, Singapore, 637141, Singapore
| | - Bei-Er Jia
- School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
| | - Qiang Zhu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), Singapore, 627833, Singapore
| | - Xian Jun Loh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Qingyu Yan
- Energy Research Institute @ NTU, Nanyang Technological University, Singapore, 637141, Singapore
- School of Material Science and Engineering, Nanyang Technological University, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore, 138634, Singapore
| |
Collapse
|
10
|
Gu H, Yang X, Chen S, Zhang W, Yang HY, Li Z. Oxygen Vacancies Boosted Proton Intercalation Kinetics for Aqueous Aluminum-Manganese Batteries. NANO LETTERS 2023; 23:11842-11849. [PMID: 38071640 DOI: 10.1021/acs.nanolett.3c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Aluminum-ion batteries have garnered an extensive amount of attention due to their superior electrochemical performance, low cost, and high safety. To address the limitation of battery performance, exploring new cathode materials and understanding the reaction mechanism for these batteries are of great significance. Among numerous candidates, multiple structures and valence states make manganese-based oxides the best choice for aqueous aluminum-ion batteries (AAIBs). In this work, a new cathode consists of γ-MnO2 with abundant oxygen vacancies. As a result, the electrode shows a high discharge capacity of 481.9 mAh g-1 at 0.2 A g-1 and a sustained reversible capacity of 128.6 mAh g-1 after 200 cycles at 0.4 A g-1. In particular, through density functional theory calculation and experimental comparison, the role of oxygen vacancies in accelerating the reaction kinetics of H+ has been verified. This study provides insights into the application of manganese dioxide materials in aqueous AAIBs.
Collapse
Affiliation(s)
- Hanqing Gu
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Xiaohu Yang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Song Chen
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Wenming Zhang
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| | - Hui Ying Yang
- Pillar of Engineering Product Development, Singapore University of Technology and Design, 8 Somapah Road, Singapore 487372
| | - Zhanyu Li
- Hebei Key Laboratory of Optic-Electronic Information and Materials, National & Local Joint Engineering Laboratory of New Energy Photoelectric Devices, College of Physics Science and Technology, Hebei University, Baoding 071002, China
| |
Collapse
|
11
|
Jia BE, Thang AQ, Yan C, Liu C, Lv C, Zhu Q, Xu J, Chen J, Pan H, Yan Q. Rechargeable Aqueous Aluminum-Ion Battery: Progress and Outlook. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107773. [PMID: 35934834 DOI: 10.1002/smll.202107773] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 05/11/2022] [Indexed: 06/15/2023]
Abstract
The high cost and scarcity of lithium resources have prompted researchers to seek alternatives to lithium-ion batteries. Among emerging "Beyond Lithium" batteries, rechargeable aluminum-ion batteries (AIBs) are yet another attractive electrochemical storage device due to their high specific capacity and the abundance of aluminum. Although the current electrochemical performance of nonaqueous AIBs is better than aqueous AIBs (AAIBs), AAIBs have recently gained attention due to their low cost and enhanced safety. Extensive efforts are devoted to developing AAIBs in the last few years. Yet, it is still challenging to achieve stable electrodes with good electrochemical performance and electrolytes without side reactions. This review summarizes the recent progress in the exploration of anode and cathode materials and the selection of electrolytes of AAIBs. Lastly, the main challenges and future research outlook of high-performance AAIBs are also presented.
Collapse
Affiliation(s)
- Bei-Er Jia
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Ai Qin Thang
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
| | - Chunshuang Yan
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold, Ministry of Education, Zhengzhou University, Zhengzhou, 450002, China
| | - Chade Lv
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- MIIT Key Laboratory of Critical Materials Technology for New Energy Conversion and Storage, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin, 150001, China
| | - Qiang Zhu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jianwei Xu
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| | - Jian Chen
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Hongge Pan
- Institute of Science and Technology for New Energy, Xi'an Technological University, Xi'an, 710021, China
| | - Qingyu Yan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore
- Institute of Materials Research and Engineering, A*STAR, 2 Fusionopolis Way, Innovis, #08-03, Singapore, 138634, Singapore
| |
Collapse
|
12
|
Xu Y, Zheng X, Sun J, Wang W, Wang M, Yuan Y, Chuai M, Chen N, Hu H, Chen W. Nucleophilic Interfacial Layer Enables Stable Zn Anodes for Aqueous Zn Batteries. NANO LETTERS 2022; 22:3298-3306. [PMID: 35385667 DOI: 10.1021/acs.nanolett.2c00398] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Aqueous Zn batteries are emerging as promising energy storage devices. However, severe dendrite growth and side reactions of Zn anodes restrict their further development. Herein, we develop a nucleophilic interfacial layer (NIL) on Zn to achieve a highly stable Zn anode for rechargeable Zn batteries. The NIL in a composition of zinc acetate acetamide is homogeneous, compact, and Zn2+-conductive, rendering dendrite-free Zn deposition, which is observed by in situ optical microscopy. Benefiting from the advantages of NIL, the Zn||Zn symmetric cells show a low overpotential of 0.12 V at a high current density of 40 mA/cm2, enhanced Coulombic efficiency up to 99.9%, and extended lifespan over 2600 cycles. The Zn||Ti asymmetric cells exhibit a high areal capacity of 5 mAh/cm2. Moreover, the NIL functionalized Zn anode enables stable cycling of both anode-free Zn||Cl2 cells and zinc-ion capacitors, providing opportunities for the development of high-performance energy storage devices.
Collapse
Affiliation(s)
- Yan Xu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, Guangdong 518000, China
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Xinhua Zheng
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jifei Sun
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, Guangdong 518000, China
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Weiping Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingming Wang
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Yuan Yuan
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Mingyan Chuai
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Na Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hanlin Hu
- Hoffman Institute of Advanced Materials, Shenzhen Polytechnic, Shenzhen, Guangdong 518000, China
| | - Wei Chen
- Department of Applied Chemistry, School of Chemistry and Materials Science, Hefei National Laboratory for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|